|
@@ -1,12 +1,32 @@
|
|
|
/*
|
|
|
- * A bunch of curves
|
|
|
+ * A bunch of parametric curves
|
|
|
* @author zz85
|
|
|
+ *
|
|
|
+ * Formulas collected from various sources
|
|
|
+ * http://mathworld.wolfram.com/HeartCurve.html
|
|
|
+ * http://mathdl.maa.org/images/upload_library/23/stemkoski/knots/page6.html
|
|
|
+ * http://en.wikipedia.org/wiki/Viviani%27s_curve
|
|
|
+ * http://mathdl.maa.org/images/upload_library/23/stemkoski/knots/page4.html
|
|
|
+ * http://www.mi.sanu.ac.rs/vismath/taylorapril2011/Taylor.pdf
|
|
|
+ * http://prideout.net/blog/?p=44
|
|
|
*/
|
|
|
|
|
|
// Lets define some curves
|
|
|
THREE.Curves = {};
|
|
|
|
|
|
-// Formula from http://mathworld.wolfram.com/HeartCurve.html
|
|
|
+
|
|
|
+ THREE.Curves.GrannyKnot = THREE.Curve.create( function(){},
|
|
|
+
|
|
|
+ function(t) {
|
|
|
+ t = 2 * Math.PI * t;
|
|
|
+
|
|
|
+ var x = -0.22 * cos(t) - 1.28 * sin(t) - 0.44 * cos(3 * t) - 0.78 * sin(3 * t);
|
|
|
+ var y = -0.1 * cos(2 * t) - 0.27 * sin(2 * t) + 0.38 * cos(4 * t) + 0.46 * sin(4 * t);
|
|
|
+ var z = 0.7 * cos(3 * t) - 0.4 * sin(3 * t);
|
|
|
+ return new THREE.Vector3(x, y, z).multiplyScalar(20);
|
|
|
+ }
|
|
|
+);
|
|
|
+
|
|
|
THREE.Curves.HeartCurve = THREE.Curve.create(
|
|
|
|
|
|
function(s) {
|
|
@@ -31,161 +51,158 @@ function(t) {
|
|
|
|
|
|
|
|
|
// Viviani's Curve
|
|
|
-// http://en.wikipedia.org/wiki/Viviani%27s_curve
|
|
|
THREE.Curves.VivianiCurve = THREE.Curve.create(
|
|
|
|
|
|
-function(radius) {
|
|
|
+ function(radius) {
|
|
|
|
|
|
- this.radius = radius;
|
|
|
-},
|
|
|
+ this.radius = radius;
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- t = t * 4 * Math.PI; // Normalized to 0..1
|
|
|
- var a = this.radius / 2;
|
|
|
- var tx = a * (1 + Math.cos(t)),
|
|
|
- ty = a * Math.sin(t),
|
|
|
- tz = 2 * a * Math.sin(t / 2);
|
|
|
+ t = t * 4 * Math.PI; // Normalized to 0..1
|
|
|
+ var a = this.radius / 2;
|
|
|
+ var tx = a * (1 + Math.cos(t)),
|
|
|
+ ty = a * Math.sin(t),
|
|
|
+ tz = 2 * a * Math.sin(t / 2);
|
|
|
|
|
|
- return new THREE.Vector3(tx, ty, tz);
|
|
|
+ return new THREE.Vector3(tx, ty, tz);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
THREE.Curves.KnotCurve = THREE.Curve.create(
|
|
|
|
|
|
-function() {
|
|
|
+ function() {
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- t *= 2 * Math.PI;
|
|
|
+ t *= 2 * Math.PI;
|
|
|
|
|
|
- var R = 10;
|
|
|
- var s = 50;
|
|
|
- var tx = s * Math.sin(t),
|
|
|
- ty = Math.cos(t) * (R + s * Math.cos(t)),
|
|
|
- tz = Math.sin(t) * (R + s * Math.cos(t));
|
|
|
+ var R = 10;
|
|
|
+ var s = 50;
|
|
|
+ var tx = s * Math.sin(t),
|
|
|
+ ty = Math.cos(t) * (R + s * Math.cos(t)),
|
|
|
+ tz = Math.sin(t) * (R + s * Math.cos(t));
|
|
|
|
|
|
- return new THREE.Vector3(tx, ty, tz);
|
|
|
+ return new THREE.Vector3(tx, ty, tz);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
THREE.Curves.HelixCurve = THREE.Curve.create(
|
|
|
|
|
|
-function() {
|
|
|
+ function() {
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- var a = 30; // radius
|
|
|
- var b = 150; //height
|
|
|
- var t2 = 2 * Math.PI * t * b / 30;
|
|
|
- var tx = Math.cos(t2) * a,
|
|
|
- ty = Math.sin(t2) * a,
|
|
|
- tz = b * t;
|
|
|
+ var a = 30; // radius
|
|
|
+ var b = 150; //height
|
|
|
+ var t2 = 2 * Math.PI * t * b / 30;
|
|
|
+ var tx = Math.cos(t2) * a,
|
|
|
+ ty = Math.sin(t2) * a,
|
|
|
+ tz = b * t;
|
|
|
|
|
|
- return new THREE.Vector3(tx, ty, tz);
|
|
|
+ return new THREE.Vector3(tx, ty, tz);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
-// Replacement for TorusKnotGeometry?
|
|
|
THREE.Curves.TrefoilKnot = THREE.Curve.create(
|
|
|
|
|
|
-function(s) {
|
|
|
+ function(s) {
|
|
|
|
|
|
- this.scale = (s === undefined) ? 10 : s;
|
|
|
+ this.scale = (s === undefined) ? 10 : s;
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- t *= Math.PI * 2;
|
|
|
- var tx = (2 + Math.cos(3 * t)) * Math.cos(2 * t),
|
|
|
- ty = (2 + Math.cos(3 * t)) * Math.sin(2 * t),
|
|
|
- tz = Math.sin(3 * t);
|
|
|
+ t *= Math.PI * 2;
|
|
|
+ var tx = (2 + Math.cos(3 * t)) * Math.cos(2 * t),
|
|
|
+ ty = (2 + Math.cos(3 * t)) * Math.sin(2 * t),
|
|
|
+ tz = Math.sin(3 * t);
|
|
|
|
|
|
- return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
+ return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
-// Formulas from http://mathdl.maa.org/images/upload_library/23/stemkoski/knots/page6.html
|
|
|
THREE.Curves.TorusKnot = THREE.Curve.create(
|
|
|
|
|
|
-function(s) {
|
|
|
+ function(s) {
|
|
|
|
|
|
- this.scale = (s === undefined) ? 10 : s;
|
|
|
+ this.scale = (s === undefined) ? 10 : s;
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- var p = 3,
|
|
|
- q = 4;
|
|
|
- t *= Math.PI * 2;
|
|
|
- var tx = (2 + Math.cos(q * t)) * Math.cos(p * t),
|
|
|
- ty = (2 + Math.cos(q * t)) * Math.sin(p * t),
|
|
|
- tz = Math.sin(q * t);
|
|
|
+ var p = 3,
|
|
|
+ q = 4;
|
|
|
+ t *= Math.PI * 2;
|
|
|
+ var tx = (2 + Math.cos(q * t)) * Math.cos(p * t),
|
|
|
+ ty = (2 + Math.cos(q * t)) * Math.sin(p * t),
|
|
|
+ tz = Math.sin(q * t);
|
|
|
|
|
|
- return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
+ return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
THREE.Curves.CinquefoilKnot = THREE.Curve.create(
|
|
|
|
|
|
-function(s) {
|
|
|
+ function(s) {
|
|
|
|
|
|
- this.scale = (s === undefined) ? 10 : s;
|
|
|
+ this.scale = (s === undefined) ? 10 : s;
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- var p = 2,
|
|
|
- q = 5;
|
|
|
- t *= Math.PI * 2;
|
|
|
- var tx = (2 + Math.cos(q * t)) * Math.cos(p * t),
|
|
|
- ty = (2 + Math.cos(q * t)) * Math.sin(p * t),
|
|
|
- tz = Math.sin(q * t);
|
|
|
+ var p = 2,
|
|
|
+ q = 5;
|
|
|
+ t *= Math.PI * 2;
|
|
|
+ var tx = (2 + Math.cos(q * t)) * Math.cos(p * t),
|
|
|
+ ty = (2 + Math.cos(q * t)) * Math.sin(p * t),
|
|
|
+ tz = Math.sin(q * t);
|
|
|
|
|
|
- return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
+ return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
THREE.Curves.TrefoilPolynomialKnot = THREE.Curve.create(
|
|
|
|
|
|
-function(s) {
|
|
|
+ function(s) {
|
|
|
|
|
|
- this.scale = (s === undefined) ? 10 : s;
|
|
|
+ this.scale = (s === undefined) ? 10 : s;
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- t = t * 4 - 2;
|
|
|
- var tx = Math.pow(t, 3) - 3 * t,
|
|
|
- ty = Math.pow(t, 4) - 4 * t * t,
|
|
|
- tz = 1 / 5 * Math.pow(t, 5) - 2 * t;
|
|
|
+ t = t * 4 - 2;
|
|
|
+ var tx = Math.pow(t, 3) - 3 * t,
|
|
|
+ ty = Math.pow(t, 4) - 4 * t * t,
|
|
|
+ tz = 1 / 5 * Math.pow(t, 5) - 2 * t;
|
|
|
|
|
|
- return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
+ return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
@@ -207,110 +224,107 @@ var scaleTo = function(x, y, t) {
|
|
|
|
|
|
THREE.Curves.FigureEightPolynomialKnot = THREE.Curve.create(
|
|
|
|
|
|
-function(s) {
|
|
|
+ function(s) {
|
|
|
|
|
|
- this.scale = (s === undefined) ? 1 : s;
|
|
|
+ this.scale = (s === undefined) ? 1 : s;
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- t = scaleTo(-4, 4, t);
|
|
|
- var tx = 2 / 5 * t * (t * t - 7) * (t * t - 10),
|
|
|
- ty = pow(t, 4) - 13 * t * t,
|
|
|
- tz = 1 / 10 * t * (t * t - 4) * (t * t - 9) * (t * t - 12);
|
|
|
+ t = scaleTo(-4, 4, t);
|
|
|
+ var tx = 2 / 5 * t * (t * t - 7) * (t * t - 10),
|
|
|
+ ty = pow(t, 4) - 13 * t * t,
|
|
|
+ tz = 1 / 10 * t * (t * t - 4) * (t * t - 9) * (t * t - 12);
|
|
|
|
|
|
- return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
+ return new THREE.Vector3(tx, ty, tz).multiplyScalar(this.scale);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
-// When there's time, try more formulas at http://mathdl.maa.org/images/upload_library/23/stemkoski/knots/page4.html
|
|
|
-
|
|
|
-//http://www.mi.sanu.ac.rs/vismath/taylorapril2011/Taylor.pdf
|
|
|
THREE.Curves.DecoratedTorusKnot4a = THREE.Curve.create(
|
|
|
|
|
|
-function(s) {
|
|
|
+ function(s) {
|
|
|
|
|
|
- this.scale = (s === undefined) ? 40 : s;
|
|
|
+ this.scale = (s === undefined) ? 40 : s;
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- t *= Math.PI * 2;
|
|
|
- var
|
|
|
- x = cos(2 * t) * (1 + 0.6 * (cos(5 * t) + 0.75 * cos(10 * t))),
|
|
|
- y = sin(2 * t) * (1 + 0.6 * (cos(5 * t) + 0.75 * cos(10 * t))),
|
|
|
- z = 0.35 * sin(5 * t);
|
|
|
+ t *= Math.PI * 2;
|
|
|
+ var
|
|
|
+ x = cos(2 * t) * (1 + 0.6 * (cos(5 * t) + 0.75 * cos(10 * t))),
|
|
|
+ y = sin(2 * t) * (1 + 0.6 * (cos(5 * t) + 0.75 * cos(10 * t))),
|
|
|
+ z = 0.35 * sin(5 * t);
|
|
|
|
|
|
- return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
|
|
|
+ return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
THREE.Curves.DecoratedTorusKnot4b = THREE.Curve.create(
|
|
|
|
|
|
-function(s) {
|
|
|
+ function(s) {
|
|
|
|
|
|
- this.scale = (s === undefined) ? 40 : s;
|
|
|
+ this.scale = (s === undefined) ? 40 : s;
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
- var fi = t * Math.PI * 2;
|
|
|
- var x = cos(2 * fi) * (1 + 0.45 * cos(3 * fi) + 0.4 * cos(9 * fi)),
|
|
|
- y = sin(2 * fi) * (1 + 0.45 * cos(3 * fi) + 0.4 * cos(9 * fi)),
|
|
|
- z = 0.2 * sin(9 * fi);
|
|
|
+ function(t) {
|
|
|
+ var fi = t * Math.PI * 2;
|
|
|
+ var x = cos(2 * fi) * (1 + 0.45 * cos(3 * fi) + 0.4 * cos(9 * fi)),
|
|
|
+ y = sin(2 * fi) * (1 + 0.45 * cos(3 * fi) + 0.4 * cos(9 * fi)),
|
|
|
+ z = 0.2 * sin(9 * fi);
|
|
|
|
|
|
- return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
|
|
|
+ return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
THREE.Curves.DecoratedTorusKnot5a = THREE.Curve.create(
|
|
|
|
|
|
-function(s) {
|
|
|
+ function(s) {
|
|
|
|
|
|
- this.scale = (s === undefined) ? 40 : s;
|
|
|
+ this.scale = (s === undefined) ? 40 : s;
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- var fi = t * Math.PI * 2;
|
|
|
- var x = cos(3 * fi) * (1 + 0.3 * cos(5 * fi) + 0.5 * cos(10 * fi)),
|
|
|
- y = sin(3 * fi) * (1 + 0.3 * cos(5 * fi) + 0.5 * cos(10 * fi)),
|
|
|
- z = 0.2 * sin(20 * fi);
|
|
|
+ var fi = t * Math.PI * 2;
|
|
|
+ var x = cos(3 * fi) * (1 + 0.3 * cos(5 * fi) + 0.5 * cos(10 * fi)),
|
|
|
+ y = sin(3 * fi) * (1 + 0.3 * cos(5 * fi) + 0.5 * cos(10 * fi)),
|
|
|
+ z = 0.2 * sin(20 * fi);
|
|
|
|
|
|
- return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
|
|
|
+ return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|
|
|
|
|
|
THREE.Curves.DecoratedTorusKnot5c = THREE.Curve.create(
|
|
|
|
|
|
-function(s) {
|
|
|
+ function(s) {
|
|
|
|
|
|
- this.scale = (s === undefined) ? 40 : s;
|
|
|
+ this.scale = (s === undefined) ? 40 : s;
|
|
|
|
|
|
-},
|
|
|
+ },
|
|
|
|
|
|
-function(t) {
|
|
|
+ function(t) {
|
|
|
|
|
|
- var fi = t * Math.PI * 2;
|
|
|
- var x = cos(4 * fi) * (1 + 0.5 * (cos(5 * fi) + 0.4 * cos(20 * fi))),
|
|
|
- y = sin(4 * fi) * (1 + 0.5 * (cos(5 * fi) + 0.4 * cos(20 * fi))),
|
|
|
- z = 0.35 * sin(15 * fi);
|
|
|
+ var fi = t * Math.PI * 2;
|
|
|
+ var x = cos(4 * fi) * (1 + 0.5 * (cos(5 * fi) + 0.4 * cos(20 * fi))),
|
|
|
+ y = sin(4 * fi) * (1 + 0.5 * (cos(5 * fi) + 0.4 * cos(20 * fi))),
|
|
|
+ z = 0.35 * sin(15 * fi);
|
|
|
|
|
|
- return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
|
|
|
+ return new THREE.Vector3(x, y, z).multiplyScalar(this.scale);
|
|
|
|
|
|
-}
|
|
|
+ }
|
|
|
|
|
|
);
|