Browse Source

doc: translate ja of cameras(wip)

naotaro0123 4 years ago
parent
commit
03869b0402
1 changed files with 610 additions and 0 deletions
  1. 610 0
      threejs/lessons/ja/threejs-cameras.md

+ 610 - 0
threejs/lessons/ja/threejs-cameras.md

@@ -0,0 +1,610 @@
+Title: Three.jsのカメラ
+Description: Three.jsでのカメラの使い方
+TOC: カメラ
+
+この記事はThree.jsの連載記事の1つです。
+最初の記事は[Three.jsの基礎知識](threejs-fundamentals.html)です。
+まだ読んでいない場合、そこから始めると良いかもしれません。
+
+three.jsのカメラについて話しましょう。
+[最初の記事](threejs-fundamentals.html)でいくつか取り上げましたが、ここではもっと詳しく取り上げます。
+
+three.jsで最も一般的なカメラで、今までの記事で使ってきたのは `PerspectiveCamera(透視投影カメラ)` です。
+遠くのモノが近くのモノよりも小さく見える3Dビューを提供します。
+
+`PerspectiveCamera` は *錐台* を定義します。
+[錐台とは、先端が切り取られたピラミッドのような3D形状の事です](https://en.wikipedia.org/wiki/Frustum)。
+つまり、錐台は、立方体、球、角柱、錐台のような別の3D形状と考えて下さい。
+
+<div class="spread">
+  <div><div data-diagram="shapeCube"></div><div>cube</div></div>
+  <div><div data-diagram="shapeCone"></div><div>cone</div></div>
+  <div><div data-diagram="shapeSphere"></div><div>sphere</div></div>
+  <div><div data-diagram="shapeCylinder"></div><div>cylinder</div></div>
+  <div><div data-diagram="shapeFrustum"></div><div>frustum</div></div>
+</div>
+
+私はこのポイントを何年も知らなかったです。
+どこかの本やページで *錐台* について書かれていると目がかすんでしまいます。
+それが固体の形状の種類の名前だと理解する事で、それらの記述が急に理解できるようになりました。 &#128517
+
+`PerspectiveCamera` には錐台をもとに4つのプロパティが定義されています。
+
+A `PerspectiveCamera` defines its frustum based on 4 properties. `near` defines where the
+front of the frustum starts. `far` defines where it ends. `fov`, the field of view, defines
+how tall the front and back of the frustum are by computing the correct height to get
+the specified field of view at `near` units from the camera. The `aspect` defines how
+wide the front and back of the frustum are. The width of the frustum is just the height
+multiplied by the aspect.
+
+<img src="resources/frustum-3d.svg" width="500" class="threejs_center"/>
+
+Let's use the scene from [the previous article](threejs-lights.html) that has a ground
+plane, a sphere, and a cube and make it so we can adjust the camera's settings.
+
+To do that we'll make a `MinMaxGUIHelper` for the `near` and `far` settings so `far`
+is always greater than `near`. It will have `min` and `max` properties that dat.GUI
+will adjust. When adjusted they'll set the 2 properties we specify.
+
+```js
+class MinMaxGUIHelper {
+  constructor(obj, minProp, maxProp, minDif) {
+    this.obj = obj;
+    this.minProp = minProp;
+    this.maxProp = maxProp;
+    this.minDif = minDif;
+  }
+  get min() {
+    return this.obj[this.minProp];
+  }
+  set min(v) {
+    this.obj[this.minProp] = v;
+    this.obj[this.maxProp] = Math.max(this.obj[this.maxProp], v + this.minDif);
+  }
+  get max() {
+    return this.obj[this.maxProp];
+  }
+  set max(v) {
+    this.obj[this.maxProp] = v;
+    this.min = this.min;  // this will call the min setter
+  }
+}
+```
+
+Now we can setup our GUI like this
+
+```js
+function updateCamera() {
+  camera.updateProjectionMatrix();
+}
+
+const gui = new GUI();
+gui.add(camera, 'fov', 1, 180).onChange(updateCamera);
+const minMaxGUIHelper = new MinMaxGUIHelper(camera, 'near', 'far', 0.1);
+gui.add(minMaxGUIHelper, 'min', 0.1, 50, 0.1).name('near').onChange(updateCamera);
+gui.add(minMaxGUIHelper, 'max', 0.1, 50, 0.1).name('far').onChange(updateCamera);
+```
+
+Anytime the camera's settings change we need to call the camera's
+[`updateProjectionMatrix`](PerspectiveCamera.updateProjectionMatrix) function
+so we made a function called `updateCamera` add passed it to dat.GUI to call it when things change.
+
+{{{example url="../threejs-cameras-perspective.html" }}}
+
+You can adjust the values and see how they work. Note we didn't make `aspect` settable since
+it's taken from the size of the window so if you want to adjust the aspect open the example
+in a new window and then size the window.
+
+Still, I think it's a little hard to see so let's change the example so it has 2 cameras.
+One will show our scene as we see it above, the other will show another camera looking at the
+scene the first camera is drawing and showing that camera's frustum.
+
+To do this we can use the scissor function of three.js.
+Let's change it to draw 2 scenes with 2 cameras side by side using the scissor function
+
+First off let's use some HTML and CSS to define 2 side by side elements. This will also
+help us with events so both cameras can easily have their own `OrbitControls`.
+
+```html
+<body>
+  <canvas id="c"></canvas>
++  <div class="split">
++     <div id="view1" tabindex="1"></div>
++     <div id="view2" tabindex="2"></div>
++  </div>
+</body>
+```
+
+And the CSS that will make those 2 views show up side by side overlaid on top of
+the canvas
+
+```css
+.split {
+  position: absolute;
+  left: 0;
+  top: 0;
+  width: 100%;
+  height: 100%;
+  display: flex;
+}
+.split>div {
+  width: 100%;
+  height: 100%;
+}
+```
+
+Then in our code we'll add a `CameraHelper`. A `CameraHelper` draws the frustum for a `Camera`
+
+```js
+const cameraHelper = new THREE.CameraHelper(camera);
+
+...
+
+scene.add(cameraHelper);
+```
+
+Now let's look up the 2 view elements.
+
+```js
+const view1Elem = document.querySelector('#view1');
+const view2Elem = document.querySelector('#view2');
+```
+
+And we'll set our existing `OrbitControls` to respond to the first
+view element only.
+
+```js
+-const controls = new OrbitControls(camera, canvas);
++const controls = new OrbitControls(camera, view1Elem);
+```
+
+Let's make a second `PerspectiveCamera` and a second `OrbitControls`.
+The second `OrbitControls` is tied to the second camera and gets input
+from the second view element.
+
+```js
+const camera2 = new THREE.PerspectiveCamera(
+  60,  // fov
+  2,   // aspect
+  0.1, // near
+  500, // far
+);
+camera2.position.set(40, 10, 30);
+camera2.lookAt(0, 5, 0);
+
+const controls2 = new OrbitControls(camera2, view2Elem);
+controls2.target.set(0, 5, 0);
+controls2.update();
+```
+
+Finally we need to render the scene from the point of view of each
+camera using the scissor function to only render to part of the canvas.
+
+Here is a function that given an element will compute the rectangle
+of that element that overlaps the canvas. It will then set the scissor
+and viewport to that rectangle and return the aspect for that size.
+
+```js
+function setScissorForElement(elem) {
+  const canvasRect = canvas.getBoundingClientRect();
+  const elemRect = elem.getBoundingClientRect();
+
+  // compute a canvas relative rectangle
+  const right = Math.min(elemRect.right, canvasRect.right) - canvasRect.left;
+  const left = Math.max(0, elemRect.left - canvasRect.left);
+  const bottom = Math.min(elemRect.bottom, canvasRect.bottom) - canvasRect.top;
+  const top = Math.max(0, elemRect.top - canvasRect.top);
+
+  const width = Math.min(canvasRect.width, right - left);
+  const height = Math.min(canvasRect.height, bottom - top);
+
+  // setup the scissor to only render to that part of the canvas
+  const positiveYUpBottom = canvasRect.height - bottom;
+  renderer.setScissor(left, positiveYUpBottom, width, height);
+  renderer.setViewport(left, positiveYUpBottom, width, height);
+
+  // return the aspect
+  return width / height;
+}
+```
+
+And now we can use that function to draw the scene twice in our `render` function
+
+```js
+  function render() {
+
+-    if (resizeRendererToDisplaySize(renderer)) {
+-      const canvas = renderer.domElement;
+-      camera.aspect = canvas.clientWidth / canvas.clientHeight;
+-      camera.updateProjectionMatrix();
+-    }
+
++    resizeRendererToDisplaySize(renderer);
++
++    // turn on the scissor
++    renderer.setScissorTest(true);
++
++    // render the original view
++    {
++      const aspect = setScissorForElement(view1Elem);
++
++      // adjust the camera for this aspect
++      camera.aspect = aspect;
++      camera.updateProjectionMatrix();
++      cameraHelper.update();
++
++      // don't draw the camera helper in the original view
++      cameraHelper.visible = false;
++
++      scene.background.set(0x000000);
++
++      // render
++      renderer.render(scene, camera);
++    }
++
++    // render from the 2nd camera
++    {
++      const aspect = setScissorForElement(view2Elem);
++
++      // adjust the camera for this aspect
++      camera2.aspect = aspect;
++      camera2.updateProjectionMatrix();
++
++      // draw the camera helper in the 2nd view
++      cameraHelper.visible = true;
++
++      scene.background.set(0x000040);
++
++      renderer.render(scene, camera2);
++    }
+
+-    renderer.render(scene, camera);
+
+    requestAnimationFrame(render);
+  }
+
+  requestAnimationFrame(render);
+}
+```
+
+The code above sets the background color of the scene when rendering the
+second view to dark blue just to make it easier to distinguish the two views.
+
+We can also remove our `updateCamera` code since we're updating everything
+in the `render` function.
+
+```js
+-function updateCamera() {
+-  camera.updateProjectionMatrix();
+-}
+
+const gui = new GUI();
+-gui.add(camera, 'fov', 1, 180).onChange(updateCamera);
++gui.add(camera, 'fov', 1, 180);
+const minMaxGUIHelper = new MinMaxGUIHelper(camera, 'near', 'far', 0.1);
+-gui.add(minMaxGUIHelper, 'min', 0.1, 50, 0.1).name('near').onChange(updateCamera);
+-gui.add(minMaxGUIHelper, 'max', 0.1, 50, 0.1).name('far').onChange(updateCamera);
++gui.add(minMaxGUIHelper, 'min', 0.1, 50, 0.1).name('near');
++gui.add(minMaxGUIHelper, 'max', 0.1, 50, 0.1).name('far');
+```
+
+And now you can use one view to see the frustum of the other.
+
+{{{example url="../threejs-cameras-perspective-2-scenes.html" }}}
+
+On the left you can see the original view and on the right you can
+see a view showing the frustum of the camera on the left. As you adjust
+`near`, `far`, `fov` and move the camera with mouse you can see that
+only what's inside the frustum shown on the right appears in the scene on
+the left.
+
+Adjust `near` up to around 20 and you'll easily see the front of objects
+disappear as they are no longer in the frustum. Adjust `far` below about 35
+and you'll start to see the ground plane disappear as it's no longer in
+the frustum.
+
+This brings up the question, why not just set `near` to 0.0000000001 and `far`
+to 10000000000000 or something like that so you can just see everything?
+The reason is your GPU only has so much precision to decide if something
+is in front or behind something else. That precision is spread out between
+`near` and `far`. Worse, by default the precision close the camera is detailed
+and the precision far from the camera is coarse. The units start with `near`
+and slowly expand as they approach `far`.
+
+Starting with the top example, let's change the code to insert 20 spheres in a
+row.
+
+```js
+{
+  const sphereRadius = 3;
+  const sphereWidthDivisions = 32;
+  const sphereHeightDivisions = 16;
+  const sphereGeo = new THREE.SphereBufferGeometry(sphereRadius, sphereWidthDivisions, sphereHeightDivisions);
+  const numSpheres = 20;
+  for (let i = 0; i < numSpheres; ++i) {
+    const sphereMat = new THREE.MeshPhongMaterial();
+    sphereMat.color.setHSL(i * .73, 1, 0.5);
+    const mesh = new THREE.Mesh(sphereGeo, sphereMat);
+    mesh.position.set(-sphereRadius - 1, sphereRadius + 2, i * sphereRadius * -2.2);
+    scene.add(mesh);
+  }
+}
+```
+
+and let's set `near` to 0.00001
+
+```js
+const fov = 45;
+const aspect = 2;  // the canvas default
+-const near = 0.1;
++const near = 0.00001;
+const far = 100;
+const camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
+```
+
+We also need to tweak the GUI code a little to allow 0.00001 if the value is edited
+
+```js
+-gui.add(minMaxGUIHelper, 'min', 0.1, 50, 0.1).name('near').onChange(updateCamera);
++gui.add(minMaxGUIHelper, 'min', 0.00001, 50, 0.00001).name('near').onChange(updateCamera);
+```
+
+What do you think will happen?
+
+{{{example url="../threejs-cameras-z-fighting.html" }}}
+
+This is an example of *z fighting* where the GPU on your computer does not have
+enough precision to decide which pixels are in front and which pixels are behind.
+
+Just in case the issue doesn't show on your machine here's what I see on mine
+
+<div class="threejs_center"><img src="resources/images/z-fighting.png" style="width: 570px;"></div>
+
+One solution is to tell three.js use to a different method to compute which
+pixels are in front and which are behind. We can do that by enabling
+`logarithmicDepthBuffer` when we create the `WebGLRenderer`
+
+```js
+-const renderer = new THREE.WebGLRenderer({canvas});
++const renderer = new THREE.WebGLRenderer({
++  canvas,
++  logarithmicDepthBuffer: true,
++});
+```
+
+and with that it might work
+
+{{{example url="../threejs-cameras-logarithmic-depth-buffer.html" }}}
+
+If this didn't fix the issue for you then you've run into one reason why
+you can't always use this solution. That reason is because only certain GPUs
+support it. As of September 2018 almost no mobile devices support this
+solution whereas most desktops do.
+
+Another reason not to choose this solution is it can be significantly slower
+than the standard solution.
+
+Even with this solution there is still limited resolution. Make `near` even
+smaller or `far` even bigger and you'll eventually run into the same issues.
+
+What that means is that you should always make an effort to choose a `near`
+and `far` setting that fits your use case. Set `near` as far away from the camera
+as you can and not have things disappear. Set `far` as close to the camera
+as you can and not have things disappear. If you're trying to draw a giant
+scene and show a close up of someone's face so you can see their eyelashes
+while in the background you can see all the way to mountains 50 kilometers
+in the distance well then you'll need to find other creative solutions that
+maybe we'll go over later. For now, just be aware you should take care
+to choose appropriate `near` and `far` values for your needs.
+
+The 2nd most common camera is the `OrthographicCamera`. Rather than
+specify a frustum it specifies a box with the settings `left`, `right`
+`top`, `bottom`, `near`, and `far`. Because it's projecting a box
+there is no perspective.
+
+Let's change the 2 view example above to use an `OrthographicCamera`
+in the first view.
+
+First let's setup an `OrthographicCamera`.
+
+```js
+const left = -1;
+const right = 1;
+const top = 1;
+const bottom = -1;
+const near = 5;
+const far = 50;
+const camera = new THREE.OrthographicCamera(left, right, top, bottom, near, far);
+camera.zoom = 0.2;
+```
+
+We set `left` and `bottom` to -1 and `right` and `top` to 1. This would make
+a box 2 units wide and 2 units tall but we're going to adjust the `left` and `top`
+by the aspect of the rectangle we're drawing to. We'll use the `zoom` property
+to make it easy to adjust how many units are actually shown by the camera.
+
+Let's add a GUI setting for `zoom`
+
+```js
+const gui = new GUI();
++gui.add(camera, 'zoom', 0.01, 1, 0.01).listen();
+```
+
+The call to `listen` tells dat.GUI to watch for changes. This is here because
+the `OrbitControls` can also control zoom. For example the scroll wheel on
+a mouse will zoom via the `OrbitControls`.
+
+Last we just need to change the part that renders the left
+side to update the `OrthographicCamera`.
+
+```js
+{
+  const aspect = setScissorForElement(view1Elem);
+
+  // update the camera for this aspect
+-  camera.aspect = aspect;
++  camera.left   = -aspect;
++  camera.right  =  aspect;
+  camera.updateProjectionMatrix();
+  cameraHelper.update();
+
+  // don't draw the camera helper in the original view
+  cameraHelper.visible = false;
+
+  scene.background.set(0x000000);
+  renderer.render(scene, camera);
+}
+```
+
+and now you can see an `OrthographicCamera` at work.
+
+{{{example url="../threejs-cameras-orthographic-2-scenes.html" }}}
+
+An `OrthographicCamera` is most often used if using three.js
+to draw 2D things. You'd decide how many units you want the camera
+to show. For example if you want one pixel of canvas to match
+one unit in the camera you could do something like
+
+To put the origin at the center and have 1 pixel = 1 three.js unit
+something like
+
+```js
+camera.left = -canvas.width / 2;
+camera.right = canvas.width / 2;
+camera.top = canvas.height / 2;
+camera.bottom = -canvas.height / 2;
+camera.near = -1;
+camera.far = 1;
+camera.zoom = 1;
+```
+
+Or if we wanted the origin to be in the top left just like a
+2D canvas we could use this
+
+```js
+camera.left = 0;
+camera.right = canvas.width;
+camera.top = 0;
+camera.bottom = canvas.height;
+camera.near = -1;
+camera.far = 1;
+camera.zoom = 1;
+```
+
+In which case the top left corner would be 0,0 just like a 2D canvas
+
+Let's try it! First let's set the camera up
+
+```js
+const left = 0;
+const right = 300;  // default canvas size
+const top = 0;
+const bottom = 150;  // default canvas size
+const near = -1;
+const far = 1;
+const camera = new THREE.OrthographicCamera(left, right, top, bottom, near, far);
+camera.zoom = 1;
+```
+
+Then let's load 6 textures and make 6 planes, one for each texture.
+We'll parent each plane to a `THREE.Object3D` to make it easy to offset
+the plane so its center appears to be at its top left corner.
+
+```js
+const loader = new THREE.TextureLoader();
+const textures = [
+  loader.load('resources/images/flower-1.jpg'),
+  loader.load('resources/images/flower-2.jpg'),
+  loader.load('resources/images/flower-3.jpg'),
+  loader.load('resources/images/flower-4.jpg'),
+  loader.load('resources/images/flower-5.jpg'),
+  loader.load('resources/images/flower-6.jpg'),
+];
+const planeSize = 256;
+const planeGeo = new THREE.PlaneBufferGeometry(planeSize, planeSize);
+const planes = textures.map((texture) => {
+  const planePivot = new THREE.Object3D();
+  scene.add(planePivot);
+  texture.magFilter = THREE.NearestFilter;
+  const planeMat = new THREE.MeshBasicMaterial({
+    map: texture,
+    side: THREE.DoubleSide,
+  });
+  const mesh = new THREE.Mesh(planeGeo, planeMat);
+  planePivot.add(mesh);
+  // move plane so top left corner is origin
+  mesh.position.set(planeSize / 2, planeSize / 2, 0);
+  return planePivot;
+});
+```
+
+and we need to update the camera if the size of the canvas
+changes.
+
+```js
+function render() {
+
+  if (resizeRendererToDisplaySize(renderer)) {
+    camera.right = canvas.width;
+    camera.bottom = canvas.height;
+    camera.updateProjectionMatrix();
+  }
+
+  ...
+```
+
+`planes` is an array of `THREE.Mesh`, one for each plane.
+Let's move them around based on the time.
+
+```js
+function render(time) {
+  time *= 0.001;  // convert to seconds;
+
+  ...
+
+  const distAcross = Math.max(20, canvas.width - planeSize);
+  const distDown = Math.max(20, canvas.height - planeSize);
+
+  // total distance to move across and back
+  const xRange = distAcross * 2;
+  const yRange = distDown * 2;
+  const speed = 180;
+
+  planes.forEach((plane, ndx) => {
+    // compute a unique time for each plane
+    const t = time * speed + ndx * 300;
+
+    // get a value between 0 and range
+    const xt = t % xRange;
+    const yt = t % yRange;
+
+    // set our position going forward if 0 to half of range
+    // and backward if half of range to range
+    const x = xt < distAcross ? xt : xRange - xt;
+    const y = yt < distDown   ? yt : yRange - yt;
+
+    plane.position.set(x, y, 0);
+  });
+
+  renderer.render(scene, camera);
+```
+
+And you can see the images bounce pixel perfect off the edges of the
+canvas using pixel math just like a 2D canvas
+
+{{{example url="../threejs-cameras-orthographic-canvas-top-left-origin.html" }}}
+
+Another common use for an `OrthographicCamera` is to draw the
+up, down, left, right, front, back views of a 3D modeling
+program or a game engine's editor.
+
+<div class="threejs_center"><img src="resources/images/quad-viewport.png" style="width: 574px;"></div>
+
+In the screenshot above you can see 1 view is a perspective view and 3 views are
+orthographic views.
+
+That's the fundamentals of cameras. We'll cover a few common ways to move cameras
+in other articles. For now let's move on to [shadows](threejs-shadows.html).
+
+<canvas id="c"></canvas>
+<script type="module" src="resources/threejs-cameras.js"></script>