|
@@ -0,0 +1,177 @@
|
|
|
+/*
|
|
|
+ * @author zz85 https://github.com/zz85
|
|
|
+ *
|
|
|
+ * Centripetal CatmullRom Curve - which is useful for avoiding
|
|
|
+ * cusps and self-intersections in non-uniform catmull rom curves.
|
|
|
+ * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
|
|
|
+ *
|
|
|
+ * curve.type accepts centripetal(default), chordal and catmullrom
|
|
|
+ * curve.tension is used for catmullrom which defaults to 0.5
|
|
|
+ */
|
|
|
+
|
|
|
+THREE.CatmullRomCurve3 = ( function() {
|
|
|
+
|
|
|
+ var
|
|
|
+ tmp = new THREE.Vector3(),
|
|
|
+ px = new CubicPoly(),
|
|
|
+ py = new CubicPoly(),
|
|
|
+ pz = new CubicPoly();
|
|
|
+
|
|
|
+ /*
|
|
|
+ Based on an optimized c++ solution in
|
|
|
+ - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
|
|
|
+ - http://ideone.com/NoEbVM
|
|
|
+
|
|
|
+ This CubicPoly class could be used for reusing some variables and calculations,
|
|
|
+ but for three.js curve use, it could be possible inlined and flatten into a single function call
|
|
|
+ which can be placed in CurveUtils.
|
|
|
+ */
|
|
|
+
|
|
|
+ function CubicPoly() {
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Compute coefficients for a cubic polynomial
|
|
|
+ * p(s) = c0 + c1*s + c2*s^2 + c3*s^3
|
|
|
+ * such that
|
|
|
+ * p(0) = x0, p(1) = x1
|
|
|
+ * and
|
|
|
+ * p'(0) = t0, p'(1) = t1.
|
|
|
+ */
|
|
|
+ CubicPoly.prototype.init = function( x0, x1, t0, t1 ) {
|
|
|
+
|
|
|
+ this.c0 = x0;
|
|
|
+ this.c1 = t0;
|
|
|
+ this.c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
|
|
|
+ this.c3 = 2 * x0 - 2 * x1 + t0 + t1;
|
|
|
+
|
|
|
+ };
|
|
|
+
|
|
|
+ CubicPoly.prototype.initNonuniformCatmullRom = function( x0, x1, x2, x3, dt0, dt1, dt2 ) {
|
|
|
+
|
|
|
+ // compute tangents when parameterized in [t1,t2]
|
|
|
+ var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
|
|
|
+ var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;
|
|
|
+
|
|
|
+ // rescale tangents for parametrization in [0,1]
|
|
|
+ t1 *= dt1;
|
|
|
+ t2 *= dt1;
|
|
|
+
|
|
|
+ // initCubicPoly
|
|
|
+ this.init( x1, x2, t1, t2 );
|
|
|
+
|
|
|
+ };
|
|
|
+
|
|
|
+ // standard Catmull-Rom spline: interpolate between x1 and x2 with previous/following points x1/x4
|
|
|
+ CubicPoly.prototype.initCatmullRom = function( x0, x1, x2, x3, tension ) {
|
|
|
+
|
|
|
+ this.init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );
|
|
|
+
|
|
|
+ };
|
|
|
+
|
|
|
+ CubicPoly.prototype.calc = function( t ) {
|
|
|
+
|
|
|
+ var t2 = t * t;
|
|
|
+ var t3 = t2 * t;
|
|
|
+ return this.c0 + this.c1 * t + this.c2 * t2 + this.c3 * t3;
|
|
|
+
|
|
|
+ };
|
|
|
+
|
|
|
+ // Subclass Three.js curve
|
|
|
+ return THREE.Curve.create(
|
|
|
+
|
|
|
+ function ( p /* array of Vector3 */ ) {
|
|
|
+
|
|
|
+ this.points = p || [];
|
|
|
+
|
|
|
+ },
|
|
|
+
|
|
|
+ function ( t ) {
|
|
|
+
|
|
|
+ var points = this.points,
|
|
|
+ point, intPoint, weight, l;
|
|
|
+
|
|
|
+ l = points.length;
|
|
|
+
|
|
|
+ if ( l < 2 ) console.log( 'duh, you need at least 2 points' );
|
|
|
+
|
|
|
+ point = ( l - 1 ) * t;
|
|
|
+ intPoint = Math.floor( point );
|
|
|
+ weight = point - intPoint;
|
|
|
+
|
|
|
+ if ( weight == 0 && intPoint == l - 1 ) {
|
|
|
+
|
|
|
+ intPoint = l - 2;
|
|
|
+ weight = 1;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ var p0, p1, p2, p3;
|
|
|
+
|
|
|
+ if ( intPoint == 0 ) {
|
|
|
+
|
|
|
+ // extrapolate first point
|
|
|
+ tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
|
|
|
+ p0 = tmp;
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ p0 = points[ intPoint - 1 ];
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ p1 = points[ intPoint ];
|
|
|
+ p2 = points[ intPoint + 1 ];
|
|
|
+
|
|
|
+ if ( intPoint + 2 < l ) {
|
|
|
+
|
|
|
+ p3 = points[ intPoint + 2 ]
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ // extrapolate last point
|
|
|
+ tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 2 ] );
|
|
|
+ p3 = tmp;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( this.type === undefined || this.type === 'centripetal' || this.type === 'chordal' ) {
|
|
|
+
|
|
|
+ // init Centripetal / Chordal Catmull-Rom
|
|
|
+ var pow = this.type === 'chordal' ? 0.5 : 0.25;
|
|
|
+ var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
|
|
|
+ var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
|
|
|
+ var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );
|
|
|
+
|
|
|
+ // safety check for repeated points
|
|
|
+ if ( dt1 < 1e-4 ) dt1 = 1.0;
|
|
|
+ if ( dt0 < 1e-4 ) dt0 = dt1;
|
|
|
+ if ( dt2 < 1e-4 ) dt2 = dt1;
|
|
|
+
|
|
|
+ px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
|
|
|
+ py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
|
|
|
+ pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );
|
|
|
+
|
|
|
+ } else if ( this.type === 'catmullrom' ) {
|
|
|
+
|
|
|
+ var tension = this.tension !== undefined ? this.tension : 0.5;
|
|
|
+ px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, tension );
|
|
|
+ py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, tension );
|
|
|
+ pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, tension );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ var v = new THREE.Vector3(
|
|
|
+ px.calc( weight ),
|
|
|
+ py.calc( weight ),
|
|
|
+ pz.calc( weight )
|
|
|
+ );
|
|
|
+
|
|
|
+ return v;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ );
|
|
|
+
|
|
|
+} )();
|