Browse Source

Vector4: Moved around the new methods to keep the end structure like in Vector2/3.

Mr.doob 12 years ago
parent
commit
56825c9acf
1 changed files with 152 additions and 152 deletions
  1. 152 152
      src/math/Vector4.js

+ 152 - 152
src/math/Vector4.js

@@ -219,6 +219,158 @@ THREE.extend( THREE.Vector4.prototype, {
 
 	},
 
+	setAxisAngleFromQuaternion: function ( q ) {
+
+		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
+
+		// q is assumed to be normalized
+
+		this.w = 2 * Math.acos( q.w );
+
+		var s = Math.sqrt( 1 - q.w * q.w );
+
+		if ( s < 0.0001 ) {
+
+			 this.x = 1;
+			 this.y = 0;
+			 this.z = 0;
+
+		} else {
+
+			 this.x = q.x / s;
+			 this.y = q.y / s;
+			 this.z = q.z / s;
+
+		}
+
+		return this;
+
+	},
+
+	setAxisAngleFromRotationMatrix: function ( m ) {
+
+		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
+
+		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
+
+		var angle, x, y, z,		// variables for result
+			epsilon = 0.01,		// margin to allow for rounding errors
+			epsilon2 = 0.1,		// margin to distinguish between 0 and 180 degrees
+
+			te = m.elements,
+
+			m11 = te[0], m12 = te[4], m13 = te[8],
+			m21 = te[1], m22 = te[5], m23 = te[9],
+			m31 = te[2], m32 = te[6], m33 = te[10];
+
+		if ( ( Math.abs( m12 - m21 ) < epsilon )
+		  && ( Math.abs( m13 - m31 ) < epsilon )
+		  && ( Math.abs( m23 - m32 ) < epsilon ) ) {
+
+			// singularity found
+			// first check for identity matrix which must have +1 for all terms
+			// in leading diagonal and zero in other terms
+
+			if ( ( Math.abs( m12 + m21 ) < epsilon2 )
+			  && ( Math.abs( m13 + m31 ) < epsilon2 )
+			  && ( Math.abs( m23 + m32 ) < epsilon2 )
+			  && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
+
+				// this singularity is identity matrix so angle = 0
+
+				this.set( 1, 0, 0, 0 );
+
+				return this; // zero angle, arbitrary axis
+
+			}
+
+			// otherwise this singularity is angle = 180
+
+			angle = Math.PI;
+
+			var xx = ( m11 + 1 ) / 2;
+			var yy = ( m22 + 1 ) / 2;
+			var zz = ( m33 + 1 ) / 2;
+			var xy = ( m12 + m21 ) / 4;
+			var xz = ( m13 + m31 ) / 4;
+			var yz = ( m23 + m32 ) / 4;
+
+			if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term
+
+				if ( xx < epsilon ) {
+
+					x = 0;
+					y = 0.707106781;
+					z = 0.707106781;
+
+				} else {
+
+					x = Math.sqrt( xx );
+					y = xy / x;
+					z = xz / x;
+
+				}
+
+			} else if ( yy > zz ) { // m22 is the largest diagonal term
+
+				if ( yy < epsilon ) {
+
+					x = 0.707106781;
+					y = 0;
+					z = 0.707106781;
+
+				} else {
+
+					y = Math.sqrt( yy );
+					x = xy / y;
+					z = yz / y;
+
+				}
+
+			} else { // m33 is the largest diagonal term so base result on this
+
+				if ( zz < epsilon ) {
+
+					x = 0.707106781;
+					y = 0.707106781;
+					z = 0;
+
+				} else {
+
+					z = Math.sqrt( zz );
+					x = xz / z;
+					y = yz / z;
+
+				}
+
+			}
+
+			this.set( x, y, z, angle );
+
+			return this; // return 180 deg rotation
+
+		}
+
+		// as we have reached here there are no singularities so we can handle normally
+
+		var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 )
+						 + ( m13 - m31 ) * ( m13 - m31 )
+						 + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
+
+		if ( Math.abs( s ) < 0.001 ) s = 1;
+
+		// prevent divide by zero, should not happen if matrix is orthogonal and should be
+		// caught by singularity test above, but I've left it in just in case
+
+		this.x = ( m32 - m23 ) / s;
+		this.y = ( m13 - m31 ) / s;
+		this.z = ( m21 - m12 ) / s;
+		this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
+
+		return this;
+
+	},
+
 	min: function ( v ) {
 
 		if ( this.x > v.x ) {
@@ -403,158 +555,6 @@ THREE.extend( THREE.Vector4.prototype, {
 
 		return new THREE.Vector4( this.x, this.y, this.z, this.w );
 
-	},
-
-	setAxisAngleFromQuaternion: function ( q ) {
-
-		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
-
-		// q is assumed to be normalized
-
-		this.w = 2 * Math.acos( q.w );
-
-		var s = Math.sqrt( 1 - q.w * q.w );
-
-		if ( s < 0.0001 ) {
-
-			 this.x = 1;
-			 this.y = 0;
-			 this.z = 0;
-
-		} else {
-
-			 this.x = q.x / s;
-			 this.y = q.y / s;
-			 this.z = q.z / s;
-
-		}
-
-		return this;
-
-	},
-
-	setAxisAngleFromRotationMatrix: function ( m ) {
-
-		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
-
-		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
-
-		var angle, x, y, z,		// variables for result
-			epsilon = 0.01,		// margin to allow for rounding errors
-			epsilon2 = 0.1,		// margin to distinguish between 0 and 180 degrees
-
-			te = m.elements,
-
-			m11 = te[0], m12 = te[4], m13 = te[8],
-			m21 = te[1], m22 = te[5], m23 = te[9],
-			m31 = te[2], m32 = te[6], m33 = te[10];
-
-		if ( ( Math.abs( m12 - m21 ) < epsilon )
-		  && ( Math.abs( m13 - m31 ) < epsilon )
-		  && ( Math.abs( m23 - m32 ) < epsilon ) ) {
-
-			// singularity found
-			// first check for identity matrix which must have +1 for all terms
-			// in leading diagonal and zero in other terms
-
-			if ( ( Math.abs( m12 + m21 ) < epsilon2 )
-			  && ( Math.abs( m13 + m31 ) < epsilon2 )
-			  && ( Math.abs( m23 + m32 ) < epsilon2 )
-			  && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
-
-				// this singularity is identity matrix so angle = 0
-
-				this.set( 1, 0, 0, 0 );
-
-				return this; // zero angle, arbitrary axis
-
-			}
-
-			// otherwise this singularity is angle = 180
-
-			angle = Math.PI;
-
-			var xx = ( m11 + 1 ) / 2;
-			var yy = ( m22 + 1 ) / 2;
-			var zz = ( m33 + 1 ) / 2;
-			var xy = ( m12 + m21 ) / 4;
-			var xz = ( m13 + m31 ) / 4;
-			var yz = ( m23 + m32 ) / 4;
-
-			if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term
-
-				if ( xx < epsilon ) {
-
-					x = 0;
-					y = 0.707106781;
-					z = 0.707106781;
-
-				} else {
-
-					x = Math.sqrt( xx );
-					y = xy / x;
-					z = xz / x;
-
-				}
-
-			} else if ( yy > zz ) { // m22 is the largest diagonal term
-
-				if ( yy < epsilon ) {
-
-					x = 0.707106781;
-					y = 0;
-					z = 0.707106781;
-
-				} else {
-
-					y = Math.sqrt( yy );
-					x = xy / y;
-					z = yz / y;
-
-				}
-
-			} else { // m33 is the largest diagonal term so base result on this
-
-				if ( zz < epsilon ) {
-
-					x = 0.707106781;
-					y = 0.707106781;
-					z = 0;
-
-				} else {
-
-					z = Math.sqrt( zz );
-					x = xz / z;
-					y = yz / z;
-
-				}
-
-			}
-
-			this.set( x, y, z, angle );
-
-			return this; // return 180 deg rotation
-
-		}
-
-		// as we have reached here there are no singularities so we can handle normally
-
-		var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 )
-						 + ( m13 - m31 ) * ( m13 - m31 )
-						 + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
-
-		if ( Math.abs( s ) < 0.001 ) s = 1;
-
-		// prevent divide by zero, should not happen if matrix is orthogonal and should be
-		// caught by singularity test above, but I've left it in just in case
-
-		this.x = ( m32 - m23 ) / s;
-		this.y = ( m13 - m31 ) / s;
-		this.z = ( m21 - m12 ) / s;
-		this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
-
-		return this;
-
 	}
 
 } );