|
@@ -142,7 +142,7 @@ THREE.Vector4.prototype = {
|
|
return Math.sqrt( this.lengthSq() );
|
|
return Math.sqrt( this.lengthSq() );
|
|
|
|
|
|
},
|
|
},
|
|
-
|
|
|
|
|
|
+
|
|
lengthManhattan: function () {
|
|
lengthManhattan: function () {
|
|
|
|
|
|
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
|
|
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );
|
|
@@ -181,27 +181,27 @@ THREE.Vector4.prototype = {
|
|
setAxisAngleFromQuaternion: function ( q ) {
|
|
setAxisAngleFromQuaternion: function ( q ) {
|
|
|
|
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
|
|
-
|
|
|
|
|
|
+
|
|
// q is assumed to be normalized
|
|
// q is assumed to be normalized
|
|
-
|
|
|
|
|
|
+
|
|
this.w = 2 * Math.acos( q.w );
|
|
this.w = 2 * Math.acos( q.w );
|
|
-
|
|
|
|
|
|
+
|
|
var s = Math.sqrt( 1 - q.w * q.w );
|
|
var s = Math.sqrt( 1 - q.w * q.w );
|
|
-
|
|
|
|
|
|
+
|
|
if ( s < 0.0001 ) {
|
|
if ( s < 0.0001 ) {
|
|
-
|
|
|
|
|
|
+
|
|
this.x = 1;
|
|
this.x = 1;
|
|
this.y = 0;
|
|
this.y = 0;
|
|
this.z = 0;
|
|
this.z = 0;
|
|
-
|
|
|
|
|
|
+
|
|
} else {
|
|
} else {
|
|
-
|
|
|
|
|
|
+
|
|
this.x = q.x / s;
|
|
this.x = q.x / s;
|
|
this.y = q.y / s;
|
|
this.y = q.y / s;
|
|
this.z = q.z / s;
|
|
this.z = q.z / s;
|
|
-
|
|
|
|
|
|
+
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
return this;
|
|
return this;
|
|
|
|
|
|
},
|
|
},
|
|
@@ -209,15 +209,15 @@ THREE.Vector4.prototype = {
|
|
setAxisAngleFromRotationMatrix: function ( m ) {
|
|
setAxisAngleFromRotationMatrix: function ( m ) {
|
|
|
|
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
|
|
-
|
|
|
|
|
|
+
|
|
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
|
|
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
|
|
-
|
|
|
|
|
|
+
|
|
var angle, x, y, z, // variables for result
|
|
var angle, x, y, z, // variables for result
|
|
epsilon = 0.01, // margin to allow for rounding errors
|
|
epsilon = 0.01, // margin to allow for rounding errors
|
|
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
|
|
epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees
|
|
-
|
|
|
|
|
|
+
|
|
te = m.elements,
|
|
te = m.elements,
|
|
-
|
|
|
|
|
|
+
|
|
m11 = te[0], m12 = te[4], m13 = te[8],
|
|
m11 = te[0], m12 = te[4], m13 = te[8],
|
|
m21 = te[1], m22 = te[5], m23 = te[9],
|
|
m21 = te[1], m22 = te[5], m23 = te[9],
|
|
m31 = te[2], m32 = te[6], m33 = te[10];
|
|
m31 = te[2], m32 = te[6], m33 = te[10];
|
|
@@ -225,107 +225,107 @@ THREE.Vector4.prototype = {
|
|
if ( ( Math.abs( m12 - m21 ) < epsilon )
|
|
if ( ( Math.abs( m12 - m21 ) < epsilon )
|
|
&& ( Math.abs( m13 - m31 ) < epsilon )
|
|
&& ( Math.abs( m13 - m31 ) < epsilon )
|
|
&& ( Math.abs( m23 - m32 ) < epsilon ) ) {
|
|
&& ( Math.abs( m23 - m32 ) < epsilon ) ) {
|
|
-
|
|
|
|
|
|
+
|
|
// singularity found
|
|
// singularity found
|
|
// first check for identity matrix which must have +1 for all terms
|
|
// first check for identity matrix which must have +1 for all terms
|
|
// in leading diagonal and zero in other terms
|
|
// in leading diagonal and zero in other terms
|
|
-
|
|
|
|
|
|
+
|
|
if ( ( Math.abs( m12 + m21 ) < epsilon2 )
|
|
if ( ( Math.abs( m12 + m21 ) < epsilon2 )
|
|
&& ( Math.abs( m13 + m31 ) < epsilon2 )
|
|
&& ( Math.abs( m13 + m31 ) < epsilon2 )
|
|
&& ( Math.abs( m23 + m32 ) < epsilon2 )
|
|
&& ( Math.abs( m23 + m32 ) < epsilon2 )
|
|
&& ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
|
|
&& ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {
|
|
-
|
|
|
|
|
|
+
|
|
// this singularity is identity matrix so angle = 0
|
|
// this singularity is identity matrix so angle = 0
|
|
-
|
|
|
|
|
|
+
|
|
this.set( 1, 0, 0, 0 );
|
|
this.set( 1, 0, 0, 0 );
|
|
-
|
|
|
|
|
|
+
|
|
return this; // zero angle, arbitrary axis
|
|
return this; // zero angle, arbitrary axis
|
|
-
|
|
|
|
|
|
+
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
// otherwise this singularity is angle = 180
|
|
// otherwise this singularity is angle = 180
|
|
-
|
|
|
|
|
|
+
|
|
angle = Math.PI;
|
|
angle = Math.PI;
|
|
-
|
|
|
|
|
|
+
|
|
var xx = ( m11 + 1 ) / 2;
|
|
var xx = ( m11 + 1 ) / 2;
|
|
var yy = ( m22 + 1 ) / 2;
|
|
var yy = ( m22 + 1 ) / 2;
|
|
var zz = ( m33 + 1 ) / 2;
|
|
var zz = ( m33 + 1 ) / 2;
|
|
var xy = ( m12 + m21 ) / 4;
|
|
var xy = ( m12 + m21 ) / 4;
|
|
var xz = ( m13 + m31 ) / 4;
|
|
var xz = ( m13 + m31 ) / 4;
|
|
var yz = ( m23 + m32 ) / 4;
|
|
var yz = ( m23 + m32 ) / 4;
|
|
-
|
|
|
|
|
|
+
|
|
if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term
|
|
if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term
|
|
-
|
|
|
|
|
|
+
|
|
if ( xx < epsilon ) {
|
|
if ( xx < epsilon ) {
|
|
-
|
|
|
|
|
|
+
|
|
x = 0;
|
|
x = 0;
|
|
y = 0.707106781;
|
|
y = 0.707106781;
|
|
z = 0.707106781;
|
|
z = 0.707106781;
|
|
-
|
|
|
|
|
|
+
|
|
} else {
|
|
} else {
|
|
-
|
|
|
|
|
|
+
|
|
x = Math.sqrt( xx );
|
|
x = Math.sqrt( xx );
|
|
y = xy / x;
|
|
y = xy / x;
|
|
z = xz / x;
|
|
z = xz / x;
|
|
-
|
|
|
|
|
|
+
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
} else if ( yy > zz ) { // m22 is the largest diagonal term
|
|
} else if ( yy > zz ) { // m22 is the largest diagonal term
|
|
-
|
|
|
|
|
|
+
|
|
if ( yy < epsilon ) {
|
|
if ( yy < epsilon ) {
|
|
-
|
|
|
|
|
|
+
|
|
x = 0.707106781;
|
|
x = 0.707106781;
|
|
y = 0;
|
|
y = 0;
|
|
z = 0.707106781;
|
|
z = 0.707106781;
|
|
-
|
|
|
|
|
|
+
|
|
} else {
|
|
} else {
|
|
-
|
|
|
|
|
|
+
|
|
y = Math.sqrt( yy );
|
|
y = Math.sqrt( yy );
|
|
x = xy / y;
|
|
x = xy / y;
|
|
z = yz / y;
|
|
z = yz / y;
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
} else { // m33 is the largest diagonal term so base result on this
|
|
} else { // m33 is the largest diagonal term so base result on this
|
|
-
|
|
|
|
|
|
+
|
|
if ( zz < epsilon ) {
|
|
if ( zz < epsilon ) {
|
|
-
|
|
|
|
|
|
+
|
|
x = 0.707106781;
|
|
x = 0.707106781;
|
|
y = 0.707106781;
|
|
y = 0.707106781;
|
|
z = 0;
|
|
z = 0;
|
|
-
|
|
|
|
|
|
+
|
|
} else {
|
|
} else {
|
|
-
|
|
|
|
|
|
+
|
|
z = Math.sqrt( zz );
|
|
z = Math.sqrt( zz );
|
|
x = xz / z;
|
|
x = xz / z;
|
|
y = yz / z;
|
|
y = yz / z;
|
|
-
|
|
|
|
|
|
+
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
this.set( x, y, z, angle );
|
|
this.set( x, y, z, angle );
|
|
-
|
|
|
|
|
|
+
|
|
return this; // return 180 deg rotation
|
|
return this; // return 180 deg rotation
|
|
-
|
|
|
|
|
|
+
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
// as we have reached here there are no singularities so we can handle normally
|
|
// as we have reached here there are no singularities so we can handle normally
|
|
-
|
|
|
|
|
|
+
|
|
var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 )
|
|
var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 )
|
|
+ ( m13 - m31 ) * ( m13 - m31 )
|
|
+ ( m13 - m31 ) * ( m13 - m31 )
|
|
+ ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
|
|
+ ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize
|
|
-
|
|
|
|
|
|
+
|
|
if ( Math.abs( s ) < 0.001 ) s = 1;
|
|
if ( Math.abs( s ) < 0.001 ) s = 1;
|
|
-
|
|
|
|
|
|
+
|
|
// prevent divide by zero, should not happen if matrix is orthogonal and should be
|
|
// prevent divide by zero, should not happen if matrix is orthogonal and should be
|
|
// caught by singularity test above, but I've left it in just in case
|
|
// caught by singularity test above, but I've left it in just in case
|
|
-
|
|
|
|
|
|
+
|
|
this.x = ( m32 - m23 ) / s;
|
|
this.x = ( m32 - m23 ) / s;
|
|
this.y = ( m13 - m31 ) / s;
|
|
this.y = ( m13 - m31 ) / s;
|
|
this.z = ( m21 - m12 ) / s;
|
|
this.z = ( m21 - m12 ) / s;
|
|
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
|
|
this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );
|
|
-
|
|
|
|
|
|
+
|
|
return this;
|
|
return this;
|
|
|
|
|
|
}
|
|
}
|