|
@@ -0,0 +1,396 @@
|
|
|
+Title: Three.js 拾取
|
|
|
+Description: 在Three.js中,鼠标选取对象
|
|
|
+TOC: 鼠标选取对象
|
|
|
+
|
|
|
+*拾取* 指代推断用户点击或触碰了哪个对象的过程。有很多方式实现拾取,但是,每一种都有相应的成本,使用时需有所取舍。下面是最常用的两种方式:
|
|
|
+
|
|
|
+**射线追踪法**(raycasting)很可能是最常用的方法,其基本原理是:从鼠标处发射一条射线,穿透场景的视椎体,通过计算,找出视锥体中哪些对象与射线相交。
|
|
|
+
|
|
|
+首先,获取鼠标的屏幕坐标.其次,对其应用摄像机的投影和方向的矩阵变换,得到其在世界空间的坐标。然后,计算出一条射线,从视锥体的近端平面射向远端平面。再然后,对于场景中每一个对象的每一个三角,检查其是否与射线相交。假设你的场景中有1000个对象,每个对象有1000个三角,那么就需要检查一百万个三角。
|
|
|
+
|
|
|
+对此,可以做一些优化,先检查对象的包围球或包围盒是否与射线相交,包围球或包围盒是指包含整个对象的球体或者立方体,如果射线未相交,就不需要检查组成该对象的三角们了。
|
|
|
+
|
|
|
+THREE.js 提供了 `RayCaster` 类来做这些事情。
|
|
|
+
|
|
|
+接下来,让我们先创建一个包含100个对象的场景,然后试着去拾取这些对象。可以从样例[threejs-响应式](threejs-responsive.html)开始。
|
|
|
+
|
|
|
+改动一些代码
|
|
|
+使摄像机成为一个对象的子元素,旋转这个对象时,摄像机会像绑定在自拍杆上一样,在场景中游弋。
|
|
|
+
|
|
|
+```js
|
|
|
+*const fov = 60;
|
|
|
+const aspect = 2; // 画布默认纵横比为2
|
|
|
+const near = 0.1;
|
|
|
+*const far = 200;
|
|
|
+const camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
|
|
|
+*camera.position.z = 30;
|
|
|
+
|
|
|
+const scene = new THREE.Scene();
|
|
|
++scene.background = new THREE.Color('white');
|
|
|
+
|
|
|
++// 把摄像机放到自拍杆上 (把它添加为一个对象的子元素)
|
|
|
++// 如此,我们就能通过旋转自拍杆,来移动摄像机
|
|
|
++const cameraPole = new THREE.Object3D();
|
|
|
++scene.add(cameraPole);
|
|
|
++cameraPole.add(camera);
|
|
|
+```
|
|
|
+
|
|
|
+在 `render` 函数中旋转摄像机端点。
|
|
|
+```js
|
|
|
+cameraPole.rotation.y = time * .1;
|
|
|
+```
|
|
|
+
|
|
|
+把光源也绑定到摄像机上,这样光源就会随着摄像机移动。
|
|
|
+
|
|
|
+```js
|
|
|
+-scene.add(light);
|
|
|
++camera.add(light);
|
|
|
+```
|
|
|
+
|
|
|
+生成100个立方体,每个立方体的颜色,位置,朝向,缩放都随机。
|
|
|
+
|
|
|
+```js
|
|
|
+const boxWidth = 1;
|
|
|
+const boxHeight = 1;
|
|
|
+const boxDepth = 1;
|
|
|
+const geometry = new THREE.BoxGeometry(boxWidth, boxHeight, boxDepth);
|
|
|
+
|
|
|
+function rand(min, max) {
|
|
|
+ if (max === undefined) {
|
|
|
+ max = min;
|
|
|
+ min = 0;
|
|
|
+ }
|
|
|
+ return min + (max - min) * Math.random();
|
|
|
+}
|
|
|
+
|
|
|
+function randomColor() {
|
|
|
+ return `hsl(${rand(360) | 0}, ${rand(50, 100) | 0}%, 50%)`;
|
|
|
+}
|
|
|
+
|
|
|
+const numObjects = 100;
|
|
|
+for (let i = 0; i < numObjects; ++i) {
|
|
|
+ const material = new THREE.MeshPhongMaterial({
|
|
|
+ color: randomColor(),
|
|
|
+ });
|
|
|
+
|
|
|
+ const cube = new THREE.Mesh(geometry, material);
|
|
|
+ scene.add(cube);
|
|
|
+
|
|
|
+ cube.position.set(rand(-20, 20), rand(-20, 20), rand(-20, 20));
|
|
|
+ cube.rotation.set(rand(Math.PI), rand(Math.PI), 0);
|
|
|
+ cube.scale.set(rand(3, 6), rand(3, 6), rand(3, 6));
|
|
|
+}
|
|
|
+```
|
|
|
+
|
|
|
+最后,让我们来完成拾取功能。
|
|
|
+写一个简单的类来管理拾取操作
|
|
|
+```js
|
|
|
+class PickHelper {
|
|
|
+ constructor() {
|
|
|
+ this.raycaster = new THREE.Raycaster();
|
|
|
+ this.pickedObject = null;
|
|
|
+ this.pickedObjectSavedColor = 0;
|
|
|
+ }
|
|
|
+ pick(normalizedPosition, scene, camera, time) {
|
|
|
+ // 恢复上一个被拾取对象的颜色
|
|
|
+ if (this.pickedObject) {
|
|
|
+ this.pickedObject.material.emissive.setHex(this.pickedObjectSavedColor);
|
|
|
+ this.pickedObject = undefined;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 发出射线
|
|
|
+ this.raycaster.setFromCamera(normalizedPosition, camera);
|
|
|
+ // 获取与射线相交的对象
|
|
|
+ const intersectedObjects = this.raycaster.intersectObjects(scene.children);
|
|
|
+ if (intersectedObjects.length) {
|
|
|
+ // 找到第一个对象,它是离鼠标最近的对象
|
|
|
+ this.pickedObject = intersectedObjects[0].object;
|
|
|
+ // 保存它的颜色
|
|
|
+ this.pickedObjectSavedColor = this.pickedObject.material.emissive.getHex();
|
|
|
+ // 设置它的发光为 黄色/红色闪烁
|
|
|
+ this.pickedObject.material.emissive.setHex((time * 8) % 2 > 1 ? 0xFFFF00 : 0xFF0000);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+```
|
|
|
+
|
|
|
+可以看到,我们创建了一个 `RayCaster` 实例,调用该实例的 `pick` 方法可以在场景中发出一条射线。如果,射线有撞击到场景中的物体,修改撞击到的第一个物体的颜色。
|
|
|
+
|
|
|
+当然,也可以在用户点击鼠标时,调用这个方法,这恐怕是最常见的应用场景。但是,在本范例中,不管在鼠标下方是什么,在每一帧中都会进行拾取操作,为此,需要跟踪鼠标的位置。
|
|
|
+```js
|
|
|
+const pickPosition = {x: 0, y: 0};
|
|
|
+clearPickPosition();
|
|
|
+
|
|
|
+...
|
|
|
+
|
|
|
+function getCanvasRelativePosition(event) {
|
|
|
+ const rect = canvas.getBoundingClientRect();
|
|
|
+ return {
|
|
|
+ x: (event.clientX - rect.left) * canvas.width / rect.width,
|
|
|
+ y: (event.clientY - rect.top ) * canvas.height / rect.height,
|
|
|
+ };
|
|
|
+}
|
|
|
+
|
|
|
+function setPickPosition(event) {
|
|
|
+ const pos = getCanvasRelativePosition(event);
|
|
|
+ pickPosition.x = (pos.x / canvas.width ) * 2 - 1;
|
|
|
+ pickPosition.y = (pos.y / canvas.height) * -2 + 1; // note we flip Y
|
|
|
+}
|
|
|
+
|
|
|
+function clearPickPosition() {
|
|
|
+ // 对于触屏,不像鼠标总是能有一个位置坐标,
|
|
|
+ // 如果用户不在触摸屏幕,我们希望停止拾取操作。
|
|
|
+ // 因此,我们选取一个特别的值,表明什么都没选中
|
|
|
+ pickPosition.x = -100000;
|
|
|
+ pickPosition.y = -100000;
|
|
|
+}
|
|
|
+
|
|
|
+window.addEventListener('mousemove', setPickPosition);
|
|
|
+window.addEventListener('mouseout', clearPickPosition);
|
|
|
+window.addEventListener('mouseleave', clearPickPosition);
|
|
|
+```
|
|
|
+
|
|
|
+需要注意的是,我们记录了归一化的鼠标位置。无论画布的尺寸,我们需要一个从左到右,落入区间(-1,1)的值,类似的,也需要一个从下到上,落入区间(-1,1)的值。
|
|
|
+
|
|
|
+完成以后,我们再添加对移动端的支持:
|
|
|
+```js
|
|
|
+window.addEventListener('touchstart', (event) => {
|
|
|
+ // 阻止窗口滚动行为
|
|
|
+ event.preventDefault();
|
|
|
+ setPickPosition(event.touches[0]);
|
|
|
+}, {passive: false});
|
|
|
+
|
|
|
+window.addEventListener('touchmove', (event) => {
|
|
|
+ setPickPosition(event.touches[0]);
|
|
|
+});
|
|
|
+
|
|
|
+window.addEventListener('touchend', clearPickPosition);
|
|
|
+```
|
|
|
+
|
|
|
+最终,在 `render` 方法中,我们调用了 `PickHelper` 的 `pick` 方法
|
|
|
+```js
|
|
|
++const pickHelper = new PickHelper();
|
|
|
+
|
|
|
+function render(time) {
|
|
|
+ time *= 0.001; //将毫秒单位转换为秒单位;
|
|
|
+
|
|
|
+ ...
|
|
|
+
|
|
|
++ pickHelper.pick(pickPosition, scene, camera, time);
|
|
|
+
|
|
|
+ renderer.render(scene, camera);
|
|
|
+
|
|
|
+ ...
|
|
|
+```
|
|
|
+
|
|
|
+这是最终结果
|
|
|
+{{{example url="../threejs-picking-raycaster.html" }}}
|
|
|
+
|
|
|
+这种方式看起来效果不错,而且能处理很多用户场景,但是也存在几个问题:
|
|
|
+1. 这是基于CPU运算的
|
|
|
+ Javascript遍历每一个对象,检查其包围盒或包围球是否与射线相交,如果相交,它必须遍历组成该对象的每一个三角,检查它们是否与射线相交。
|
|
|
+ 好处是,JavaScript能够很容易计算出射线在哪里与三角相交,并为我们提供相关数据。举个例子,如果你想要在相交的位置放置一个标记。
|
|
|
+ 缺点是,CPU要做大量的工作,当你的对象由大量的三角组成时,这个过程会有些慢。
|
|
|
+2. 它无法处理一些奇怪的着色器或者位移
|
|
|
+ 如果,你有一个变形或者拟态几何形状的着色器,Javascript无法理解这个变形,它会给出错误的答案。举例:据我所知,你不能对有皮肤的对象使用这种方式。
|
|
|
+3. 无法处理透明的孔洞
|
|
|
+举个例子,为立方体应用这个纹理
|
|
|
+<div class="threejs_center"><img class="checkerboard" src="../resources/images/frame.png"></div>
|
|
|
+
|
|
|
+改动代码如下:
|
|
|
+```js
|
|
|
++const loader = new THREE.TextureLoader();
|
|
|
++const texture = loader.load('resources/images/frame.png');
|
|
|
+
|
|
|
+const numObjects = 100;
|
|
|
+for (let i = 0; i < numObjects; ++i) {
|
|
|
+ const material = new THREE.MeshPhongMaterial({
|
|
|
+ color: randomColor(),
|
|
|
+ +map: texture,
|
|
|
+ +transparent: true,
|
|
|
+ +side: THREE.DoubleSide,
|
|
|
+ +alphaTest: 0.1,
|
|
|
+ });
|
|
|
+
|
|
|
+ const cube = new THREE.Mesh(geometry, material);
|
|
|
+ scene.add(cube);
|
|
|
+
|
|
|
+ ...
|
|
|
+```
|
|
|
+
|
|
|
+运行后,你就能看到问题所在。
|
|
|
+{{{example url="../threejs-picking-raycaster-transparency.html" }}}
|
|
|
+
|
|
|
+试着透过盒子拾取一些物体,但是你无法做到
|
|
|
+<div class="threejs_center"><img src="resources/images/picking-transparent-issue.jpg" style="width: 635px;"></div>
|
|
|
+
|
|
|
+这是因为 JavaScript 无法通过简单的查看纹理和材质,就推测出你的对象是否存在一部分是透明的或者不透明。
|
|
|
+
|
|
|
+对于这些问题的解决方案,就是使用基于GPU的拾取方法。可惜,该方法概念上简单,但是相比于射线追踪法,用起来就复杂了。
|
|
|
+
|
|
|
+为了完成GPU拾取,对每一个对象使用唯一的颜色进行离屏渲染。然后,检查鼠标位置关联的像素的颜色。这个颜色就能告诉我们哪个对象被选中。
|
|
|
+
|
|
|
+这能解决上面的问题2,3。至于问题1的速度问题,这取决于业务场景。每个对象会被绘制两次,一次用于观看,一次用于拾取。也许存在开脑洞的解决方案,可以只绘制一次就完成查看和拾取,此处我们不会尝试。
|
|
|
+
|
|
|
+但是有一件事值得去做,因为拾取时我们只需读取1px,所以我们可以设置摄像机,只绘制1px,通过 `PerspectiveCamera.setViewOffset` 方法,可以告诉THREE.js 计算出一个摄像机 只呈现一个大矩形的一个很小的部分。这应该能节省一些运行时间。
|
|
|
+
|
|
|
+此时,要在THREE.js中实现这种拾取方式,需要创建两个场景。一个使用正常的网格对象填充。另外一个使用“拾取材质”的网格对象填充。
|
|
|
+
|
|
|
+因此,首先创建第二个场景,并将其清理为黑色背景。
|
|
|
+```js
|
|
|
+const scene = new THREE.Scene();
|
|
|
+scene.background = new THREE.Color('white');
|
|
|
+const pickingScene = new THREE.Scene();
|
|
|
+pickingScene.background = new THREE.Color(0);
|
|
|
+```
|
|
|
+
|
|
|
+然后,对于在主场景中的每一个立方体,在 `pickingScene` 中,在同样的位置,创建一个与原立方体相似的,相关联的“可拾取立方体”,用对象的id生成颜色值,去设置对象的材质。
|
|
|
+
|
|
|
+
|
|
|
+```js
|
|
|
+const idToObject = {};
|
|
|
++const numObjects = 100;
|
|
|
+for (let i = 0; i < numObjects; ++i) {
|
|
|
++ const id = i + 1;
|
|
|
+ const material = new THREE.MeshPhongMaterial({
|
|
|
+ color: randomColor(),
|
|
|
+ map: texture,
|
|
|
+ transparent: true,
|
|
|
+ side: THREE.DoubleSide,
|
|
|
+ alphaTest: 0.1,
|
|
|
+ });
|
|
|
+
|
|
|
+ const cube = new THREE.Mesh(geometry, material);
|
|
|
+ scene.add(cube);
|
|
|
++ idToObject[id] = cube;
|
|
|
+
|
|
|
+ cube.position.set(rand(-20, 20), rand(-20, 20), rand(-20, 20));
|
|
|
+ cube.rotation.set(rand(Math.PI), rand(Math.PI), 0);
|
|
|
+ cube.scale.set(rand(3, 6), rand(3, 6), rand(3, 6));
|
|
|
+
|
|
|
++ const pickingMaterial = new THREE.MeshPhongMaterial({
|
|
|
++ emissive: new THREE.Color(id),
|
|
|
++ color: new THREE.Color(0, 0, 0),
|
|
|
++ specular: new THREE.Color(0, 0, 0),
|
|
|
++ map: texture,
|
|
|
++ transparent: true,
|
|
|
++ side: THREE.DoubleSide,
|
|
|
++ alphaTest: 0.5,
|
|
|
++ blending: THREE.NoBlending,
|
|
|
++ });
|
|
|
++ const pickingCube = new THREE.Mesh(geometry, pickingMaterial);
|
|
|
++ pickingScene.add(pickingCube);
|
|
|
++ pickingCube.position.copy(cube.position);
|
|
|
++ pickingCube.rotation.copy(cube.rotation);
|
|
|
++ pickingCube.scale.copy(cube.scale);
|
|
|
+}
|
|
|
+```
|
|
|
+
|
|
|
+注意到,此时,我们利用 `MeshPhongMaterial` 创建材质,使用id生成颜色,设置到它的`emissive`属性,`color` 和 `specular`属性设置为0,设置 `alphaTest` 属性,只渲染纹理的alpha值大于该属性值的部分,还需要将`blending` 设置为 `NoBlending`,这样alpha通道不会作用到id生成色
|
|
|
+
|
|
|
+注意到,利用 `MeshPhongMaterial` 可能并不是最优的解决方案,因为,在绘制拾取场景时,仍然需要计算所有的光线,尽管我们不需要这些计算。一个更优的方案是使用自定义的着色器,只为纹理alpha值大于 `alphaTest` 属性值的部分,输出id生成色
|
|
|
+
|
|
|
+由于我们是从像素点拾取,而不是射线追踪,只需将代码修改为使用像素拾取方式,获取拾取位置。
|
|
|
+
|
|
|
+```js
|
|
|
+function setPickPosition(event) {
|
|
|
+ const pos = getCanvasRelativePosition(event);
|
|
|
+- pickPosition.x = (pos.x / canvas.clientWidth ) * 2 - 1;
|
|
|
+- pickPosition.y = (pos.y / canvas.clientHeight) * -2 + 1; // 注意,翻转了y轴
|
|
|
++ pickPosition.x = pos.x;
|
|
|
++ pickPosition.y = pos.y;
|
|
|
+}
|
|
|
+```
|
|
|
+
|
|
|
+首先,我们将 `PickHelper` 修改为 `GPUPickHelper`。这里使用了 `WebGLRenderTarget`,如同我们在 [多个渲染目标](threejs-rendertargets.html)中介绍的一样,此处,我们的渲染目标只有1像素的尺寸,1×1。
|
|
|
+
|
|
|
+```js
|
|
|
+-class PickHelper {
|
|
|
++class GPUPickHelper {
|
|
|
+ constructor() {
|
|
|
+- this.raycaster = new THREE.Raycaster();
|
|
|
++ // 创建一个1px的渲染目标
|
|
|
++ this.pickingTexture = new THREE.WebGLRenderTarget(1, 1);
|
|
|
++ this.pixelBuffer = new Uint8Array(4);
|
|
|
+ this.pickedObject = null;
|
|
|
+ this.pickedObjectSavedColor = 0;
|
|
|
+ }
|
|
|
+ pick(cssPosition, scene, camera, time) {
|
|
|
++ const {pickingTexture, pixelBuffer} = this;
|
|
|
+
|
|
|
+ // 如果已经存在拾取的对象,将其颜色恢复
|
|
|
+ if (this.pickedObject) {
|
|
|
+ this.pickedObject.material.emissive.setHex(this.pickedObjectSavedColor);
|
|
|
+ this.pickedObject = undefined;
|
|
|
+ }
|
|
|
+
|
|
|
++ // 设置视野偏移来表现鼠标下的1px
|
|
|
++ const pixelRatio = renderer.getPixelRatio();
|
|
|
++ camera.setViewOffset(
|
|
|
++ renderer.getContext().drawingBufferWidth, // 全宽
|
|
|
++ renderer.getContext().drawingBufferHeight, // 全高
|
|
|
++ cssPosition.x * pixelRatio | 0, // rect x
|
|
|
++ cssPosition.y * pixelRatio | 0, // rect y
|
|
|
++ 1, // rect width
|
|
|
++ 1, // rect height
|
|
|
++ );
|
|
|
++ // 渲染场景
|
|
|
++ renderer.setRenderTarget(pickingTexture)
|
|
|
++ renderer.render(scene, camera);
|
|
|
++ renderer.setRenderTarget(null);
|
|
|
++
|
|
|
++ // 清理视野偏移,回归正常
|
|
|
++ camera.clearViewOffset();
|
|
|
++ // 读取像素
|
|
|
++ renderer.readRenderTargetPixels(
|
|
|
++ pickingTexture,
|
|
|
++ 0, // x
|
|
|
++ 0, // y
|
|
|
++ 1, // width
|
|
|
++ 1, // height
|
|
|
++ pixelBuffer);
|
|
|
++
|
|
|
++ const id =
|
|
|
++ (pixelBuffer[0] << 16) |
|
|
|
++ (pixelBuffer[1] << 8) |
|
|
|
++ (pixelBuffer[2] );
|
|
|
+
|
|
|
+- // 射线穿越视锥体
|
|
|
+- this.raycaster.setFromCamera(normalizedPosition, camera);
|
|
|
+- // 获取与射线相交的对象
|
|
|
+- const intersectedObjects = this.raycaster.intersectObjects(scene.children);
|
|
|
+- if (intersectedObjects.length) {
|
|
|
+- // 获取第一个对象,他是离鼠标最近的一个
|
|
|
+- this.pickedObject = intersectedObjects[0].object;
|
|
|
+
|
|
|
++ const intersectedObject = idToObject[id];
|
|
|
++ if (intersectedObject) {
|
|
|
++ //获取第一个对象,他是离鼠标最近的一个
|
|
|
++ this.pickedObject = intersectedObject;
|
|
|
+ // 保存颜色
|
|
|
+ this.pickedObjectSavedColor = this.pickedObject.material.emissive.getHex();
|
|
|
+ // 设置对象在黄/红两色间闪烁
|
|
|
+ this.pickedObject.material.emissive.setHex((time * 8) % 2 > 1 ? 0xFFFF00 : 0xFF0000);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+```
|
|
|
+
|
|
|
+接下来,我们就可以使用它了
|
|
|
+```js
|
|
|
+-const pickHelper = new PickHelper();
|
|
|
++const pickHelper = new GPUPickHelper();
|
|
|
+```
|
|
|
+
|
|
|
+这里是将 `pickScene` 传给helper,而不是`scene`。
|
|
|
+
|
|
|
+```js
|
|
|
+- pickHelper.pick(pickPosition, scene, camera, time);
|
|
|
++ pickHelper.pick(pickPosition, pickScene, camera, time);
|
|
|
+```
|
|
|
+
|
|
|
+现在,你应该可以透过透明的部分进行拾取操作了
|
|
|
+
|
|
|
+{{{example url="../threejs-picking-gpu.html" }}}
|
|
|
+
|
|
|
+至此,对于如何实现拾取,希望此文能给你一些灵感。在后续的文章中,也许,我们可以看看如何使用鼠标操作对象。
|