|
@@ -0,0 +1,84 @@
|
|
|
+/**
|
|
|
+ * Hilbert Curve: Generates 2D-Coordinates in a very fast way.
|
|
|
+ *
|
|
|
+ * @author Dylan Grafmyre
|
|
|
+ *
|
|
|
+ * Based on work by:
|
|
|
+ * @author Thomas Diewald
|
|
|
+ * @link http://www.openprocessing.org/visuals/?visualID=15599
|
|
|
+ *
|
|
|
+ * Based on `examples/canvas_lines_colors.html`:
|
|
|
+ * @author OpenShift guest
|
|
|
+ * @link https://github.com/mrdoob/three.js/blob/8413a860aa95ed29c79cbb7f857c97d7880d260f/examples/canvas_lines_colors.html
|
|
|
+ * @see Line 149 - 186
|
|
|
+ *
|
|
|
+ * @param center Center of Hilbert curve.
|
|
|
+ * @param size Total width of Hilbert curve.
|
|
|
+ * @param iterations Number of subdivisions.
|
|
|
+ * @param v0 Corner index -X, +Y, -Z.
|
|
|
+ * @param v1 Corner index -X, +Y, +Z.
|
|
|
+ * @param v2 Corner index -X, -Y, +Z.
|
|
|
+ * @param v3 Corner index -X, -Y, -Z.
|
|
|
+ * @param v4 Corner index +X, -Y, -Z.
|
|
|
+ * @param v5 Corner index +X, -Y, +Z.
|
|
|
+ * @param v6 Corner index +X, +Y, +Z.
|
|
|
+ * @param v7 Corner index +X, +Y, -Z.
|
|
|
+ */
|
|
|
+function hilbert3D(center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7) {
|
|
|
+ // Default Vars
|
|
|
+ var center = undefined !== center ? center : new THREE.Vector3(0, 0, 0),
|
|
|
+ size = undefined !== size ? size : 10,
|
|
|
+ half = size / 2,
|
|
|
+ iterations = undefined !== iterations ? iterations : 1,
|
|
|
+ v0 = undefined !== v0 ? v0 : 0,
|
|
|
+ v1 = undefined !== v1 ? v1 : 1,
|
|
|
+ v2 = undefined !== v2 ? v2 : 2,
|
|
|
+ v3 = undefined !== v3 ? v3 : 3,
|
|
|
+ v4 = undefined !== v4 ? v4 : 4,
|
|
|
+ v5 = undefined !== v5 ? v5 : 5,
|
|
|
+ v6 = undefined !== v6 ? v6 : 6,
|
|
|
+ v7 = undefined !== v7 ? v7 : 7
|
|
|
+ ;
|
|
|
+
|
|
|
+ var vec_s = [
|
|
|
+ new THREE.Vector3( center.x - half, center.y + half, center.z - half ),
|
|
|
+ new THREE.Vector3( center.x - half, center.y + half, center.z + half ),
|
|
|
+ new THREE.Vector3( center.x - half, center.y - half, center.z + half ),
|
|
|
+ new THREE.Vector3( center.x - half, center.y - half, center.z - half ),
|
|
|
+ new THREE.Vector3( center.x + half, center.y - half, center.z - half ),
|
|
|
+ new THREE.Vector3( center.x + half, center.y - half, center.z + half ),
|
|
|
+ new THREE.Vector3( center.x + half, center.y + half, center.z + half ),
|
|
|
+ new THREE.Vector3( center.x + half, center.y + half, center.z - half )
|
|
|
+ ];
|
|
|
+
|
|
|
+ var vec = [
|
|
|
+ vec_s[ v0 ],
|
|
|
+ vec_s[ v1 ],
|
|
|
+ vec_s[ v2 ],
|
|
|
+ vec_s[ v3 ],
|
|
|
+ vec_s[ v4 ],
|
|
|
+ vec_s[ v5 ],
|
|
|
+ vec_s[ v6 ],
|
|
|
+ vec_s[ v7 ]
|
|
|
+ ];
|
|
|
+
|
|
|
+ // Recurse iterations
|
|
|
+ if( --iterations >= 0 ) {
|
|
|
+ var tmp = [];
|
|
|
+
|
|
|
+ Array.prototype.push.apply( tmp, hilbert3D ( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );
|
|
|
+ Array.prototype.push.apply( tmp, hilbert3D ( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
|
|
|
+ Array.prototype.push.apply( tmp, hilbert3D ( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
|
|
|
+ Array.prototype.push.apply( tmp, hilbert3D ( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
|
|
|
+ Array.prototype.push.apply( tmp, hilbert3D ( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
|
|
|
+ Array.prototype.push.apply( tmp, hilbert3D ( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
|
|
|
+ Array.prototype.push.apply( tmp, hilbert3D ( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
|
|
|
+ Array.prototype.push.apply( tmp, hilbert3D ( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) );
|
|
|
+
|
|
|
+ // Return recursive call
|
|
|
+ return tmp;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Return complete Hilbert Curve.
|
|
|
+ return vec;
|
|
|
+}
|