Browse Source

Added details to Matrix4 doc

looeee 8 years ago
parent
commit
734641aa3d
1 changed files with 39 additions and 11 deletions
  1. 39 11
      docs/api/math/Matrix4.html

+ 39 - 11
docs/api/math/Matrix4.html

@@ -98,7 +98,7 @@ m.elements = [ 11, 21, 31, 41,
 		</div>
 		</div>
 
 
 		<h3>[method:Matrix4 clone]()</h3>
 		<h3>[method:Matrix4 clone]()</h3>
-		<div>Creates a new Matrix4 and with identical elements to this one.</div>
+		<div>Creates a new Matrix4 with identical elements to this one.</div>
 
 
 		<h3>[method:Matrix4 compose]( [page:Vector3 position], [page:Quaternion quaternion], [page:Vector3 scale] )</h3>
 		<h3>[method:Matrix4 compose]( [page:Vector3 position], [page:Quaternion quaternion], [page:Vector3 scale] )</h3>
 		<div>
 		<div>
@@ -110,7 +110,7 @@ m.elements = [ 11, 21, 31, 41,
 		</div>
 		</div>
 
 
 		<h3>[method:Matrix4 copy]( [page:Matrix4 m] )</h3>
 		<h3>[method:Matrix4 copy]( [page:Matrix4 m] )</h3>
-		<div>Copies the elements of matrix [page:Matrix4 m] into this matrix.</div>
+		<div>Copies the [page:.elements elements] of matrix [page:Matrix4 m] into this matrix.</div>
 
 
 		<h3>[method:Matrix4 copyPosition]( [page:Matrix4 m] )</h3>
 		<h3>[method:Matrix4 copyPosition]( [page:Matrix4 m] )</h3>
 		<div>
 		<div>
@@ -124,7 +124,6 @@ m.elements = [ 11, 21, 31, 41,
 		[page:Vector3 scale] components.
 		[page:Vector3 scale] components.
 		</div>
 		</div>
 
 
-		<h3>[method:Float determinant]()</h3>
 		<h3>[method:Float determinant]()</h3>
 		<h3>[method:Float determinant]()</h3>
 		<div>
 		<div>
 		Computes and returns the
 		Computes and returns the
@@ -134,12 +133,24 @@ m.elements = [ 11, 21, 31, 41,
 		</div>
 		</div>
 
 
 		<h3>[method:Boolean equals]( [page:Matrix4 m] )</h3>
 		<h3>[method:Boolean equals]( [page:Matrix4 m] )</h3>
-		<div>Return true if this and [page:Matrix4 m] are equal.</div>
+		<div>Return true if this matrix and [page:Matrix4 m] are equal.</div>
 
 
 		<h3>[method:Matrix4 extractBasis]( [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis] )</h3>
 		<h3>[method:Matrix4 extractBasis]( [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis] )</h3>
 		<div>
 		<div>
 		Extracts the [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis] of this
 		Extracts the [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis] of this
-		matrix into the three axis vectors provided.
+		matrix into the three axis vectors provided. If this matrix is:
+		<code>
+a, b, c, d,
+e, f, g, h,
+i, j, k, l,
+m, n, o, p
+		</code>
+		then the [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis] will be set to:
+		<code>
+xAxis = (a, e, i)
+yAxis = (d, f, j)
+zAxis = (c, g, k)
+		</code>
 		</div>
 		</div>
 
 
 		<h3>[method:Matrix4 extractRotation]( [page:Matrix4 m] )</h3>
 		<h3>[method:Matrix4 extractRotation]( [page:Matrix4 m] )</h3>
@@ -194,8 +205,14 @@ m.elements = [ 11, 21, 31, 41,
 
 
 		<h3>[method:Matrix4 makeBasis]( [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis] )</h3>
 		<h3>[method:Matrix4 makeBasis]( [page:Vector3 xAxis], [page:Vector3 yAxis], [page:Vector3 zAxis] )</h3>
 		<div>
 		<div>
-		Creates the [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis] matrix consisting
-		of the three provided basis vectors.
+		Set this to the [link:https://en.wikipedia.org/wiki/Basis_(linear_algebra) basis] matrix consisting
+		of the three provided basis vectors:
+		<code>
+xAxis.x, yAxis.x, zAxis.x, 0,
+xAxis.y, yAxis.y, zAxis.y, 0,
+xAxis.z, yAxis.z, zAxis.z, 0,
+0,       0,       0,       1
+		</code>
 		</div>
 		</div>
 
 
 		<h3>[method:Matrix4 makeFrustum]( [page:Float left], [page:Float right], [page:Float bottom], [page:Float top], [page:Float near], [page:Float far] )</h3>
 		<h3>[method:Matrix4 makeFrustum]( [page:Float left], [page:Float right], [page:Float bottom], [page:Float top], [page:Float near], [page:Float far] )</h3>
@@ -214,18 +231,29 @@ m.elements = [ 11, 21, 31, 41,
 		<div>
 		<div>
 		Creates a [link:https://en.wikipedia.org/wiki/3D_projection#Perspective_projection perspective projection] matrix.
 		Creates a [link:https://en.wikipedia.org/wiki/3D_projection#Perspective_projection perspective projection] matrix.
 
 
+		Internally this calculates the values of [page:Float left], [page:Float right], [page:Float bottom] and [page:Float top],
+		and calls [page:.makeFrustum makeFrustum].
+
 		</div>
 		</div>
 
 
 		<h3>[method:Matrix4 makeRotationFromEuler]( [page:Euler euler] )</h3>
 		<h3>[method:Matrix4 makeRotationFromEuler]( [page:Euler euler] )</h3>
 		<div>
 		<div>
-		Sets the rotation component of this matrix to the rotation specified by the given [page:Euler Euler Angle].
-		The rest of the matrix is set to the identity.
+		Sets the rotation component (the upper left 3x3 matrix) of this matrix to the rotation specified by the given [page:Euler Euler Angle].
+		The rest of the matrix is set to the identity. Depending on the [page:Euler.order order] of the [page:Euler euler], there are six possible outcomes.
+		See [link:https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix this page] for a complete list.
 		</div>
 		</div>
 
 
 		<h3>[method:Matrix4 makeRotationFromQuaternion]( [page:Quaternion q] )</h3>
 		<h3>[method:Matrix4 makeRotationFromQuaternion]( [page:Quaternion q] )</h3>
 		<div>
 		<div>
-		Sets the rotation component of this matrix to the rotation specified by [page:Quaternion q].
-		The rest of the matrix is set to the identity.
+		Sets the rotation component of this matrix to the rotation specified by [page:Quaternion q], as outlined
+		[link:https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion here].
+		The rest of the matrix is set to the identity. So, given [page:Quaternion q] = w + xi + yj + zk, the resulting matrix will be:
+		<code>
+1-2y²-2z²    2xy-2zw    2xz-2yw    0
+2xy+2zw      1-2x²-2z²  2yz-2xw    0
+2xz-2yw      2yz+2xw    1-2x²-2y²  0
+0            0          0          1
+		</code>
 		</div>
 		</div>
 
 
 		<h3>[method:Matrix4 makeRotationX]( [page:Float theta] )</h3>
 		<h3>[method:Matrix4 makeRotationX]( [page:Float theta] )</h3>