|
@@ -0,0 +1,429 @@
|
|
|
+<!DOCTYPE html>
|
|
|
+<html lang="en">
|
|
|
+ <head>
|
|
|
+ <title>three.js webgl - multiple elements with text</title>
|
|
|
+ <meta charset="utf-8">
|
|
|
+ <meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
|
|
|
+ <style>
|
|
|
+ * {
|
|
|
+ box-sizing: border-box;
|
|
|
+ -moz-box-sizing: border-box;
|
|
|
+ }
|
|
|
+
|
|
|
+ body {
|
|
|
+ color: #000;
|
|
|
+ font-family: Monospace;
|
|
|
+ font-size: 13px;
|
|
|
+
|
|
|
+ background-color: #fff;
|
|
|
+ margin: auto;
|
|
|
+ padding: .5in;
|
|
|
+ max-width: 7in;
|
|
|
+ text-align: justify;
|
|
|
+ }
|
|
|
+
|
|
|
+ .view {
|
|
|
+ width: 5in;
|
|
|
+ height: 5in;
|
|
|
+ margin: auto;
|
|
|
+ }
|
|
|
+
|
|
|
+ #c {
|
|
|
+ position: fixed;
|
|
|
+ left: 0px; top: 0px;
|
|
|
+ width: 100%;
|
|
|
+ height: 100%;
|
|
|
+ background-color: #fff;
|
|
|
+ z-index: -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ #info {
|
|
|
+ position: absolute;
|
|
|
+ top: 0px; width: 6.5in;
|
|
|
+ padding: 0px;
|
|
|
+ text-align: center;
|
|
|
+ }
|
|
|
+
|
|
|
+ a {
|
|
|
+ color: #0080ff;
|
|
|
+ }
|
|
|
+
|
|
|
+ </style>
|
|
|
+ </head>
|
|
|
+ <body>
|
|
|
+
|
|
|
+ <canvas id="c"></canvas>
|
|
|
+
|
|
|
+ <div id="info"><a href="http://threejs.org" target="_blank">three.js</a> - multiple elements with text - webgl</div>
|
|
|
+
|
|
|
+ <script src="../build/three.min.js"></script>
|
|
|
+ <script src="../examples/js/controls/OrbitControls.js"></script>
|
|
|
+
|
|
|
+ <script src="js/Detector.js"></script>
|
|
|
+
|
|
|
+ <script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
|
|
|
+
|
|
|
+ <script>
|
|
|
+
|
|
|
+ if ( ! Detector.webgl ) Detector.addGetWebGLMessage();
|
|
|
+
|
|
|
+ var scenes = [], views, t, canvas, renderer;
|
|
|
+
|
|
|
+ window.onload = init;
|
|
|
+
|
|
|
+ function init() {
|
|
|
+
|
|
|
+ var balls = 20;
|
|
|
+ var size = .25;
|
|
|
+
|
|
|
+ var colors = [ 'rgb(0,127,255)', 'rgb(255,0,0)', 'rgb(0,255,0)', 'rgb(0,255,255)',
|
|
|
+ 'rgb(255,0,255)', 'rgb(255,0,127)', 'rgb(255,255,0)', 'rgb(0,255,127)' ];
|
|
|
+
|
|
|
+ canvas = document.getElementById( 'c' );
|
|
|
+
|
|
|
+ renderer = new THREE.WebGLRenderer( { canvas: canvas, antialias: true } );
|
|
|
+ renderer.setClearColor( 0xffffff, 1 );
|
|
|
+ renderer.setPixelRatio( window.devicePixelRatio );
|
|
|
+
|
|
|
+ views = document.querySelectorAll( '.view' );
|
|
|
+
|
|
|
+ for ( var n = 0 ; n < views.length ; n++ ) {
|
|
|
+
|
|
|
+ var scene = new THREE.Scene();
|
|
|
+
|
|
|
+ var geometry = new THREE.Geometry();
|
|
|
+ var geometry0 = new THREE.Geometry();
|
|
|
+
|
|
|
+ if ( views[n].lattice ) {
|
|
|
+
|
|
|
+ var range = balls / 2;
|
|
|
+ for ( var i = -range ; i <= range ; i++ ) {
|
|
|
+
|
|
|
+ for ( var j = -range ; j <= range ; j++ ) {
|
|
|
+
|
|
|
+ for ( var k = -range ; k <= range ; k++ ) {
|
|
|
+
|
|
|
+ geometry.vertices.push( new THREE.Vector3( i, j, k ) );
|
|
|
+ geometry0.vertices.push( new THREE.Vector3( i, j, k ) );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ for ( var m = 0 ; m < Math.pow( balls, 3 ) ; m++ ) {
|
|
|
+
|
|
|
+ var i = balls * Math.random() - balls / 2;
|
|
|
+ var j = balls * Math.random() - balls / 2;
|
|
|
+ var k = balls * Math.random() - balls / 2;
|
|
|
+
|
|
|
+ geometry.vertices.push( new THREE.Vector3( i, j, k ) );
|
|
|
+ geometry0.vertices.push( new THREE.Vector3( i, j, k ) );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ var index = Math.floor( colors.length * Math.random() );
|
|
|
+
|
|
|
+ var canvas2 = document.createElement( 'canvas' );
|
|
|
+ canvas2.width = 128;
|
|
|
+ canvas2.height = 128;
|
|
|
+ var context = canvas2.getContext( '2d' );
|
|
|
+ context.arc( 64, 64, 64, 0, 2 * Math.PI );
|
|
|
+ context.fillStyle = colors[ index ];
|
|
|
+ context.fill();
|
|
|
+ var texture = new THREE.Texture( canvas2 );
|
|
|
+ texture.needsUpdate = true;
|
|
|
+
|
|
|
+ var material = new THREE.PointsMaterial( { size: size, map: texture, transparent: true, alphaTest: .1 } );
|
|
|
+
|
|
|
+ scene.add( new THREE.Points( geometry, material ) );
|
|
|
+
|
|
|
+ scene.userData.view = views[n];
|
|
|
+ scene.userData.geometry0 = geometry0;
|
|
|
+
|
|
|
+ var camera = new THREE.PerspectiveCamera( 75, 1, .1, 100 );
|
|
|
+ camera.position.set( 0, 0, 1.2*balls );
|
|
|
+ scene.userData.camera = camera;
|
|
|
+
|
|
|
+ var controls = new THREE.OrbitControls( camera, views[n] );
|
|
|
+ scene.userData.controls = controls;
|
|
|
+
|
|
|
+ scenes.push( scene );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ t = 0;
|
|
|
+ animate();
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ function updateSize() {
|
|
|
+
|
|
|
+ var width = canvas.clientWidth;
|
|
|
+ var height = canvas.clientHeight;
|
|
|
+
|
|
|
+ if ( canvas.width !== width || canvas.height != height ) {
|
|
|
+
|
|
|
+ renderer.setSize( width, height, false );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ function animate() {
|
|
|
+
|
|
|
+ render();
|
|
|
+ requestAnimationFrame( animate );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ function render() {
|
|
|
+
|
|
|
+ updateSize();
|
|
|
+
|
|
|
+ renderer.setClearColor( 0xffffff );
|
|
|
+ renderer.setViewport( 0, 0, canvas.clientWidth, canvas.clientHeight );
|
|
|
+ renderer.clear();
|
|
|
+
|
|
|
+ renderer.setClearColor( 0x000000 );
|
|
|
+
|
|
|
+ renderer.setScissorTest( true );
|
|
|
+
|
|
|
+ scenes.forEach( function( scene ) {
|
|
|
+
|
|
|
+ var rect = scene.userData.view.getBoundingClientRect();
|
|
|
+ // check if it's offscreen. If so skip it
|
|
|
+ if ( rect.bottom < 0 || rect.top > renderer.domElement.clientHeight ||
|
|
|
+ rect.right < 0 || rect.left > renderer.domElement.clientWidth ) {
|
|
|
+ return; // it's off screen
|
|
|
+ }
|
|
|
+ // set the viewport
|
|
|
+ var width = rect.right - rect.left;
|
|
|
+ var height = rect.bottom - rect.top;
|
|
|
+ var left = rect.left;
|
|
|
+ var bottom = renderer.domElement.clientHeight - rect.bottom;
|
|
|
+ renderer.setViewport( left, bottom, width, height );
|
|
|
+ renderer.setScissor( left, bottom, width, height );
|
|
|
+
|
|
|
+ renderer.render( scene, scene.userData.camera );
|
|
|
+ scene.userData.controls.update();
|
|
|
+
|
|
|
+ for ( var i = 0 ; i < scene.children[0].geometry.vertices.length ; i++ ) {
|
|
|
+
|
|
|
+ var v0 = scene.userData.geometry0.vertices[i];
|
|
|
+ var v = scene.userData.view.displacement( v0.x, v0.y, v0.z, t/5 );
|
|
|
+ scene.children[0].geometry.vertices[i].set( v.x + v0.x, v.y + v0.y, v.z + v0.z );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ scene.children[0].geometry.verticesNeedUpdate = true;
|
|
|
+
|
|
|
+ } );
|
|
|
+
|
|
|
+ renderer.setScissorTest( false );
|
|
|
+ t++;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ </script>
|
|
|
+
|
|
|
+ <p>Sound waves whose geometry is determined by a single dimension, plane waves, obey the wave equation</p>
|
|
|
+
|
|
|
+ \[ \frac{ \partial^2 u }{ \partial r^2 } - \frac{ 1 }{ c^2 } \frac{ \partial^2 u }{ \partial t^2 } = 0 \]
|
|
|
+
|
|
|
+ <p>where <i>c</i> designates the speed of sound in the medium. The monochromatic solution for plane waves will be taken to be</p>
|
|
|
+
|
|
|
+ \[ u(r,t) = \sin( k r \pm ω t ) \]
|
|
|
+
|
|
|
+ <p>where ω is the frequency and \( k = ω / c \) is the wave number. The sign chosen in the argument determines the direction of movement of the waves.</p>
|
|
|
+
|
|
|
+ <p>Here is a plane wave moving on a three-dimensional lattice of atoms:</p>
|
|
|
+
|
|
|
+ <div class="view">
|
|
|
+
|
|
|
+ <script>
|
|
|
+
|
|
|
+ var parent = document.scripts[ document.scripts.length - 1 ].parentNode;
|
|
|
+
|
|
|
+ parent.displacement = function( x, y, z, t ) {
|
|
|
+
|
|
|
+ return new THREE.Vector3( Math.sin( x - t ), 0, 0);
|
|
|
+
|
|
|
+ };
|
|
|
+
|
|
|
+ parent.lattice = true;
|
|
|
+
|
|
|
+ </script>
|
|
|
+
|
|
|
+ </div>
|
|
|
+
|
|
|
+ <p>Here is a plane wave moving through a three-dimensional random distribution of molecules:</p>
|
|
|
+
|
|
|
+ <div class="view">
|
|
|
+
|
|
|
+ <script>
|
|
|
+
|
|
|
+ var parent = document.scripts[ document.scripts.length - 1 ].parentNode;
|
|
|
+
|
|
|
+ parent.displacement = function( x, y, z, t ) {
|
|
|
+
|
|
|
+ return new THREE.Vector3( Math.sin( x - t ), 0, 0);
|
|
|
+
|
|
|
+ };
|
|
|
+
|
|
|
+ parent.lattice = false;
|
|
|
+
|
|
|
+ </script>
|
|
|
+
|
|
|
+ </div>
|
|
|
+
|
|
|
+ <p>Sound waves whose geometry is determined by two dimensions, cylindrical waves, obey the wave equation</p>
|
|
|
+
|
|
|
+ \[ \frac{ \partial^2 u }{ \partial r^2 } + \frac{ 1 }{ r } \frac{ \partial u }{ \partial r } - \frac{ 1 }{ c^2 } \frac{ \partial^2 u }{ \partial t^2 } = 0 \]
|
|
|
+
|
|
|
+ <p>The monochromatic solution for cylindrical sound waves will be taken to be</p>
|
|
|
+
|
|
|
+ \[ u(r,t) = \frac{ \sin( k r \pm ω t ) }{ \sqrt{ r } } \]
|
|
|
+
|
|
|
+ <p>Here is a cylindrical wave moving on a three-dimensional lattice of atoms:</p>
|
|
|
+
|
|
|
+ <div class="view">
|
|
|
+
|
|
|
+ <script>
|
|
|
+
|
|
|
+ var parent = document.scripts[ document.scripts.length - 1 ].parentNode;
|
|
|
+
|
|
|
+ parent.displacement = function( x, y, z, t ) {
|
|
|
+
|
|
|
+ if ( x * x + y * y < 0.01 ) {
|
|
|
+
|
|
|
+ return new THREE.Vector3( 0, 0, 0);
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ var rho = Math.sqrt( x * x + y * y );
|
|
|
+ var phi = Math.atan2( y, x );
|
|
|
+
|
|
|
+ return new THREE.Vector3( 1.5 * Math.cos( phi ) * Math.sin( rho - t ) / Math.sqrt( rho ), 1.5 * Math.sin( phi ) * Math.sin( rho - t ) / Math.sqrt( rho ), 0);
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ parent.lattice = true;
|
|
|
+
|
|
|
+ </script>
|
|
|
+
|
|
|
+ </div>
|
|
|
+
|
|
|
+ <p>Here is a cylindrical wave moving through a three-dimensional random distribution of molecules:</p>
|
|
|
+
|
|
|
+ <div class="view">
|
|
|
+
|
|
|
+ <script>
|
|
|
+
|
|
|
+ var parent = document.scripts[ document.scripts.length - 1 ].parentNode;
|
|
|
+
|
|
|
+ parent.displacement = function( x, y, z, t ) {
|
|
|
+
|
|
|
+ if ( x * x + y * y < 0.01 ) {
|
|
|
+
|
|
|
+ return new THREE.Vector3( 0, 0, 0);
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ var rho = Math.sqrt( x * x + y * y );
|
|
|
+ var phi = Math.atan2( y, x );
|
|
|
+
|
|
|
+ return new THREE.Vector3( 1.5 * Math.cos( phi ) * Math.sin( rho - t ) / Math.sqrt( rho ), 1.5 * Math.sin( phi ) * Math.sin( rho - t ) / Math.sqrt( rho ), 0);
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ parent.lattice = false;
|
|
|
+
|
|
|
+ </script>
|
|
|
+
|
|
|
+ </div>
|
|
|
+
|
|
|
+ <p>Sound waves whose geometry is determined by three dimensions, spherical waves, obey the wave equation</p>
|
|
|
+
|
|
|
+ \[ \frac{ \partial^2 u }{ \partial r^2 } + \frac{ 2 }{ r } \frac{ \partial u }{ \partial r } - \frac{ 1 }{ c^2 } \frac{ \partial^2 u }{ \partial t^2 } = 0 \]
|
|
|
+
|
|
|
+ <p>The monochromatic solution for spherical sound waves will be taken to be</p>
|
|
|
+
|
|
|
+ \[ u(r,t) = \frac{ \sin( k r \pm ω t ) }{ r } \]
|
|
|
+
|
|
|
+ <p>Here is a spherical wave moving on a three-dimensional lattice of atoms:</p>
|
|
|
+
|
|
|
+ <div class="view">
|
|
|
+
|
|
|
+ <script>
|
|
|
+
|
|
|
+ var parent = document.scripts[ document.scripts.length - 1 ].parentNode;
|
|
|
+
|
|
|
+ parent.displacement = function( x, y, z, t ) {
|
|
|
+
|
|
|
+ if ( x * x + y * y + z * z < 0.01 ) {
|
|
|
+
|
|
|
+ return new THREE.Vector3( 0, 0, 0);
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ var r = Math.sqrt( x * x + y * y + z * z );
|
|
|
+ var theta = Math.acos( z / r );
|
|
|
+ var phi = Math.atan2( y, x );
|
|
|
+
|
|
|
+ return new THREE.Vector3( 3 * Math.cos( phi ) * Math.sin( theta ) * Math.sin( r - t ) / r , 3 * Math.sin( phi ) * Math.sin( theta ) * Math.sin( r - t ) / r , 3 * Math.cos( theta ) * Math.sin( r - t ) / r );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ parent.lattice = true;
|
|
|
+
|
|
|
+ </script>
|
|
|
+
|
|
|
+ </div>
|
|
|
+
|
|
|
+ <p>Here is a spherical wave moving through a three-dimensional random distribution of molecules:</p>
|
|
|
+
|
|
|
+ <div class="view">
|
|
|
+
|
|
|
+ <script>
|
|
|
+
|
|
|
+ var parent = document.scripts[ document.scripts.length - 1 ].parentNode;
|
|
|
+
|
|
|
+ parent.displacement = function( x, y, z, t ) {
|
|
|
+
|
|
|
+ if ( x * x + y * y + z * z < 0.01 ) {
|
|
|
+
|
|
|
+ return new THREE.Vector3( 0, 0, 0);
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ var r = Math.sqrt( x * x + y * y + z * z );
|
|
|
+ var theta = Math.acos( z / r );
|
|
|
+ var phi = Math.atan2( y, x );
|
|
|
+
|
|
|
+ return new THREE.Vector3( 3 * Math.cos( phi ) * Math.sin( theta ) * Math.sin( r - t ) / r , 3 * Math.sin( phi ) * Math.sin( theta ) * Math.sin( r - t ) / r , 3 * Math.cos( theta ) * Math.sin( r - t ) / r );
|
|
|
+
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ parent.lattice = false;
|
|
|
+
|
|
|
+ </script>
|
|
|
+
|
|
|
+ </div>
|
|
|
+
|
|
|
+ <p>The mathematical description of sound waves can be carried to higher dimensions, but one needs to wait for Four.js and its higher-dimensional successors to attempt visualizations.</p>
|
|
|
+
|
|
|
+ </body>
|
|
|
+</html>
|