Browse Source

Merge pull request #16539 from Mugen87/dev30

Examples: Move SimplexNoise into THREE namespace.
Mr.doob 6 years ago
parent
commit
674aa2b23a

+ 0 - 324
examples/js/SimplexNoise.js

@@ -1,324 +0,0 @@
-// Ported from Stefan Gustavson's java implementation
-// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
-// Read Stefan's excellent paper for details on how this code works.
-//
-// Sean McCullough [email protected]
-//
-// Added 4D noise
-// Joshua Koo [email protected] 
-
-/**
- * You can pass in a random number generator object if you like.
- * It is assumed to have a random() method.
- */
-var SimplexNoise = function(r) {
-	if (r == undefined) r = Math;
-	this.grad3 = [[ 1,1,0 ],[ -1,1,0 ],[ 1,-1,0 ],[ -1,-1,0 ], 
-                                 [ 1,0,1 ],[ -1,0,1 ],[ 1,0,-1 ],[ -1,0,-1 ], 
-                                 [ 0,1,1 ],[ 0,-1,1 ],[ 0,1,-1 ],[ 0,-1,-1 ]]; 
-
-	this.grad4 = [[ 0,1,1,1 ], [ 0,1,1,-1 ], [ 0,1,-1,1 ], [ 0,1,-1,-1 ],
-	     [ 0,-1,1,1 ], [ 0,-1,1,-1 ], [ 0,-1,-1,1 ], [ 0,-1,-1,-1 ],
-	     [ 1,0,1,1 ], [ 1,0,1,-1 ], [ 1,0,-1,1 ], [ 1,0,-1,-1 ],
-	     [ -1,0,1,1 ], [ -1,0,1,-1 ], [ -1,0,-1,1 ], [ -1,0,-1,-1 ],
-	     [ 1,1,0,1 ], [ 1,1,0,-1 ], [ 1,-1,0,1 ], [ 1,-1,0,-1 ],
-	     [ -1,1,0,1 ], [ -1,1,0,-1 ], [ -1,-1,0,1 ], [ -1,-1,0,-1 ],
-	     [ 1,1,1,0 ], [ 1,1,-1,0 ], [ 1,-1,1,0 ], [ 1,-1,-1,0 ],
-	     [ -1,1,1,0 ], [ -1,1,-1,0 ], [ -1,-1,1,0 ], [ -1,-1,-1,0 ]];
-
-	this.p = [];
-	for (var i = 0; i < 256; i ++) {
-		this.p[i] = Math.floor(r.random() * 256);
-	}
-  // To remove the need for index wrapping, double the permutation table length 
-	this.perm = []; 
-	for (var i = 0; i < 512; i ++) {
-		this.perm[i] = this.p[i & 255];
-	} 
-
-  // A lookup table to traverse the simplex around a given point in 4D. 
-  // Details can be found where this table is used, in the 4D noise method. 
-	this.simplex = [ 
-    [ 0,1,2,3 ],[ 0,1,3,2 ],[ 0,0,0,0 ],[ 0,2,3,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,2,3,0 ], 
-    [ 0,2,1,3 ],[ 0,0,0,0 ],[ 0,3,1,2 ],[ 0,3,2,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,3,2,0 ], 
-    [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ], 
-    [ 1,2,0,3 ],[ 0,0,0,0 ],[ 1,3,0,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,3,0,1 ],[ 2,3,1,0 ], 
-    [ 1,0,2,3 ],[ 1,0,3,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,0,3,1 ],[ 0,0,0,0 ],[ 2,1,3,0 ], 
-    [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ], 
-    [ 2,0,1,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,0,1,2 ],[ 3,0,2,1 ],[ 0,0,0,0 ],[ 3,1,2,0 ], 
-    [ 2,1,0,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,1,0,2 ],[ 0,0,0,0 ],[ 3,2,0,1 ],[ 3,2,1,0 ]]; 
-};
-
-SimplexNoise.prototype.dot = function(g, x, y) { 
-	return g[0] * x + g[1] * y;
-};
-
-SimplexNoise.prototype.dot3 = function(g, x, y, z) {
-	return g[0] * x + g[1] * y + g[2] * z; 
-};
-
-SimplexNoise.prototype.dot4 = function(g, x, y, z, w) {
-	return g[0] * x + g[1] * y + g[2] * z + g[3] * w;
-};
-
-SimplexNoise.prototype.noise = function(xin, yin) { 
-	var n0, n1, n2; // Noise contributions from the three corners 
-  // Skew the input space to determine which simplex cell we're in 
-	var F2 = 0.5 * (Math.sqrt(3.0) - 1.0); 
-	var s = (xin + yin) * F2; // Hairy factor for 2D 
-	var i = Math.floor(xin + s); 
-	var j = Math.floor(yin + s); 
-	var G2 = (3.0 - Math.sqrt(3.0)) / 6.0; 
-	var t = (i + j) * G2; 
-	var X0 = i - t; // Unskew the cell origin back to (x,y) space 
-	var Y0 = j - t; 
-	var x0 = xin - X0; // The x,y distances from the cell origin 
-	var y0 = yin - Y0; 
-  // For the 2D case, the simplex shape is an equilateral triangle. 
-  // Determine which simplex we are in. 
-	var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords 
-	if (x0 > y0) {i1 = 1; j1 = 0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) 
-	else {i1 = 0; j1 = 1;}      // upper triangle, YX order: (0,0)->(0,1)->(1,1) 
-  // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and 
-  // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where 
-  // c = (3-sqrt(3))/6 
-	var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords 
-	var y1 = y0 - j1 + G2; 
-	var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords 
-	var y2 = y0 - 1.0 + 2.0 * G2; 
-  // Work out the hashed gradient indices of the three simplex corners 
-	var ii = i & 255; 
-	var jj = j & 255; 
-	var gi0 = this.perm[ii + this.perm[jj]] % 12; 
-	var gi1 = this.perm[ii + i1 + this.perm[jj + j1]] % 12; 
-	var gi2 = this.perm[ii + 1 + this.perm[jj + 1]] % 12; 
-  // Calculate the contribution from the three corners 
-	var t0 = 0.5 - x0 * x0 - y0 * y0; 
-	if (t0 < 0) n0 = 0.0; 
-	else { 
-		t0 *= t0; 
-		n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0);  // (x,y) of grad3 used for 2D gradient 
-	} 
-	var t1 = 0.5 - x1 * x1 - y1 * y1; 
-	if (t1 < 0) n1 = 0.0; 
-	else { 
-		t1 *= t1; 
-		n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1); 
-	}
-	var t2 = 0.5 - x2 * x2 - y2 * y2; 
-	if (t2 < 0) n2 = 0.0; 
-	else { 
-		t2 *= t2; 
-		n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2); 
-	} 
-  // Add contributions from each corner to get the final noise value. 
-  // The result is scaled to return values in the interval [-1,1]. 
-	return 70.0 * (n0 + n1 + n2); 
-};
-
-// 3D simplex noise 
-SimplexNoise.prototype.noise3d = function(xin, yin, zin) { 
-	var n0, n1, n2, n3; // Noise contributions from the four corners 
-  // Skew the input space to determine which simplex cell we're in 
-	var F3 = 1.0 / 3.0; 
-	var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D 
-	var i = Math.floor(xin + s); 
-	var j = Math.floor(yin + s); 
-	var k = Math.floor(zin + s); 
-	var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too 
-	var t = (i + j + k) * G3; 
-	var X0 = i - t; // Unskew the cell origin back to (x,y,z) space 
-	var Y0 = j - t; 
-	var Z0 = k - t; 
-	var x0 = xin - X0; // The x,y,z distances from the cell origin 
-	var y0 = yin - Y0; 
-	var z0 = zin - Z0; 
-  // For the 3D case, the simplex shape is a slightly irregular tetrahedron. 
-  // Determine which simplex we are in. 
-	var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords 
-	var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords 
-	if (x0 >= y0) { 
-		if (y0 >= z0) 
-      { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order 
-      else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order 
-		else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order 
-	} 
-	else { // x0<y0 
-		if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order 
-    else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order 
-		else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order 
-	} 
-  // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), 
-  // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and 
-  // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where 
-  // c = 1/6.
-	var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords 
-	var y1 = y0 - j1 + G3; 
-	var z1 = z0 - k1 + G3; 
-	var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords 
-	var y2 = y0 - j2 + 2.0 * G3; 
-	var z2 = z0 - k2 + 2.0 * G3; 
-	var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords 
-	var y3 = y0 - 1.0 + 3.0 * G3; 
-	var z3 = z0 - 1.0 + 3.0 * G3; 
-  // Work out the hashed gradient indices of the four simplex corners 
-	var ii = i & 255; 
-	var jj = j & 255; 
-	var kk = k & 255; 
-	var gi0 = this.perm[ii + this.perm[jj + this.perm[kk]]] % 12; 
-	var gi1 = this.perm[ii + i1 + this.perm[jj + j1 + this.perm[kk + k1]]] % 12; 
-	var gi2 = this.perm[ii + i2 + this.perm[jj + j2 + this.perm[kk + k2]]] % 12; 
-	var gi3 = this.perm[ii + 1 + this.perm[jj + 1 + this.perm[kk + 1]]] % 12; 
-  // Calculate the contribution from the four corners 
-	var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; 
-	if (t0 < 0) n0 = 0.0; 
-	else { 
-		t0 *= t0; 
-		n0 = t0 * t0 * this.dot3(this.grad3[gi0], x0, y0, z0); 
-	}
-	var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; 
-	if (t1 < 0) n1 = 0.0; 
-	else { 
-		t1 *= t1; 
-		n1 = t1 * t1 * this.dot3(this.grad3[gi1], x1, y1, z1); 
-	} 
-	var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; 
-	if (t2 < 0) n2 = 0.0; 
-	else { 
-		t2 *= t2; 
-		n2 = t2 * t2 * this.dot3(this.grad3[gi2], x2, y2, z2); 
-	} 
-	var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; 
-	if (t3 < 0) n3 = 0.0; 
-	else { 
-		t3 *= t3; 
-		n3 = t3 * t3 * this.dot3(this.grad3[gi3], x3, y3, z3); 
-	} 
-  // Add contributions from each corner to get the final noise value. 
-  // The result is scaled to stay just inside [-1,1] 
-	return 32.0 * (n0 + n1 + n2 + n3); 
-};
-
-// 4D simplex noise
-SimplexNoise.prototype.noise4d = function( x, y, z, w ) {
-	// For faster and easier lookups
-	var grad4 = this.grad4;
-	var simplex = this.simplex;
-	var perm = this.perm;
-	
-   // The skewing and unskewing factors are hairy again for the 4D case
-	var F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
-	var G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
-	var n0, n1, n2, n3, n4; // Noise contributions from the five corners
-   // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
-	var s = (x + y + z + w) * F4; // Factor for 4D skewing
-	var i = Math.floor(x + s);
-	var j = Math.floor(y + s);
-	var k = Math.floor(z + s);
-	var l = Math.floor(w + s);
-	var t = (i + j + k + l) * G4; // Factor for 4D unskewing
-	var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
-	var Y0 = j - t;
-	var Z0 = k - t;
-	var W0 = l - t;
-	var x0 = x - X0;  // The x,y,z,w distances from the cell origin
-	var y0 = y - Y0;
-	var z0 = z - Z0;
-	var w0 = w - W0;
-
-   // For the 4D case, the simplex is a 4D shape I won't even try to describe.
-   // To find out which of the 24 possible simplices we're in, we need to
-   // determine the magnitude ordering of x0, y0, z0 and w0.
-   // The method below is a good way of finding the ordering of x,y,z,w and
-   // then find the correct traversal order for the simplex we’re in.
-   // First, six pair-wise comparisons are performed between each possible pair
-   // of the four coordinates, and the results are used to add up binary bits
-   // for an integer index.
-	var c1 = (x0 > y0) ? 32 : 0;
-	var c2 = (x0 > z0) ? 16 : 0;
-	var c3 = (y0 > z0) ? 8 : 0;
-	var c4 = (x0 > w0) ? 4 : 0;
-	var c5 = (y0 > w0) ? 2 : 0;
-	var c6 = (z0 > w0) ? 1 : 0;
-	var c = c1 + c2 + c3 + c4 + c5 + c6;
-	var i1, j1, k1, l1; // The integer offsets for the second simplex corner
-	var i2, j2, k2, l2; // The integer offsets for the third simplex corner
-	var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
-   // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
-   // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
-   // impossible. Only the 24 indices which have non-zero entries make any sense.
-   // We use a thresholding to set the coordinates in turn from the largest magnitude.
-   // The number 3 in the "simplex" array is at the position of the largest coordinate.
-	i1 = simplex[c][0] >= 3 ? 1 : 0;
-	j1 = simplex[c][1] >= 3 ? 1 : 0;
-	k1 = simplex[c][2] >= 3 ? 1 : 0;
-	l1 = simplex[c][3] >= 3 ? 1 : 0;
-   // The number 2 in the "simplex" array is at the second largest coordinate.
-	i2 = simplex[c][0] >= 2 ? 1 : 0;
-	j2 = simplex[c][1] >= 2 ? 1 : 0;    k2 = simplex[c][2] >= 2 ? 1 : 0;
-	l2 = simplex[c][3] >= 2 ? 1 : 0;
-   // The number 1 in the "simplex" array is at the second smallest coordinate.
-	i3 = simplex[c][0] >= 1 ? 1 : 0;
-	j3 = simplex[c][1] >= 1 ? 1 : 0;
-	k3 = simplex[c][2] >= 1 ? 1 : 0;
-	l3 = simplex[c][3] >= 1 ? 1 : 0;
-   // The fifth corner has all coordinate offsets = 1, so no need to look that up.
-	var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
-	var y1 = y0 - j1 + G4;
-	var z1 = z0 - k1 + G4;
-	var w1 = w0 - l1 + G4;
-	var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
-	var y2 = y0 - j2 + 2.0 * G4;
-	var z2 = z0 - k2 + 2.0 * G4;
-	var w2 = w0 - l2 + 2.0 * G4;
-	var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
-	var y3 = y0 - j3 + 3.0 * G4;
-	var z3 = z0 - k3 + 3.0 * G4;
-	var w3 = w0 - l3 + 3.0 * G4;
-	var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
-	var y4 = y0 - 1.0 + 4.0 * G4;
-	var z4 = z0 - 1.0 + 4.0 * G4;
-	var w4 = w0 - 1.0 + 4.0 * G4;
-   // Work out the hashed gradient indices of the five simplex corners
-	var ii = i & 255;
-	var jj = j & 255;
-	var kk = k & 255;
-	var ll = l & 255;
-	var gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
-	var gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
-	var gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
-	var gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
-	var gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
-   // Calculate the contribution from the five corners
-	var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
-	if (t0 < 0) n0 = 0.0;
-	else {
-		t0 *= t0;
-		n0 = t0 * t0 * this.dot4(grad4[gi0], x0, y0, z0, w0);
-	}
-	var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
-	if (t1 < 0) n1 = 0.0;
-	else {
-		t1 *= t1;
-		n1 = t1 * t1 * this.dot4(grad4[gi1], x1, y1, z1, w1);
-	}
-	var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
-	if (t2 < 0) n2 = 0.0;
-	else {
-		t2 *= t2;
-		n2 = t2 * t2 * this.dot4(grad4[gi2], x2, y2, z2, w2);
-	}   var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
-	if (t3 < 0) n3 = 0.0;
-	else {
-		t3 *= t3;
-		n3 = t3 * t3 * this.dot4(grad4[gi3], x3, y3, z3, w3);
-	}
-	var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
-	if (t4 < 0) n4 = 0.0;
-	else {
-		t4 *= t4;
-		n4 = t4 * t4 * this.dot4(grad4[gi4], x4, y4, z4, w4);
-	}
-   // Sum up and scale the result to cover the range [-1,1]
-	return 27.0 * (n0 + n1 + n2 + n3 + n4);
-};

+ 3 - 3
examples/js/geometries/LightningStrike.js

@@ -381,9 +381,9 @@ THREE.LightningStrike.prototype.init = function ( rayParameters ) {
 	this.positionAttribute = null;
 	this.uvsAttribute = null;
 
-	this.simplexX = new SimplexNoise( this.seedGenerator );
-	this.simplexY = new SimplexNoise( this.seedGenerator );
-	this.simplexZ = new SimplexNoise( this.seedGenerator );
+	this.simplexX = new THREE.SimplexNoise( this.seedGenerator );
+	this.simplexY = new THREE.SimplexNoise( this.seedGenerator );
+	this.simplexZ = new THREE.SimplexNoise( this.seedGenerator );
 
 	// Temp vectors
 	this.forwards = new THREE.Vector3();

+ 405 - 0
examples/js/math/SimplexNoise.js

@@ -0,0 +1,405 @@
+// Ported from Stefan Gustavson's java implementation
+// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
+// Read Stefan's excellent paper for details on how this code works.
+//
+// Sean McCullough [email protected]
+//
+// Added 4D noise
+// Joshua Koo [email protected]
+
+/**
+ * You can pass in a random number generator object if you like.
+ * It is assumed to have a random() method.
+ */
+THREE.SimplexNoise = function ( r ) {
+
+	if ( r == undefined ) r = Math;
+	this.grad3 = [[ 1, 1, 0 ], [ - 1, 1, 0 ], [ 1, - 1, 0 ], [ - 1, - 1, 0 ],
+		[ 1, 0, 1 ], [ - 1, 0, 1 ], [ 1, 0, - 1 ], [ - 1, 0, - 1 ],
+		[ 0, 1, 1 ], [ 0, - 1, 1 ], [ 0, 1, - 1 ], [ 0, - 1, - 1 ]];
+
+	this.grad4 = [[ 0, 1, 1, 1 ], [ 0, 1, 1, - 1 ], [ 0, 1, - 1, 1 ], [ 0, 1, - 1, - 1 ],
+	     [ 0, - 1, 1, 1 ], [ 0, - 1, 1, - 1 ], [ 0, - 1, - 1, 1 ], [ 0, - 1, - 1, - 1 ],
+	     [ 1, 0, 1, 1 ], [ 1, 0, 1, - 1 ], [ 1, 0, - 1, 1 ], [ 1, 0, - 1, - 1 ],
+	     [ - 1, 0, 1, 1 ], [ - 1, 0, 1, - 1 ], [ - 1, 0, - 1, 1 ], [ - 1, 0, - 1, - 1 ],
+	     [ 1, 1, 0, 1 ], [ 1, 1, 0, - 1 ], [ 1, - 1, 0, 1 ], [ 1, - 1, 0, - 1 ],
+	     [ - 1, 1, 0, 1 ], [ - 1, 1, 0, - 1 ], [ - 1, - 1, 0, 1 ], [ - 1, - 1, 0, - 1 ],
+	     [ 1, 1, 1, 0 ], [ 1, 1, - 1, 0 ], [ 1, - 1, 1, 0 ], [ 1, - 1, - 1, 0 ],
+	     [ - 1, 1, 1, 0 ], [ - 1, 1, - 1, 0 ], [ - 1, - 1, 1, 0 ], [ - 1, - 1, - 1, 0 ]];
+
+	this.p = [];
+	for ( var i = 0; i < 256; i ++ ) {
+
+		this.p[ i ] = Math.floor( r.random() * 256 );
+
+	}
+	// To remove the need for index wrapping, double the permutation table length
+	this.perm = [];
+	for ( var i = 0; i < 512; i ++ ) {
+
+		this.perm[ i ] = this.p[ i & 255 ];
+
+	}
+
+	// A lookup table to traverse the simplex around a given point in 4D.
+	// Details can be found where this table is used, in the 4D noise method.
+	this.simplex = [
+		[ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 2, 3, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 3, 0 ],
+		[ 0, 2, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 3, 2, 0 ],
+		[ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ],
+		[ 1, 2, 0, 3 ], [ 0, 0, 0, 0 ], [ 1, 3, 0, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ],
+		[ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 3, 1 ], [ 0, 0, 0, 0 ], [ 2, 1, 3, 0 ],
+		[ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ],
+		[ 2, 0, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ], [ 0, 0, 0, 0 ], [ 3, 1, 2, 0 ],
+		[ 2, 1, 0, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 1, 0, 2 ], [ 0, 0, 0, 0 ], [ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]];
+
+};
+
+THREE.SimplexNoise.prototype.dot = function ( g, x, y ) {
+
+	return g[ 0 ] * x + g[ 1 ] * y;
+
+};
+
+THREE.SimplexNoise.prototype.dot3 = function ( g, x, y, z ) {
+
+	return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z;
+
+};
+
+THREE.SimplexNoise.prototype.dot4 = function ( g, x, y, z, w ) {
+
+	return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z + g[ 3 ] * w;
+
+};
+
+THREE.SimplexNoise.prototype.noise = function ( xin, yin ) {
+
+	var n0, n1, n2; // Noise contributions from the three corners
+	// Skew the input space to determine which simplex cell we're in
+	var F2 = 0.5 * ( Math.sqrt( 3.0 ) - 1.0 );
+	var s = ( xin + yin ) * F2; // Hairy factor for 2D
+	var i = Math.floor( xin + s );
+	var j = Math.floor( yin + s );
+	var G2 = ( 3.0 - Math.sqrt( 3.0 ) ) / 6.0;
+	var t = ( i + j ) * G2;
+	var X0 = i - t; // Unskew the cell origin back to (x,y) space
+	var Y0 = j - t;
+	var x0 = xin - X0; // The x,y distances from the cell origin
+	var y0 = yin - Y0;
+	// For the 2D case, the simplex shape is an equilateral triangle.
+	// Determine which simplex we are in.
+	var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
+	if ( x0 > y0 ) {
+
+		i1 = 1; j1 = 0;
+
+		// lower triangle, XY order: (0,0)->(1,0)->(1,1)
+
+	}	else {
+
+		i1 = 0; j1 = 1;
+
+	} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
+	// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
+	// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
+	// c = (3-sqrt(3))/6
+	var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
+	var y1 = y0 - j1 + G2;
+	var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
+	var y2 = y0 - 1.0 + 2.0 * G2;
+	// Work out the hashed gradient indices of the three simplex corners
+	var ii = i & 255;
+	var jj = j & 255;
+	var gi0 = this.perm[ ii + this.perm[ jj ] ] % 12;
+	var gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 ] ] % 12;
+	var gi2 = this.perm[ ii + 1 + this.perm[ jj + 1 ] ] % 12;
+	// Calculate the contribution from the three corners
+	var t0 = 0.5 - x0 * x0 - y0 * y0;
+	if ( t0 < 0 ) n0 = 0.0;
+	else {
+
+		t0 *= t0;
+		n0 = t0 * t0 * this.dot( this.grad3[ gi0 ], x0, y0 ); // (x,y) of grad3 used for 2D gradient
+
+	}
+	var t1 = 0.5 - x1 * x1 - y1 * y1;
+	if ( t1 < 0 ) n1 = 0.0;
+	else {
+
+		t1 *= t1;
+		n1 = t1 * t1 * this.dot( this.grad3[ gi1 ], x1, y1 );
+
+	}
+	var t2 = 0.5 - x2 * x2 - y2 * y2;
+	if ( t2 < 0 ) n2 = 0.0;
+	else {
+
+		t2 *= t2;
+		n2 = t2 * t2 * this.dot( this.grad3[ gi2 ], x2, y2 );
+
+	}
+	// Add contributions from each corner to get the final noise value.
+	// The result is scaled to return values in the interval [-1,1].
+	return 70.0 * ( n0 + n1 + n2 );
+
+};
+
+// 3D simplex noise
+THREE.SimplexNoise.prototype.noise3d = function ( xin, yin, zin ) {
+
+	var n0, n1, n2, n3; // Noise contributions from the four corners
+	// Skew the input space to determine which simplex cell we're in
+	var F3 = 1.0 / 3.0;
+	var s = ( xin + yin + zin ) * F3; // Very nice and simple skew factor for 3D
+	var i = Math.floor( xin + s );
+	var j = Math.floor( yin + s );
+	var k = Math.floor( zin + s );
+	var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
+	var t = ( i + j + k ) * G3;
+	var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
+	var Y0 = j - t;
+	var Z0 = k - t;
+	var x0 = xin - X0; // The x,y,z distances from the cell origin
+	var y0 = yin - Y0;
+	var z0 = zin - Z0;
+	// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
+	// Determine which simplex we are in.
+	var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
+	var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
+	if ( x0 >= y0 ) {
+
+		if ( y0 >= z0 ) {
+
+			i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
+
+			// X Y Z order
+
+		} else if ( x0 >= z0 ) {
+
+			i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;
+
+			// X Z Y order
+
+		} else {
+
+			i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;
+
+		} // Z X Y order
+
+	} else { // x0<y0
+
+		if ( y0 < z0 ) {
+
+			i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;
+
+			// Z Y X order
+
+		} else if ( x0 < z0 ) {
+
+			i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;
+
+			// Y Z X order
+
+		} else {
+
+			i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;
+
+		} // Y X Z order
+
+	}
+	// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
+	// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
+	// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
+	// c = 1/6.
+	var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
+	var y1 = y0 - j1 + G3;
+	var z1 = z0 - k1 + G3;
+	var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
+	var y2 = y0 - j2 + 2.0 * G3;
+	var z2 = z0 - k2 + 2.0 * G3;
+	var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
+	var y3 = y0 - 1.0 + 3.0 * G3;
+	var z3 = z0 - 1.0 + 3.0 * G3;
+	// Work out the hashed gradient indices of the four simplex corners
+	var ii = i & 255;
+	var jj = j & 255;
+	var kk = k & 255;
+	var gi0 = this.perm[ ii + this.perm[ jj + this.perm[ kk ] ] ] % 12;
+	var gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 + this.perm[ kk + k1 ] ] ] % 12;
+	var gi2 = this.perm[ ii + i2 + this.perm[ jj + j2 + this.perm[ kk + k2 ] ] ] % 12;
+	var gi3 = this.perm[ ii + 1 + this.perm[ jj + 1 + this.perm[ kk + 1 ] ] ] % 12;
+	// Calculate the contribution from the four corners
+	var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
+	if ( t0 < 0 ) n0 = 0.0;
+	else {
+
+		t0 *= t0;
+		n0 = t0 * t0 * this.dot3( this.grad3[ gi0 ], x0, y0, z0 );
+
+	}
+	var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
+	if ( t1 < 0 ) n1 = 0.0;
+	else {
+
+		t1 *= t1;
+		n1 = t1 * t1 * this.dot3( this.grad3[ gi1 ], x1, y1, z1 );
+
+	}
+	var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
+	if ( t2 < 0 ) n2 = 0.0;
+	else {
+
+		t2 *= t2;
+		n2 = t2 * t2 * this.dot3( this.grad3[ gi2 ], x2, y2, z2 );
+
+	}
+	var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
+	if ( t3 < 0 ) n3 = 0.0;
+	else {
+
+		t3 *= t3;
+		n3 = t3 * t3 * this.dot3( this.grad3[ gi3 ], x3, y3, z3 );
+
+	}
+	// Add contributions from each corner to get the final noise value.
+	// The result is scaled to stay just inside [-1,1]
+	return 32.0 * ( n0 + n1 + n2 + n3 );
+
+};
+
+// 4D simplex noise
+THREE.SimplexNoise.prototype.noise4d = function ( x, y, z, w ) {
+
+	// For faster and easier lookups
+	var grad4 = this.grad4;
+	var simplex = this.simplex;
+	var perm = this.perm;
+
+	// The skewing and unskewing factors are hairy again for the 4D case
+	var F4 = ( Math.sqrt( 5.0 ) - 1.0 ) / 4.0;
+	var G4 = ( 5.0 - Math.sqrt( 5.0 ) ) / 20.0;
+	var n0, n1, n2, n3, n4; // Noise contributions from the five corners
+	// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
+	var s = ( x + y + z + w ) * F4; // Factor for 4D skewing
+	var i = Math.floor( x + s );
+	var j = Math.floor( y + s );
+	var k = Math.floor( z + s );
+	var l = Math.floor( w + s );
+	var t = ( i + j + k + l ) * G4; // Factor for 4D unskewing
+	var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
+	var Y0 = j - t;
+	var Z0 = k - t;
+	var W0 = l - t;
+	var x0 = x - X0; // The x,y,z,w distances from the cell origin
+	var y0 = y - Y0;
+	var z0 = z - Z0;
+	var w0 = w - W0;
+
+	// For the 4D case, the simplex is a 4D shape I won't even try to describe.
+	// To find out which of the 24 possible simplices we're in, we need to
+	// determine the magnitude ordering of x0, y0, z0 and w0.
+	// The method below is a good way of finding the ordering of x,y,z,w and
+	// then find the correct traversal order for the simplex we’re in.
+	// First, six pair-wise comparisons are performed between each possible pair
+	// of the four coordinates, and the results are used to add up binary bits
+	// for an integer index.
+	var c1 = ( x0 > y0 ) ? 32 : 0;
+	var c2 = ( x0 > z0 ) ? 16 : 0;
+	var c3 = ( y0 > z0 ) ? 8 : 0;
+	var c4 = ( x0 > w0 ) ? 4 : 0;
+	var c5 = ( y0 > w0 ) ? 2 : 0;
+	var c6 = ( z0 > w0 ) ? 1 : 0;
+	var c = c1 + c2 + c3 + c4 + c5 + c6;
+	var i1, j1, k1, l1; // The integer offsets for the second simplex corner
+	var i2, j2, k2, l2; // The integer offsets for the third simplex corner
+	var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
+	// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
+	// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
+	// impossible. Only the 24 indices which have non-zero entries make any sense.
+	// We use a thresholding to set the coordinates in turn from the largest magnitude.
+	// The number 3 in the "simplex" array is at the position of the largest coordinate.
+	i1 = simplex[ c ][ 0 ] >= 3 ? 1 : 0;
+	j1 = simplex[ c ][ 1 ] >= 3 ? 1 : 0;
+	k1 = simplex[ c ][ 2 ] >= 3 ? 1 : 0;
+	l1 = simplex[ c ][ 3 ] >= 3 ? 1 : 0;
+	// The number 2 in the "simplex" array is at the second largest coordinate.
+	i2 = simplex[ c ][ 0 ] >= 2 ? 1 : 0;
+	j2 = simplex[ c ][ 1 ] >= 2 ? 1 : 0; k2 = simplex[ c ][ 2 ] >= 2 ? 1 : 0;
+	l2 = simplex[ c ][ 3 ] >= 2 ? 1 : 0;
+	// The number 1 in the "simplex" array is at the second smallest coordinate.
+	i3 = simplex[ c ][ 0 ] >= 1 ? 1 : 0;
+	j3 = simplex[ c ][ 1 ] >= 1 ? 1 : 0;
+	k3 = simplex[ c ][ 2 ] >= 1 ? 1 : 0;
+	l3 = simplex[ c ][ 3 ] >= 1 ? 1 : 0;
+	// The fifth corner has all coordinate offsets = 1, so no need to look that up.
+	var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
+	var y1 = y0 - j1 + G4;
+	var z1 = z0 - k1 + G4;
+	var w1 = w0 - l1 + G4;
+	var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
+	var y2 = y0 - j2 + 2.0 * G4;
+	var z2 = z0 - k2 + 2.0 * G4;
+	var w2 = w0 - l2 + 2.0 * G4;
+	var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
+	var y3 = y0 - j3 + 3.0 * G4;
+	var z3 = z0 - k3 + 3.0 * G4;
+	var w3 = w0 - l3 + 3.0 * G4;
+	var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
+	var y4 = y0 - 1.0 + 4.0 * G4;
+	var z4 = z0 - 1.0 + 4.0 * G4;
+	var w4 = w0 - 1.0 + 4.0 * G4;
+	// Work out the hashed gradient indices of the five simplex corners
+	var ii = i & 255;
+	var jj = j & 255;
+	var kk = k & 255;
+	var ll = l & 255;
+	var gi0 = perm[ ii + perm[ jj + perm[ kk + perm[ ll ] ] ] ] % 32;
+	var gi1 = perm[ ii + i1 + perm[ jj + j1 + perm[ kk + k1 + perm[ ll + l1 ] ] ] ] % 32;
+	var gi2 = perm[ ii + i2 + perm[ jj + j2 + perm[ kk + k2 + perm[ ll + l2 ] ] ] ] % 32;
+	var gi3 = perm[ ii + i3 + perm[ jj + j3 + perm[ kk + k3 + perm[ ll + l3 ] ] ] ] % 32;
+	var gi4 = perm[ ii + 1 + perm[ jj + 1 + perm[ kk + 1 + perm[ ll + 1 ] ] ] ] % 32;
+	// Calculate the contribution from the five corners
+	var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
+	if ( t0 < 0 ) n0 = 0.0;
+	else {
+
+		t0 *= t0;
+		n0 = t0 * t0 * this.dot4( grad4[ gi0 ], x0, y0, z0, w0 );
+
+	}
+	var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
+	if ( t1 < 0 ) n1 = 0.0;
+	else {
+
+		t1 *= t1;
+		n1 = t1 * t1 * this.dot4( grad4[ gi1 ], x1, y1, z1, w1 );
+
+	}
+	var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
+	if ( t2 < 0 ) n2 = 0.0;
+	else {
+
+		t2 *= t2;
+		n2 = t2 * t2 * this.dot4( grad4[ gi2 ], x2, y2, z2, w2 );
+
+	} var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
+	if ( t3 < 0 ) n3 = 0.0;
+	else {
+
+		t3 *= t3;
+		n3 = t3 * t3 * this.dot4( grad4[ gi3 ], x3, y3, z3, w3 );
+
+	}
+	var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
+	if ( t4 < 0 ) n4 = 0.0;
+	else {
+
+		t4 *= t4;
+		n4 = t4 * t4 * this.dot4( grad4[ gi4 ], x4, y4, z4, w4 );
+
+	}
+	// Sum up and scale the result to cover the range [-1,1]
+	return 27.0 * ( n0 + n1 + n2 + n3 + n4 );
+
+};

+ 2 - 2
examples/js/postprocessing/SSAOPass.js

@@ -357,13 +357,13 @@ THREE.SSAOPass.prototype = Object.assign( Object.create( THREE.Pass.prototype ),
 
 		var width = 4, height = 4;
 
-		if ( SimplexNoise === undefined ) {
+		if ( THREE.SimplexNoise === undefined ) {
 
 			console.error( 'THREE.SSAOPass: The pass relies on THREE.SimplexNoise.' );
 
 		}
 
-		var simplex = new SimplexNoise();
+		var simplex = new THREE.SimplexNoise();
 
 		var size = width * height;
 		var data = new Float32Array( size * 4 );

+ 2 - 2
examples/webgl_gpgpu_water.html

@@ -42,7 +42,7 @@
 		<script src="js/libs/stats.min.js"></script>
 		<script src="js/libs/dat.gui.min.js"></script>
 		<script src="js/controls/OrbitControls.js"></script>
-		<script src="js/SimplexNoise.js"></script>
+		<script src="js/math/SimplexNoise.js"></script>
 
 		<script src="js/GPUComputationRenderer.js"></script>
 
@@ -317,7 +317,7 @@
 			var spheres = [];
 			var spheresEnabled = true;
 
-			var simplex = new SimplexNoise();
+			var simplex = new THREE.SimplexNoise();
 
 			document.getElementById( 'waterSize' ).innerText = WIDTH + ' x ' + WIDTH;
 

+ 14 - 14
examples/webgl_lightningstrike.html

@@ -25,7 +25,7 @@
 			a {
 				color: #0080ff;
 			}
-			
+
 			.dg.ac {
 				z-index: 1 !important; /* FIX DAT.GUI */
 			}
@@ -45,7 +45,7 @@
 		<script src="js/controls/OrbitControls.js"></script>
 		<script src="js/geometries/LightningStrike.js"></script>
 		<script src="js/objects/LightningStorm.js"></script>
-		<script src="js/SimplexNoise.js"></script>
+		<script src="js/math/SimplexNoise.js"></script>
 		<script src="js/shaders/CopyShader.js"></script>
 		<script src="js/postprocessing/EffectComposer.js"></script>
 		<script src="js/postprocessing/RenderPass.js"></script>
@@ -77,7 +77,7 @@
 			var textureLoader;
 
 			var clock = new THREE.Clock();
-			
+
 			var raycaster = new THREE.Raycaster();
 			var mouse = new THREE.Vector2();
 
@@ -124,7 +124,7 @@
 				scene.userData.camera.updateProjectionMatrix();
 
 				renderer.setSize( window.innerWidth, window.innerHeight );
-				
+
 				composer.setSize( window.innerWidth, window.innerHeight );
 
 			}
@@ -150,7 +150,7 @@
 					createScene();
 
 				} );
-				
+
 				scene.userData.timeRate = 1;
 				sceneFolder.add( scene.userData, 'timeRate', scene.userData.canGoBackwardsInTime ? -1 : 0, 1 ).name( 'Time rate' );
 
@@ -192,7 +192,7 @@
 				rayFolder.add( scene.userData.rayParams, 'subrayDutyCycle', 0, 1 ).name( 'Subray duty cycle' );
 
 				if ( scene.userData.recreateRay ) {
-				
+
 					// Parameters which need to recreate the ray after modification
 
 					var raySlowFolder = gui.addFolder( "Ray parameters (slow)" );
@@ -259,7 +259,7 @@
 				composer.addPass( outlinePass );
 
 				scene.userData.outlineEnabled = true;
-				
+
 				return outlinePass;
 
 			}
@@ -274,7 +274,7 @@
 				scene.userData.canGoBackwardsInTime = true;
 
 				scene.userData.camera = new THREE.PerspectiveCamera( 27, window.innerWidth / window.innerHeight, 200, 100000 );
-				
+
 				// Lights
 
 				scene.userData.lightningColor = new THREE.Color( 0xB0FFFF );
@@ -519,7 +519,7 @@
 					onSubrayCreation: function ( segment, parentSubray, childSubray, lightningStrike ) {
 
 						lightningStrike.subrayConePosition( segment, parentSubray, childSubray, 0.6, 0.9, 0.7 );
-					
+
 						// Sphere projection
 
 						vec1.subVectors( childSubray.pos1, lightningStrike.rayParameters.sourceOffset );
@@ -537,7 +537,7 @@
 				var lightningStrike;
 				var lightningStrikeMesh;
 				var outlineMeshArray = [];
-				
+
 				scene.userData.recreateRay = function () {
 
 					if ( lightningStrikeMesh ) {
@@ -639,9 +639,9 @@
 				return scene;
 
 			}
-			
+
 			//
-			
+
 			function createStormScene() {
 
 				var scene = new THREE.Scene();
@@ -709,7 +709,7 @@
 						lightningStrike.subrayConePosition( segment, parentSubray, childSubray, 0.6, 0.6, 0.5 );
 
 						// Plane projection
-						
+
 						rayLength = lightningStrike.rayParameters.sourceOffset.y;
 						vec1.subVectors( childSubray.pos1, lightningStrike.rayParameters.sourceOffset );
 						var proj = rayDirection.dot( vec1 );
@@ -750,7 +750,7 @@
 				starGeometry.addAttribute( 'position', new THREE.Float32BufferAttribute( starVertices, 3 ) );
 				var starMesh = new THREE.Mesh( starGeometry, new THREE.MeshBasicMaterial( { color: 0x020900 } ) );
 				starMesh.scale.multiplyScalar( 6 );
-				
+
 				//
 
 				var storm = new THREE.LightningStorm( {

+ 1 - 1
examples/webgl_postprocessing_ssao.html

@@ -38,7 +38,7 @@
 		<script src="js/postprocessing/ShaderPass.js"></script>
 		<script src="js/postprocessing/SSAOPass.js"></script>
 		<script src="js/shaders/CopyShader.js"></script>
-		<script src="js/SimplexNoise.js"></script>
+		<script src="js/math/SimplexNoise.js"></script>
 
 		<script src="js/WebGL.js"></script>
 		<script src="js/libs/stats.min.js"></script>