|
@@ -41,39 +41,37 @@ THREE.ShaderLib[ 'sky' ] = {
|
|
|
"varying vec3 vBetaM;",
|
|
|
"varying float vSunE;",
|
|
|
|
|
|
- "const vec3 up = vec3(0.0, 1.0, 0.0);",
|
|
|
+ "const vec3 up = vec3( 0.0, 1.0, 0.0 );",
|
|
|
|
|
|
// constants for atmospheric scattering
|
|
|
"const float e = 2.71828182845904523536028747135266249775724709369995957;",
|
|
|
"const float pi = 3.141592653589793238462643383279502884197169;",
|
|
|
|
|
|
// wavelength of used primaries, according to preetham
|
|
|
- "const vec3 lambda = vec3(680E-9, 550E-9, 450E-9);",
|
|
|
-
|
|
|
- // this pre-calcuation replaces the older totalRayleigh(vec3 lambda) function which was:
|
|
|
- // return (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn));
|
|
|
+ "const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );",
|
|
|
+ // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function
|
|
|
"const vec3 totalRayleigh = vec3( 0.00000580453, 0.00001278534, 0.00002853075 );",
|
|
|
|
|
|
// mie stuff
|
|
|
// K coefficient for the primaries
|
|
|
"const float v = 4.0;",
|
|
|
- "const vec3 K = vec3(0.686, 0.678, 0.666);",
|
|
|
- "const vec3 MieConst = pi * pow((2.0 * pi) / lambda, vec3(v - 2.0)) * K;",
|
|
|
+ "const vec3 K = vec3( 0.686, 0.678, 0.666 );",
|
|
|
+ "const vec3 MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K;",
|
|
|
|
|
|
// earth shadow hack
|
|
|
- "const float cutoffAngle = pi/1.95;",
|
|
|
+ "const float cutoffAngle = pi / 1.95;",
|
|
|
"const float steepness = 1.5;",
|
|
|
"const float EE = 1000.0;",
|
|
|
|
|
|
- "float sunIntensity(float zenithAngleCos)",
|
|
|
+ "float sunIntensity( float zenithAngleCos )",
|
|
|
"{",
|
|
|
- "zenithAngleCos = clamp(zenithAngleCos, -1.0, 1.0);",
|
|
|
- "return EE * max(0.0, 1.0 - pow(e, -((cutoffAngle - acos(zenithAngleCos))/steepness)));",
|
|
|
+ "zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );",
|
|
|
+ "return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );",
|
|
|
"}",
|
|
|
|
|
|
- "vec3 totalMie(vec3 lambda, float T)",
|
|
|
+ "vec3 totalMie( float T )",
|
|
|
"{",
|
|
|
- "float c = (0.2 * T ) * 10E-18;",
|
|
|
+ "float c = ( 0.2 * T ) * 10E-18;",
|
|
|
"return 0.434 * c * MieConst;",
|
|
|
"}",
|
|
|
|
|
@@ -84,20 +82,20 @@ THREE.ShaderLib[ 'sky' ] = {
|
|
|
|
|
|
"gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",
|
|
|
|
|
|
- "vSunDirection = normalize(sunPosition);",
|
|
|
+ "vSunDirection = normalize( sunPosition );",
|
|
|
|
|
|
- "vSunE = sunIntensity(dot(vSunDirection, up));",
|
|
|
+ "vSunE = sunIntensity( dot( vSunDirection, up ) );",
|
|
|
|
|
|
- "vSunfade = 1.0-clamp(1.0-exp((sunPosition.y/450000.0)),0.0,1.0);",
|
|
|
+ "vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );",
|
|
|
|
|
|
- "float rayleighCoefficient = rayleigh - (1.0 * (1.0-vSunfade));",
|
|
|
+ "float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );",
|
|
|
|
|
|
// extinction (absorbtion + out scattering)
|
|
|
// rayleigh coefficients
|
|
|
"vBetaR = totalRayleigh * rayleighCoefficient;",
|
|
|
|
|
|
// mie coefficients
|
|
|
- "vBetaM = totalMie(lambda, turbidity) * mieCoefficient;",
|
|
|
+ "vBetaM = totalMie( turbidity ) * mieCoefficient;",
|
|
|
|
|
|
"}",
|
|
|
|
|
@@ -115,7 +113,7 @@ THREE.ShaderLib[ 'sky' ] = {
|
|
|
"uniform float luminance;",
|
|
|
"uniform float mieDirectionalG;",
|
|
|
|
|
|
- "const vec3 cameraPos = vec3(0., 0., 0.);",
|
|
|
+ "const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );",
|
|
|
|
|
|
// constants for atmospheric scattering
|
|
|
"const float pi = 3.141592653589793238462643383279502884197169;",
|
|
@@ -127,24 +125,23 @@ THREE.ShaderLib[ 'sky' ] = {
|
|
|
// optical length at zenith for molecules
|
|
|
"const float rayleighZenithLength = 8.4E3;",
|
|
|
"const float mieZenithLength = 1.25E3;",
|
|
|
- "const vec3 up = vec3(0.0, 1.0, 0.0);",
|
|
|
-
|
|
|
- "const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;",
|
|
|
+ "const vec3 up = vec3( 0.0, 1.0, 0.0 );",
|
|
|
// 66 arc seconds -> degrees, and the cosine of that
|
|
|
-
|
|
|
- "const float THREE_OVER_SIXTEENPI = 3.0 / (16.0 * pi);",
|
|
|
- "const float ONE_OVER_FOURPI = (1.0 / (4.0*pi));",
|
|
|
+ "const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;",
|
|
|
+
|
|
|
+ "const float THREE_OVER_SIXTEENPI = 3.0 / ( 16.0 * pi );",
|
|
|
+ "const float ONE_OVER_FOURPI = ( 1.0 / ( 4.0 * pi ) );",
|
|
|
|
|
|
- "float rayleighPhase(float cosTheta)",
|
|
|
+ "float rayleighPhase( float cosTheta )",
|
|
|
"{",
|
|
|
- "return THREE_OVER_SIXTEENPI * (1.0 + pow(cosTheta, 2.0));",
|
|
|
+ "return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );",
|
|
|
"}",
|
|
|
|
|
|
- "float hgPhase(float cosTheta, float g)",
|
|
|
+ "float hgPhase( float cosTheta, float g )",
|
|
|
"{",
|
|
|
- "float g2 = pow(g, 2.0);",
|
|
|
- "float inverse = 1.0 / pow(1.0 - 2.0*g*cosTheta + g2, 1.5);",
|
|
|
- "return ONE_OVER_FOURPI * ((1.0 - g2) * inverse);",
|
|
|
+ "float g2 = pow( g, 2.0 );",
|
|
|
+ "float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );",
|
|
|
+ "return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );",
|
|
|
"}",
|
|
|
|
|
|
// Filmic ToneMapping http://filmicgames.com/archives/75
|
|
@@ -157,9 +154,9 @@ THREE.ShaderLib[ 'sky' ] = {
|
|
|
|
|
|
"const float whiteScale = 1.0748724675633854;", // 1.0 / Uncharted2Tonemap(1000.0)
|
|
|
|
|
|
- "vec3 Uncharted2Tonemap(vec3 x)",
|
|
|
+ "vec3 Uncharted2Tonemap( vec3 x )",
|
|
|
"{",
|
|
|
- "return ((x*(A*x+C*B)+D*E)/(x*(A*x+B)+D*F))-E/F;",
|
|
|
+ "return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;",
|
|
|
"}",
|
|
|
|
|
|
|
|
@@ -167,43 +164,43 @@ THREE.ShaderLib[ 'sky' ] = {
|
|
|
"{",
|
|
|
// optical length
|
|
|
// cutoff angle at 90 to avoid singularity in next formula.
|
|
|
- "float zenithAngle = acos(max(0.0, dot(up, normalize(vWorldPosition - cameraPos))));",
|
|
|
- "float inverse = 1.0 / (cos(zenithAngle) + 0.15 * pow(93.885 - ((zenithAngle * 180.0) / pi), -1.253));",
|
|
|
+ "float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );",
|
|
|
+ "float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );",
|
|
|
"float sR = rayleighZenithLength * inverse;",
|
|
|
"float sM = mieZenithLength * inverse;",
|
|
|
|
|
|
// combined extinction factor
|
|
|
- "vec3 Fex = exp(-(vBetaR * sR + vBetaM * sM));",
|
|
|
+ "vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );",
|
|
|
|
|
|
// in scattering
|
|
|
- "float cosTheta = dot(normalize(vWorldPosition - cameraPos), vSunDirection);",
|
|
|
+ "float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );",
|
|
|
|
|
|
- "float rPhase = rayleighPhase(cosTheta*0.5+0.5);",
|
|
|
+ "float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );",
|
|
|
"vec3 betaRTheta = vBetaR * rPhase;",
|
|
|
|
|
|
- "float mPhase = hgPhase(cosTheta, mieDirectionalG);",
|
|
|
+ "float mPhase = hgPhase( cosTheta, mieDirectionalG );",
|
|
|
"vec3 betaMTheta = vBetaM * mPhase;",
|
|
|
|
|
|
- "vec3 Lin = pow(vSunE * ((betaRTheta + betaMTheta) / (vBetaR + vBetaM)) * (1.0 - Fex),vec3(1.5));",
|
|
|
- "Lin *= mix(vec3(1.0),pow(vSunE * ((betaRTheta + betaMTheta) / (vBetaR + vBetaM)) * Fex,vec3(1.0/2.0)),clamp(pow(1.0-dot(up, vSunDirection),5.0),0.0,1.0));",
|
|
|
+ "vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );",
|
|
|
+ "Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );",
|
|
|
|
|
|
//nightsky
|
|
|
- "vec3 direction = normalize(vWorldPosition - cameraPos);",
|
|
|
- "float theta = acos(direction.y); // elevation --> y-axis, [-pi/2, pi/2]",
|
|
|
- "float phi = atan(direction.z, direction.x); // azimuth --> x-axis [-pi/2, pi/2]",
|
|
|
- "vec2 uv = vec2(phi, theta) / vec2(2.0*pi, pi) + vec2(0.5, 0.0);",
|
|
|
- "vec3 L0 = vec3(0.1) * Fex;",
|
|
|
+ "vec3 direction = normalize( vWorldPosition - cameraPos );",
|
|
|
+ "float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]",
|
|
|
+ "float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]",
|
|
|
+ "vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );",
|
|
|
+ "vec3 L0 = vec3( 0.1 ) * Fex;",
|
|
|
|
|
|
// composition + solar disc
|
|
|
- "float sundisk = smoothstep(sunAngularDiameterCos,sunAngularDiameterCos+0.00002,cosTheta);",
|
|
|
- "L0 += (vSunE * 19000.0 * Fex)*sundisk;",
|
|
|
+ "float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );",
|
|
|
+ "L0 += ( vSunE * 19000.0 * Fex ) * sundisk;",
|
|
|
|
|
|
- "vec3 texColor = (Lin+L0) * 0.04 + vec3(0.0, 0.0003, 0.00075);",
|
|
|
+ "vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );",
|
|
|
|
|
|
- "vec3 curr = Uncharted2Tonemap((log2(2.0/pow(luminance,4.0)))*texColor);",
|
|
|
- "vec3 color = curr*whiteScale;",
|
|
|
+ "vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );",
|
|
|
+ "vec3 color = curr * whiteScale;",
|
|
|
|
|
|
- "vec3 retColor = pow(color,vec3(1.0/(1.2+(1.2*vSunfade))));",
|
|
|
+ "vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );",
|
|
|
|
|
|
"gl_FragColor.rgb = retColor;",
|
|
|
|