|
@@ -14,211 +14,197 @@
|
|
|
* Three.js integration by zz85 http://twitter.com/blurspline
|
|
|
*/
|
|
|
|
|
|
-THREE.ShaderLib[ 'sky' ] = {
|
|
|
-
|
|
|
- uniforms: {
|
|
|
+THREE.Sky = function () {
|
|
|
|
|
|
- luminance: { value: 1 },
|
|
|
- turbidity: { value: 2 },
|
|
|
- rayleigh: { value: 1 },
|
|
|
- mieCoefficient: { value: 0.005 },
|
|
|
- mieDirectionalG: { value: 0.8 },
|
|
|
- sunPosition: { value: new THREE.Vector3() }
|
|
|
+ var skyShader = {
|
|
|
|
|
|
- },
|
|
|
+ uniforms: {
|
|
|
+ luminance: { value: 1 },
|
|
|
+ turbidity: { value: 2 },
|
|
|
+ rayleigh: { value: 1 },
|
|
|
+ mieCoefficient: { value: 0.005 },
|
|
|
+ mieDirectionalG: { value: 0.8 },
|
|
|
+ sunPosition: { value: new THREE.Vector3() }
|
|
|
+ },
|
|
|
|
|
|
- vertexShader: [
|
|
|
+ vertexShader: [
|
|
|
+ 'uniform vec3 sunPosition;',
|
|
|
+ 'uniform float rayleigh;',
|
|
|
+ 'uniform float turbidity;',
|
|
|
+ 'uniform float mieCoefficient;',
|
|
|
|
|
|
- "uniform vec3 sunPosition;",
|
|
|
- "uniform float rayleigh;",
|
|
|
- "uniform float turbidity;",
|
|
|
- "uniform float mieCoefficient;",
|
|
|
+ 'varying vec3 vWorldPosition;',
|
|
|
+ 'varying vec3 vSunDirection;',
|
|
|
+ 'varying float vSunfade;',
|
|
|
+ 'varying vec3 vBetaR;',
|
|
|
+ 'varying vec3 vBetaM;',
|
|
|
+ 'varying float vSunE;',
|
|
|
|
|
|
- "varying vec3 vWorldPosition;",
|
|
|
- "varying vec3 vSunDirection;",
|
|
|
- "varying float vSunfade;",
|
|
|
- "varying vec3 vBetaR;",
|
|
|
- "varying vec3 vBetaM;",
|
|
|
- "varying float vSunE;",
|
|
|
+ 'const vec3 up = vec3( 0.0, 1.0, 0.0 );',
|
|
|
|
|
|
- "const vec3 up = vec3( 0.0, 1.0, 0.0 );",
|
|
|
+ // constants for atmospheric scattering
|
|
|
+ 'const float e = 2.71828182845904523536028747135266249775724709369995957;',
|
|
|
+ 'const float pi = 3.141592653589793238462643383279502884197169;',
|
|
|
|
|
|
- // constants for atmospheric scattering
|
|
|
- "const float e = 2.71828182845904523536028747135266249775724709369995957;",
|
|
|
- "const float pi = 3.141592653589793238462643383279502884197169;",
|
|
|
+ // wavelength of used primaries, according to preetham
|
|
|
+ 'const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );',
|
|
|
+ // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
|
|
|
+ // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
|
|
|
+ 'const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );',
|
|
|
|
|
|
- // wavelength of used primaries, according to preetham
|
|
|
- "const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );",
|
|
|
- // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
|
|
|
- // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
|
|
|
- "const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );",
|
|
|
-
|
|
|
- // mie stuff
|
|
|
- // K coefficient for the primaries
|
|
|
- "const float v = 4.0;",
|
|
|
- "const vec3 K = vec3( 0.686, 0.678, 0.666 );",
|
|
|
- // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
|
|
|
- "const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );",
|
|
|
+ // mie stuff
|
|
|
+ // K coefficient for the primaries
|
|
|
+ 'const float v = 4.0;',
|
|
|
+ 'const vec3 K = vec3( 0.686, 0.678, 0.666 );',
|
|
|
+ // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
|
|
|
+ 'const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );',
|
|
|
|
|
|
- // earth shadow hack
|
|
|
- // cutoffAngle = pi / 1.95;
|
|
|
- "const float cutoffAngle = 1.6110731556870734;",
|
|
|
- "const float steepness = 1.5;",
|
|
|
- "const float EE = 1000.0;",
|
|
|
+ // earth shadow hack
|
|
|
+ // cutoffAngle = pi / 1.95;
|
|
|
+ 'const float cutoffAngle = 1.6110731556870734;',
|
|
|
+ 'const float steepness = 1.5;',
|
|
|
+ 'const float EE = 1000.0;',
|
|
|
|
|
|
- "float sunIntensity( float zenithAngleCos )",
|
|
|
- "{",
|
|
|
- "zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );",
|
|
|
- "return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );",
|
|
|
- "}",
|
|
|
+ 'float sunIntensity( float zenithAngleCos ) {',
|
|
|
+ ' zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );',
|
|
|
+ ' return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );',
|
|
|
+ '}',
|
|
|
|
|
|
- "vec3 totalMie( float T )",
|
|
|
- "{",
|
|
|
- "float c = ( 0.2 * T ) * 10E-18;",
|
|
|
- "return 0.434 * c * MieConst;",
|
|
|
- "}",
|
|
|
+ 'vec3 totalMie( float T ) {',
|
|
|
+ ' float c = ( 0.2 * T ) * 10E-18;',
|
|
|
+ ' return 0.434 * c * MieConst;',
|
|
|
+ '}',
|
|
|
|
|
|
- "void main() {",
|
|
|
+ 'void main() {',
|
|
|
|
|
|
- "vec4 worldPosition = modelMatrix * vec4( position, 1.0 );",
|
|
|
- "vWorldPosition = worldPosition.xyz;",
|
|
|
+ ' vec4 worldPosition = modelMatrix * vec4( position, 1.0 );',
|
|
|
+ ' vWorldPosition = worldPosition.xyz;',
|
|
|
|
|
|
- "gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",
|
|
|
+ ' gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );',
|
|
|
|
|
|
- "vSunDirection = normalize( sunPosition );",
|
|
|
+ ' vSunDirection = normalize( sunPosition );',
|
|
|
|
|
|
- "vSunE = sunIntensity( dot( vSunDirection, up ) );",
|
|
|
+ ' vSunE = sunIntensity( dot( vSunDirection, up ) );',
|
|
|
|
|
|
- "vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );",
|
|
|
+ ' vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );',
|
|
|
|
|
|
- "float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );",
|
|
|
+ ' float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );',
|
|
|
|
|
|
// extinction (absorbtion + out scattering)
|
|
|
// rayleigh coefficients
|
|
|
- "vBetaR = totalRayleigh * rayleighCoefficient;",
|
|
|
+ ' vBetaR = totalRayleigh * rayleighCoefficient;',
|
|
|
|
|
|
// mie coefficients
|
|
|
- "vBetaM = totalMie( turbidity ) * mieCoefficient;",
|
|
|
-
|
|
|
- "}"
|
|
|
-
|
|
|
- ].join( "\n" ),
|
|
|
+ ' vBetaM = totalMie( turbidity ) * mieCoefficient;',
|
|
|
|
|
|
- fragmentShader: [
|
|
|
+ '}'
|
|
|
+ ].join( '\n' ),
|
|
|
|
|
|
- "varying vec3 vWorldPosition;",
|
|
|
- "varying vec3 vSunDirection;",
|
|
|
- "varying float vSunfade;",
|
|
|
- "varying vec3 vBetaR;",
|
|
|
- "varying vec3 vBetaM;",
|
|
|
- "varying float vSunE;",
|
|
|
+ fragmentShader: [
|
|
|
+ 'varying vec3 vWorldPosition;',
|
|
|
+ 'varying vec3 vSunDirection;',
|
|
|
+ 'varying float vSunfade;',
|
|
|
+ 'varying vec3 vBetaR;',
|
|
|
+ 'varying vec3 vBetaM;',
|
|
|
+ 'varying float vSunE;',
|
|
|
|
|
|
- "uniform float luminance;",
|
|
|
- "uniform float mieDirectionalG;",
|
|
|
+ 'uniform float luminance;',
|
|
|
+ 'uniform float mieDirectionalG;',
|
|
|
|
|
|
- "const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );",
|
|
|
+ 'const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );',
|
|
|
|
|
|
- // constants for atmospheric scattering
|
|
|
- "const float pi = 3.141592653589793238462643383279502884197169;",
|
|
|
+ // constants for atmospheric scattering
|
|
|
+ 'const float pi = 3.141592653589793238462643383279502884197169;',
|
|
|
|
|
|
- "const float n = 1.0003;", // refractive index of air
|
|
|
- "const float N = 2.545E25;", // number of molecules per unit volume for air at
|
|
|
- // 288.15K and 1013mb (sea level -45 celsius)
|
|
|
+ 'const float n = 1.0003;', // refractive index of air
|
|
|
+ 'const float N = 2.545E25;', // number of molecules per unit volume for air at
|
|
|
+ // 288.15K and 1013mb (sea level -45 celsius)
|
|
|
|
|
|
- // optical length at zenith for molecules
|
|
|
- "const float rayleighZenithLength = 8.4E3;",
|
|
|
- "const float mieZenithLength = 1.25E3;",
|
|
|
- "const vec3 up = vec3( 0.0, 1.0, 0.0 );",
|
|
|
- // 66 arc seconds -> degrees, and the cosine of that
|
|
|
- "const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;",
|
|
|
+ // optical length at zenith for molecules
|
|
|
+ 'const float rayleighZenithLength = 8.4E3;',
|
|
|
+ 'const float mieZenithLength = 1.25E3;',
|
|
|
+ 'const vec3 up = vec3( 0.0, 1.0, 0.0 );',
|
|
|
+ // 66 arc seconds -> degrees, and the cosine of that
|
|
|
+ 'const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;',
|
|
|
|
|
|
- // 3.0 / ( 16.0 * pi )
|
|
|
- "const float THREE_OVER_SIXTEENPI = 0.05968310365946075;",
|
|
|
- // 1.0 / ( 4.0 * pi )
|
|
|
- "const float ONE_OVER_FOURPI = 0.07957747154594767;",
|
|
|
+ // 3.0 / ( 16.0 * pi )
|
|
|
+ 'const float THREE_OVER_SIXTEENPI = 0.05968310365946075;',
|
|
|
+ // 1.0 / ( 4.0 * pi )
|
|
|
+ 'const float ONE_OVER_FOURPI = 0.07957747154594767;',
|
|
|
|
|
|
- "float rayleighPhase( float cosTheta )",
|
|
|
- "{",
|
|
|
- "return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );",
|
|
|
- "}",
|
|
|
+ 'float rayleighPhase( float cosTheta ) {',
|
|
|
+ ' return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );',
|
|
|
+ '}',
|
|
|
|
|
|
- "float hgPhase( float cosTheta, float g )",
|
|
|
- "{",
|
|
|
- "float g2 = pow( g, 2.0 );",
|
|
|
- "float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );",
|
|
|
- "return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );",
|
|
|
- "}",
|
|
|
+ 'float hgPhase( float cosTheta, float g ) {',
|
|
|
+ ' float g2 = pow( g, 2.0 );',
|
|
|
+ ' float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );',
|
|
|
+ ' return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );',
|
|
|
+ '}',
|
|
|
|
|
|
- // Filmic ToneMapping http://filmicgames.com/archives/75
|
|
|
- "const float A = 0.15;",
|
|
|
- "const float B = 0.50;",
|
|
|
- "const float C = 0.10;",
|
|
|
- "const float D = 0.20;",
|
|
|
- "const float E = 0.02;",
|
|
|
- "const float F = 0.30;",
|
|
|
+ // Filmic ToneMapping http://filmicgames.com/archives/75
|
|
|
+ 'const float A = 0.15;',
|
|
|
+ 'const float B = 0.50;',
|
|
|
+ 'const float C = 0.10;',
|
|
|
+ 'const float D = 0.20;',
|
|
|
+ 'const float E = 0.02;',
|
|
|
+ 'const float F = 0.30;',
|
|
|
|
|
|
- "const float whiteScale = 1.0748724675633854;", // 1.0 / Uncharted2Tonemap(1000.0)
|
|
|
+ 'const float whiteScale = 1.0748724675633854;', // 1.0 / Uncharted2Tonemap(1000.0)
|
|
|
|
|
|
- "vec3 Uncharted2Tonemap( vec3 x )",
|
|
|
- "{",
|
|
|
- "return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;",
|
|
|
- "}",
|
|
|
+ 'vec3 Uncharted2Tonemap( vec3 x ) {',
|
|
|
+ ' return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;',
|
|
|
+ '}',
|
|
|
|
|
|
|
|
|
- "void main() ",
|
|
|
- "{",
|
|
|
+ 'void main() {',
|
|
|
// optical length
|
|
|
// cutoff angle at 90 to avoid singularity in next formula.
|
|
|
- "float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );",
|
|
|
- "float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );",
|
|
|
- "float sR = rayleighZenithLength * inverse;",
|
|
|
- "float sM = mieZenithLength * inverse;",
|
|
|
+ ' float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );',
|
|
|
+ ' float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );',
|
|
|
+ ' float sR = rayleighZenithLength * inverse;',
|
|
|
+ ' float sM = mieZenithLength * inverse;',
|
|
|
|
|
|
// combined extinction factor
|
|
|
- "vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );",
|
|
|
+ ' vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );',
|
|
|
|
|
|
// in scattering
|
|
|
- "float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );",
|
|
|
+ ' float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );',
|
|
|
|
|
|
- "float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );",
|
|
|
- "vec3 betaRTheta = vBetaR * rPhase;",
|
|
|
+ ' float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );',
|
|
|
+ ' vec3 betaRTheta = vBetaR * rPhase;',
|
|
|
|
|
|
- "float mPhase = hgPhase( cosTheta, mieDirectionalG );",
|
|
|
- "vec3 betaMTheta = vBetaM * mPhase;",
|
|
|
+ ' float mPhase = hgPhase( cosTheta, mieDirectionalG );',
|
|
|
+ ' vec3 betaMTheta = vBetaM * mPhase;',
|
|
|
|
|
|
- "vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );",
|
|
|
- "Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );",
|
|
|
+ ' vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );',
|
|
|
+ ' Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );',
|
|
|
|
|
|
- //nightsky
|
|
|
- "vec3 direction = normalize( vWorldPosition - cameraPos );",
|
|
|
- "float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]",
|
|
|
- "float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]",
|
|
|
- "vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );",
|
|
|
- "vec3 L0 = vec3( 0.1 ) * Fex;",
|
|
|
+ // nightsky
|
|
|
+ ' vec3 direction = normalize( vWorldPosition - cameraPos );',
|
|
|
+ ' float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]',
|
|
|
+ ' float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]',
|
|
|
+ ' vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );',
|
|
|
+ ' vec3 L0 = vec3( 0.1 ) * Fex;',
|
|
|
|
|
|
// composition + solar disc
|
|
|
- "float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );",
|
|
|
- "L0 += ( vSunE * 19000.0 * Fex ) * sundisk;",
|
|
|
+ ' float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );',
|
|
|
+ ' L0 += ( vSunE * 19000.0 * Fex ) * sundisk;',
|
|
|
|
|
|
- "vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );",
|
|
|
+ ' vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );',
|
|
|
|
|
|
- "vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );",
|
|
|
- "vec3 color = curr * whiteScale;",
|
|
|
+ ' vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );',
|
|
|
+ ' vec3 color = curr * whiteScale;',
|
|
|
|
|
|
- "vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );",
|
|
|
+ ' vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );',
|
|
|
|
|
|
- "gl_FragColor.rgb = retColor;",
|
|
|
+ ' gl_FragColor = vec4( retColor, 1.0 );',
|
|
|
|
|
|
- "gl_FragColor.a = 1.0;",
|
|
|
- "}"
|
|
|
+ '}'
|
|
|
+ ].join( '\n' )
|
|
|
|
|
|
- ].join( "\n" )
|
|
|
-
|
|
|
-};
|
|
|
-
|
|
|
-THREE.Sky = function () {
|
|
|
+ };
|
|
|
|
|
|
- var skyShader = THREE.ShaderLib[ "sky" ];
|
|
|
var skyUniforms = THREE.UniformsUtils.clone( skyShader.uniforms );
|
|
|
|
|
|
var skyMat = new THREE.ShaderMaterial( {
|