|
@@ -0,0 +1,757 @@
|
|
|
+import NodeMaterial from '../../../nodes/materials/NodeMaterial.js';
|
|
|
+import { getDirection, blur } from '../../../nodes/pmrem/PMREMUtils.js';
|
|
|
+import { equirectUV } from '../../../nodes/utils/EquirectUVNode.js';
|
|
|
+import { uniform } from '../../../nodes/core/UniformNode.js';
|
|
|
+import { uniforms } from '../../../nodes/accessors/UniformsNode.js';
|
|
|
+import { texture } from '../../../nodes/accessors/TextureNode.js';
|
|
|
+import { cubeTexture } from '../../../nodes/accessors/CubeTextureNode.js';
|
|
|
+import { float, vec3 } from '../../../nodes/shadernode/ShaderNode.js';
|
|
|
+import { uv } from '../../../nodes/accessors/UVNode.js';
|
|
|
+import { attribute } from '../../../nodes/core/AttributeNode.js';
|
|
|
+import {
|
|
|
+ OrthographicCamera,
|
|
|
+ Color,
|
|
|
+ Vector3,
|
|
|
+ BufferGeometry,
|
|
|
+ BufferAttribute,
|
|
|
+ RenderTarget,
|
|
|
+ Mesh,
|
|
|
+ CubeReflectionMapping,
|
|
|
+ CubeRefractionMapping,
|
|
|
+ CubeUVReflectionMapping,
|
|
|
+ LinearFilter,
|
|
|
+ NoToneMapping,
|
|
|
+ NoBlending,
|
|
|
+ RGBAFormat,
|
|
|
+ HalfFloatType,
|
|
|
+ BackSide,
|
|
|
+ LinearSRGBColorSpace,
|
|
|
+ PerspectiveCamera,
|
|
|
+ MeshBasicMaterial,
|
|
|
+ BoxGeometry
|
|
|
+} from 'three';
|
|
|
+
|
|
|
+const LOD_MIN = 4;
|
|
|
+
|
|
|
+// The standard deviations (radians) associated with the extra mips. These are
|
|
|
+// chosen to approximate a Trowbridge-Reitz distribution function times the
|
|
|
+// geometric shadowing function. These sigma values squared must match the
|
|
|
+// variance #defines in cube_uv_reflection_fragment.glsl.js.
|
|
|
+const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
|
|
|
+
|
|
|
+// The maximum length of the blur for loop. Smaller sigmas will use fewer
|
|
|
+// samples and exit early, but not recompile the shader.
|
|
|
+const MAX_SAMPLES = 20;
|
|
|
+
|
|
|
+const _flatCamera = /*@__PURE__*/ new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
|
|
|
+const _clearColor = /*@__PURE__*/ new Color();
|
|
|
+let _oldTarget = null;
|
|
|
+let _oldActiveCubeFace = 0;
|
|
|
+let _oldActiveMipmapLevel = 0;
|
|
|
+
|
|
|
+// Golden Ratio
|
|
|
+const PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
|
|
|
+const INV_PHI = 1 / PHI;
|
|
|
+
|
|
|
+// Vertices of a dodecahedron (except the opposites, which represent the
|
|
|
+// same axis), used as axis directions evenly spread on a sphere.
|
|
|
+const _axisDirections = [
|
|
|
+ /*@__PURE__*/ new Vector3( 1, 1, 1 ),
|
|
|
+ /*@__PURE__*/ new Vector3( - 1, 1, 1 ),
|
|
|
+ /*@__PURE__*/ new Vector3( 1, 1, - 1 ),
|
|
|
+ /*@__PURE__*/ new Vector3( - 1, 1, - 1 ),
|
|
|
+ /*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ),
|
|
|
+ /*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ),
|
|
|
+ /*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ),
|
|
|
+ /*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ),
|
|
|
+ /*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ),
|
|
|
+ /*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 )
|
|
|
+];
|
|
|
+
|
|
|
+//
|
|
|
+
|
|
|
+// WebGPU Face indices
|
|
|
+const _faceLib = [
|
|
|
+ 3, 1, 5,
|
|
|
+ 0, 4, 2
|
|
|
+];
|
|
|
+
|
|
|
+const direction = getDirection( uv(), attribute( 'faceIndex' ) ).normalize();
|
|
|
+const outputDirection = vec3( direction.x, direction.y.negate(), direction.z );
|
|
|
+
|
|
|
+/**
|
|
|
+ * This class generates a Prefiltered, Mipmapped Radiance Environment Map
|
|
|
+ * (PMREM) from a cubeMap environment texture. This allows different levels of
|
|
|
+ * blur to be quickly accessed based on material roughness. It is packed into a
|
|
|
+ * special CubeUV format that allows us to perform custom interpolation so that
|
|
|
+ * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
|
|
|
+ * chain, it only goes down to the LOD_MIN level (above), and then creates extra
|
|
|
+ * even more filtered 'mips' at the same LOD_MIN resolution, associated with
|
|
|
+ * higher roughness levels. In this way we maintain resolution to smoothly
|
|
|
+ * interpolate diffuse lighting while limiting sampling computation.
|
|
|
+ *
|
|
|
+ * Paper: Fast, Accurate Image-Based Lighting
|
|
|
+ * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
|
|
|
+*/
|
|
|
+
|
|
|
+class PMREMGenerator {
|
|
|
+
|
|
|
+ constructor( renderer ) {
|
|
|
+
|
|
|
+ this._renderer = renderer;
|
|
|
+ this._pingPongRenderTarget = null;
|
|
|
+
|
|
|
+ this._lodMax = 0;
|
|
|
+ this._cubeSize = 0;
|
|
|
+ this._lodPlanes = [];
|
|
|
+ this._sizeLods = [];
|
|
|
+ this._sigmas = [];
|
|
|
+
|
|
|
+ this._blurMaterial = null;
|
|
|
+ this._cubemapMaterial = null;
|
|
|
+ this._equirectMaterial = null;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Generates a PMREM from a supplied Scene, which can be faster than using an
|
|
|
+ * image if networking bandwidth is low. Optional sigma specifies a blur radius
|
|
|
+ * in radians to be applied to the scene before PMREM generation. Optional near
|
|
|
+ * and far planes ensure the scene is rendered in its entirety (the cubeCamera
|
|
|
+ * is placed at the origin).
|
|
|
+ */
|
|
|
+ fromScene( scene, sigma = 0, near = 0.1, far = 100 ) {
|
|
|
+
|
|
|
+ _oldTarget = this._renderer.getRenderTarget();
|
|
|
+ _oldActiveCubeFace = this._renderer.getActiveCubeFace();
|
|
|
+ _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
|
|
|
+
|
|
|
+ this._setSize( 256 );
|
|
|
+
|
|
|
+ const cubeUVRenderTarget = this._allocateTargets();
|
|
|
+ cubeUVRenderTarget.depthBuffer = true;
|
|
|
+
|
|
|
+ this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
|
|
|
+
|
|
|
+ if ( sigma > 0 ) {
|
|
|
+
|
|
|
+ this._blur( cubeUVRenderTarget, 0, 0, sigma );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ this._applyPMREM( cubeUVRenderTarget );
|
|
|
+
|
|
|
+ this._cleanup( cubeUVRenderTarget );
|
|
|
+
|
|
|
+ return cubeUVRenderTarget;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Generates a PMREM from an equirectangular texture, which can be either LDR
|
|
|
+ * or HDR. The ideal input image size is 1k (1024 x 512),
|
|
|
+ * as this matches best with the 256 x 256 cubemap output.
|
|
|
+ */
|
|
|
+ fromEquirectangular( equirectangular, renderTarget = null ) {
|
|
|
+
|
|
|
+ return this._fromTexture( equirectangular, renderTarget );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Generates a PMREM from an cubemap texture, which can be either LDR
|
|
|
+ * or HDR. The ideal input cube size is 256 x 256,
|
|
|
+ * as this matches best with the 256 x 256 cubemap output.
|
|
|
+ */
|
|
|
+ fromCubemap( cubemap, renderTarget = null ) {
|
|
|
+
|
|
|
+ return this._fromTexture( cubemap, renderTarget );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
|
|
|
+ * your texture's network fetch for increased concurrency.
|
|
|
+ */
|
|
|
+ compileCubemapShader() {
|
|
|
+
|
|
|
+ if ( this._cubemapMaterial === null ) {
|
|
|
+
|
|
|
+ this._cubemapMaterial = _getCubemapMaterial();
|
|
|
+ this._compileMaterial( this._cubemapMaterial );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
|
|
|
+ * your texture's network fetch for increased concurrency.
|
|
|
+ */
|
|
|
+ compileEquirectangularShader() {
|
|
|
+
|
|
|
+ if ( this._equirectMaterial === null ) {
|
|
|
+
|
|
|
+ this._equirectMaterial = _getEquirectMaterial();
|
|
|
+ this._compileMaterial( this._equirectMaterial );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
|
|
|
+ * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
|
|
|
+ * one of them will cause any others to also become unusable.
|
|
|
+ */
|
|
|
+ dispose() {
|
|
|
+
|
|
|
+ this._dispose();
|
|
|
+
|
|
|
+ if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose();
|
|
|
+ if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose();
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // private interface
|
|
|
+
|
|
|
+ _setSize( cubeSize ) {
|
|
|
+
|
|
|
+ this._lodMax = Math.floor( Math.log2( cubeSize ) );
|
|
|
+ this._cubeSize = Math.pow( 2, this._lodMax );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _dispose() {
|
|
|
+
|
|
|
+ if ( this._blurMaterial !== null ) this._blurMaterial.dispose();
|
|
|
+
|
|
|
+ if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose();
|
|
|
+
|
|
|
+ for ( let i = 0; i < this._lodPlanes.length; i ++ ) {
|
|
|
+
|
|
|
+ this._lodPlanes[ i ].dispose();
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _cleanup( outputTarget ) {
|
|
|
+
|
|
|
+ this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel );
|
|
|
+ outputTarget.scissorTest = false;
|
|
|
+ _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _fromTexture( texture, renderTarget ) {
|
|
|
+
|
|
|
+ if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) {
|
|
|
+
|
|
|
+ this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) );
|
|
|
+
|
|
|
+ } else { // Equirectangular
|
|
|
+
|
|
|
+ this._setSize( texture.image.width / 4 );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _oldTarget = this._renderer.getRenderTarget();
|
|
|
+ _oldActiveCubeFace = this._renderer.getActiveCubeFace();
|
|
|
+ _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel();
|
|
|
+
|
|
|
+ const cubeUVRenderTarget = renderTarget || this._allocateTargets();
|
|
|
+ this._textureToCubeUV( texture, cubeUVRenderTarget );
|
|
|
+ this._applyPMREM( cubeUVRenderTarget );
|
|
|
+ this._cleanup( cubeUVRenderTarget );
|
|
|
+
|
|
|
+ return cubeUVRenderTarget;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _allocateTargets() {
|
|
|
+
|
|
|
+ const width = 3 * Math.max( this._cubeSize, 16 * 7 );
|
|
|
+ const height = 4 * this._cubeSize;
|
|
|
+
|
|
|
+ const params = {
|
|
|
+ magFilter: LinearFilter,
|
|
|
+ minFilter: LinearFilter,
|
|
|
+ generateMipmaps: false,
|
|
|
+ type: HalfFloatType,
|
|
|
+ format: RGBAFormat,
|
|
|
+ colorSpace: LinearSRGBColorSpace,
|
|
|
+ //depthBuffer: false
|
|
|
+ };
|
|
|
+
|
|
|
+ const cubeUVRenderTarget = _createRenderTarget( width, height, params );
|
|
|
+
|
|
|
+ if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) {
|
|
|
+
|
|
|
+ if ( this._pingPongRenderTarget !== null ) {
|
|
|
+
|
|
|
+ this._dispose();
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ this._pingPongRenderTarget = _createRenderTarget( width, height, params );
|
|
|
+
|
|
|
+ const { _lodMax } = this;
|
|
|
+ ( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas } = _createPlanes( _lodMax ) );
|
|
|
+
|
|
|
+ this._blurMaterial = _getBlurShader( _lodMax, width, height );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ return cubeUVRenderTarget;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _compileMaterial( material ) {
|
|
|
+
|
|
|
+ const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material );
|
|
|
+ this._renderer.compile( tmpMesh, _flatCamera );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
|
|
|
+
|
|
|
+ const fov = 90;
|
|
|
+ const aspect = 1;
|
|
|
+ const cubeCamera = new PerspectiveCamera( fov, aspect, near, far );
|
|
|
+
|
|
|
+ // px, py, pz, nx, ny, nz
|
|
|
+ const upSign = [ - 1, 1, - 1, - 1, - 1, - 1 ];
|
|
|
+ const forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ];
|
|
|
+
|
|
|
+ const renderer = this._renderer;
|
|
|
+
|
|
|
+ const originalAutoClear = renderer.autoClear;
|
|
|
+ const toneMapping = renderer.toneMapping;
|
|
|
+ renderer.getClearColor( _clearColor );
|
|
|
+
|
|
|
+ renderer.toneMapping = NoToneMapping;
|
|
|
+ renderer.autoClear = false;
|
|
|
+
|
|
|
+ const backgroundMaterial = new MeshBasicMaterial( {
|
|
|
+ name: 'PMREM.Background',
|
|
|
+ side: BackSide,
|
|
|
+ depthWrite: false,
|
|
|
+ depthTest: false
|
|
|
+ } );
|
|
|
+
|
|
|
+ const backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial );
|
|
|
+
|
|
|
+ let useSolidColor = false;
|
|
|
+ const background = scene.background;
|
|
|
+
|
|
|
+ if ( background ) {
|
|
|
+
|
|
|
+ if ( background.isColor ) {
|
|
|
+
|
|
|
+ backgroundMaterial.color.copy( background );
|
|
|
+ scene.background = null;
|
|
|
+ useSolidColor = true;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ backgroundMaterial.color.copy( _clearColor );
|
|
|
+ useSolidColor = true;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ renderer.setRenderTarget( cubeUVRenderTarget );
|
|
|
+
|
|
|
+ renderer.clear();
|
|
|
+
|
|
|
+ if ( useSolidColor ) {
|
|
|
+
|
|
|
+ renderer.render( backgroundBox, cubeCamera );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( let i = 0; i < 6; i ++ ) {
|
|
|
+
|
|
|
+ const col = i % 3;
|
|
|
+
|
|
|
+ if ( col === 0 ) {
|
|
|
+
|
|
|
+ cubeCamera.up.set( 0, upSign[ i ], 0 );
|
|
|
+ cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
|
|
|
+
|
|
|
+ } else if ( col === 1 ) {
|
|
|
+
|
|
|
+ cubeCamera.up.set( 0, 0, upSign[ i ] );
|
|
|
+ cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ cubeCamera.up.set( 0, upSign[ i ], 0 );
|
|
|
+ cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ const size = this._cubeSize;
|
|
|
+
|
|
|
+ _setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size );
|
|
|
+
|
|
|
+ renderer.render( scene, cubeCamera );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ backgroundBox.geometry.dispose();
|
|
|
+ backgroundBox.material.dispose();
|
|
|
+
|
|
|
+ renderer.toneMapping = toneMapping;
|
|
|
+ renderer.autoClear = originalAutoClear;
|
|
|
+ scene.background = background;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _textureToCubeUV( texture, cubeUVRenderTarget ) {
|
|
|
+
|
|
|
+ const renderer = this._renderer;
|
|
|
+
|
|
|
+ const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping );
|
|
|
+
|
|
|
+ if ( isCubeTexture ) {
|
|
|
+
|
|
|
+ if ( this._cubemapMaterial === null ) {
|
|
|
+
|
|
|
+ this._cubemapMaterial = _getCubemapMaterial();
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ if ( this._equirectMaterial === null ) {
|
|
|
+
|
|
|
+ this._equirectMaterial = _getEquirectMaterial();
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial;
|
|
|
+ const mesh = new Mesh( this._lodPlanes[ 0 ], material );
|
|
|
+
|
|
|
+ material.fragmentNode.value = texture;
|
|
|
+
|
|
|
+ const size = this._cubeSize;
|
|
|
+
|
|
|
+ _setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size );
|
|
|
+
|
|
|
+ renderer.setRenderTarget( cubeUVRenderTarget );
|
|
|
+ renderer.render( mesh, _flatCamera );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _applyPMREM( cubeUVRenderTarget ) {
|
|
|
+
|
|
|
+ const renderer = this._renderer;
|
|
|
+ const autoClear = renderer.autoClear;
|
|
|
+ renderer.autoClear = false;
|
|
|
+
|
|
|
+ for ( let i = 1; i < this._lodPlanes.length; i ++ ) {
|
|
|
+
|
|
|
+ const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] );
|
|
|
+
|
|
|
+ const poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ];
|
|
|
+
|
|
|
+ this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ renderer.autoClear = autoClear;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This is a two-pass Gaussian blur for a cubemap. Normally this is done
|
|
|
+ * vertically and horizontally, but this breaks down on a cube. Here we apply
|
|
|
+ * the blur latitudinally (around the poles), and then longitudinally (towards
|
|
|
+ * the poles) to approximate the orthogonally-separable blur. It is least
|
|
|
+ * accurate at the poles, but still does a decent job.
|
|
|
+ */
|
|
|
+ _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
|
|
|
+
|
|
|
+ const pingPongRenderTarget = this._pingPongRenderTarget;
|
|
|
+
|
|
|
+ this._halfBlur(
|
|
|
+ cubeUVRenderTarget,
|
|
|
+ pingPongRenderTarget,
|
|
|
+ lodIn,
|
|
|
+ lodOut,
|
|
|
+ sigma,
|
|
|
+ 'latitudinal',
|
|
|
+ poleAxis );
|
|
|
+
|
|
|
+ this._halfBlur(
|
|
|
+ pingPongRenderTarget,
|
|
|
+ cubeUVRenderTarget,
|
|
|
+ lodOut,
|
|
|
+ lodOut,
|
|
|
+ sigma,
|
|
|
+ 'longitudinal',
|
|
|
+ poleAxis );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
|
|
|
+
|
|
|
+ const renderer = this._renderer;
|
|
|
+ const blurMaterial = this._blurMaterial;
|
|
|
+
|
|
|
+ if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
|
|
|
+
|
|
|
+ console.error(
|
|
|
+ 'blur direction must be either latitudinal or longitudinal!' );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // Number of standard deviations at which to cut off the discrete approximation.
|
|
|
+ const STANDARD_DEVIATIONS = 3;
|
|
|
+
|
|
|
+ const blurMesh = new Mesh( this._lodPlanes[ lodOut ], blurMaterial );
|
|
|
+ const blurUniforms = blurMaterial.uniforms;
|
|
|
+
|
|
|
+ const pixels = this._sizeLods[ lodIn ] - 1;
|
|
|
+ const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
|
|
|
+ const sigmaPixels = sigmaRadians / radiansPerPixel;
|
|
|
+ const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
|
|
|
+
|
|
|
+ if ( samples > MAX_SAMPLES ) {
|
|
|
+
|
|
|
+ console.warn( `sigmaRadians, ${
|
|
|
+ sigmaRadians}, is too large and will clip, as it requested ${
|
|
|
+ samples} samples when the maximum is set to ${MAX_SAMPLES}` );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ const weights = [];
|
|
|
+ let sum = 0;
|
|
|
+
|
|
|
+ for ( let i = 0; i < MAX_SAMPLES; ++ i ) {
|
|
|
+
|
|
|
+ const x = i / sigmaPixels;
|
|
|
+ const weight = Math.exp( - x * x / 2 );
|
|
|
+ weights.push( weight );
|
|
|
+
|
|
|
+ if ( i === 0 ) {
|
|
|
+
|
|
|
+ sum += weight;
|
|
|
+
|
|
|
+ } else if ( i < samples ) {
|
|
|
+
|
|
|
+ sum += 2 * weight;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( let i = 0; i < weights.length; i ++ ) {
|
|
|
+
|
|
|
+ weights[ i ] = weights[ i ] / sum;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ blurUniforms.envMap.value = targetIn.texture;
|
|
|
+ blurUniforms.samples.value = samples;
|
|
|
+ blurUniforms.weights.array = weights;
|
|
|
+ blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0;
|
|
|
+
|
|
|
+ if ( poleAxis ) {
|
|
|
+
|
|
|
+ blurUniforms.poleAxis.value = poleAxis;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ const { _lodMax } = this;
|
|
|
+ blurUniforms.dTheta.value = radiansPerPixel;
|
|
|
+ blurUniforms.mipInt.value = _lodMax - lodIn;
|
|
|
+
|
|
|
+ const outputSize = this._sizeLods[ lodOut ];
|
|
|
+ const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 );
|
|
|
+ const y = 4 * ( this._cubeSize - outputSize );
|
|
|
+
|
|
|
+ _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize );
|
|
|
+ renderer.setRenderTarget( targetOut );
|
|
|
+ renderer.render( blurMesh, _flatCamera );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+function _createPlanes( lodMax ) {
|
|
|
+
|
|
|
+ const lodPlanes = [];
|
|
|
+ const sizeLods = [];
|
|
|
+ const sigmas = [];
|
|
|
+
|
|
|
+ let lod = lodMax;
|
|
|
+
|
|
|
+ const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
|
|
|
+
|
|
|
+ for ( let i = 0; i < totalLods; i ++ ) {
|
|
|
+
|
|
|
+ const sizeLod = Math.pow( 2, lod );
|
|
|
+ sizeLods.push( sizeLod );
|
|
|
+ let sigma = 1.0 / sizeLod;
|
|
|
+
|
|
|
+ if ( i > lodMax - LOD_MIN ) {
|
|
|
+
|
|
|
+ sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ];
|
|
|
+
|
|
|
+ } else if ( i === 0 ) {
|
|
|
+
|
|
|
+ sigma = 0;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ sigmas.push( sigma );
|
|
|
+
|
|
|
+ const texelSize = 1.0 / ( sizeLod - 2 );
|
|
|
+ const min = - texelSize;
|
|
|
+ const max = 1 + texelSize;
|
|
|
+ const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
|
|
|
+
|
|
|
+ const cubeFaces = 6;
|
|
|
+ const vertices = 6;
|
|
|
+ const positionSize = 3;
|
|
|
+ const uvSize = 2;
|
|
|
+ const faceIndexSize = 1;
|
|
|
+
|
|
|
+ const position = new Float32Array( positionSize * vertices * cubeFaces );
|
|
|
+ const uv = new Float32Array( uvSize * vertices * cubeFaces );
|
|
|
+ const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
|
|
|
+
|
|
|
+ for ( let face = 0; face < cubeFaces; face ++ ) {
|
|
|
+
|
|
|
+ const x = ( face % 3 ) * 2 / 3 - 1;
|
|
|
+ const y = face > 2 ? 0 : - 1;
|
|
|
+ const coordinates = [
|
|
|
+ x, y, 0,
|
|
|
+ x + 2 / 3, y, 0,
|
|
|
+ x + 2 / 3, y + 1, 0,
|
|
|
+ x, y, 0,
|
|
|
+ x + 2 / 3, y + 1, 0,
|
|
|
+ x, y + 1, 0
|
|
|
+ ];
|
|
|
+
|
|
|
+ const faceIdx = _faceLib[ face ];
|
|
|
+ position.set( coordinates, positionSize * vertices * faceIdx );
|
|
|
+ uv.set( uv1, uvSize * vertices * faceIdx );
|
|
|
+ const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ];
|
|
|
+ faceIndex.set( fill, faceIndexSize * vertices * faceIdx );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ const planes = new BufferGeometry();
|
|
|
+ planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
|
|
|
+ planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
|
|
|
+ planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
|
|
|
+ lodPlanes.push( planes );
|
|
|
+
|
|
|
+ if ( lod > LOD_MIN ) {
|
|
|
+
|
|
|
+ lod --;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ return { lodPlanes, sizeLods, sigmas };
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+function _createRenderTarget( width, height, params ) {
|
|
|
+
|
|
|
+ const cubeUVRenderTarget = new RenderTarget( width, height, params );
|
|
|
+ cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
|
|
|
+ cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
|
|
|
+ cubeUVRenderTarget.texture.isPMREMTexture = true;
|
|
|
+ cubeUVRenderTarget.scissorTest = true;
|
|
|
+ return cubeUVRenderTarget;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+function _setViewport( target, x, y, width, height ) {
|
|
|
+
|
|
|
+ const viewY = target.height - height - y;
|
|
|
+
|
|
|
+ target.viewport.set( x, viewY, width, height );
|
|
|
+ target.scissor.set( x, viewY, width, height );
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+function _getMaterial() {
|
|
|
+
|
|
|
+ const material = new NodeMaterial();
|
|
|
+ material.colorSpaced = false;
|
|
|
+ material.toneMapped = false;
|
|
|
+ material.depthTest = false;
|
|
|
+ material.depthWrite = false;
|
|
|
+ material.blending = NoBlending;
|
|
|
+
|
|
|
+ return material;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+function _getBlurShader( lodMax, width, height ) {
|
|
|
+
|
|
|
+ const weights = uniforms( new Array( MAX_SAMPLES ).fill( 0 ) );
|
|
|
+ const poleAxis = uniform( new Vector3( 0, 1, 0 ) );
|
|
|
+ const dTheta = uniform( 0 );
|
|
|
+ const n = float( MAX_SAMPLES );
|
|
|
+ const latitudinal = uniform( 0 ); // false, bool
|
|
|
+ const samples = uniform( 1 ); // int
|
|
|
+ const envMap = texture( null );
|
|
|
+ const mipInt = uniform( 0 ); // int
|
|
|
+ const CUBEUV_TEXEL_WIDTH = float( 1 / width );
|
|
|
+ const CUBEUV_TEXEL_HEIGHT = float( 1 / height );
|
|
|
+ const CUBEUV_MAX_MIP = float( lodMax );
|
|
|
+
|
|
|
+ const materialUniforms = {
|
|
|
+ n,
|
|
|
+ latitudinal,
|
|
|
+ weights,
|
|
|
+ poleAxis,
|
|
|
+ outputDirection,
|
|
|
+ dTheta,
|
|
|
+ samples,
|
|
|
+ envMap,
|
|
|
+ mipInt,
|
|
|
+ CUBEUV_TEXEL_WIDTH,
|
|
|
+ CUBEUV_TEXEL_HEIGHT,
|
|
|
+ CUBEUV_MAX_MIP
|
|
|
+ };
|
|
|
+
|
|
|
+ const material = _getMaterial();
|
|
|
+ material.uniforms = materialUniforms; // TODO: Move to outside of the material
|
|
|
+ material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } );
|
|
|
+
|
|
|
+ return material;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+function _getCubemapMaterial() {
|
|
|
+
|
|
|
+ const material = _getMaterial();
|
|
|
+ material.fragmentNode = cubeTexture( texture, outputDirection );
|
|
|
+
|
|
|
+ return material;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+function _getEquirectMaterial() {
|
|
|
+
|
|
|
+ const material = _getMaterial();
|
|
|
+ material.fragmentNode = texture( texture, equirectUV( outputDirection ), 0 );
|
|
|
+
|
|
|
+ return material;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+export default PMREMGenerator;
|