|
@@ -42,35 +42,6 @@
|
|
|
background-color: #fff;
|
|
|
z-index: -1;
|
|
|
}
|
|
|
-
|
|
|
- .math {
|
|
|
- text-align: center;
|
|
|
- }
|
|
|
-
|
|
|
- .math-frac {
|
|
|
- display: inline-block;
|
|
|
- vertical-align: middle;
|
|
|
- }
|
|
|
-
|
|
|
- .math-num {
|
|
|
- display: block;
|
|
|
- }
|
|
|
-
|
|
|
- .math-denom {
|
|
|
- display: block;
|
|
|
- border-top: 1px solid;
|
|
|
- }
|
|
|
-
|
|
|
- .math-sqrt {
|
|
|
- display: inline-block;
|
|
|
- transform: scale(1, 1.3);
|
|
|
- }
|
|
|
-
|
|
|
- .math-sqrt-stem {
|
|
|
- display: inline-block;
|
|
|
- border-top: 1px solid;
|
|
|
- margin-top: 5px;
|
|
|
- }
|
|
|
</style>
|
|
|
</head>
|
|
|
<body>
|
|
@@ -282,52 +253,85 @@
|
|
|
|
|
|
<p>Sound waves whose geometry is determined by a single dimension, plane waves, obey the wave equation</p>
|
|
|
|
|
|
- <!-- css math formatting inspired by http://mathquill.com/mathquill/mathquill.css -->
|
|
|
-
|
|
|
- <div class="math">
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- ∂<sup>2</sup><i>u</i>
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- ∂<i>r</i><sup>2</sup>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- −
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- 1<sup></sup> <!-- sup for vertical alignment -->
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- <i>c</i><sup>2</sup>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- ∂<sup>2</sup><i>u</i>
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- ∂<i>t</i><sup>2</sup>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- = 0
|
|
|
-
|
|
|
- </div>
|
|
|
-
|
|
|
- <p>where <i>c</i> designates the speed of sound in the medium. The monochromatic solution for plane waves will be taken to be</p>
|
|
|
-
|
|
|
- <div class="math">
|
|
|
-
|
|
|
- <i>u</i>(<i>r</i>,<i>t</i>) = sin(<i>k</i><i>r</i> ± ω<i>t</i>)
|
|
|
-
|
|
|
- </div>
|
|
|
-
|
|
|
- <p>where ω is the frequency and <i>k</i>=ω/<i>c</i> is the wave number. The sign chosen in the argument determines the direction of movement of the waves.</p>
|
|
|
+ <math display="block">
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <msup>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ <mi>u</mi>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <msup>
|
|
|
+ <mi>r</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>−</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mn>1</mn>
|
|
|
+ <msup>
|
|
|
+ <mi>c</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ </mfrac>
|
|
|
+ <mo>⋅</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <msup>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ <mi>u</mi>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <msup>
|
|
|
+ <mi>t</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>=</mo>
|
|
|
+ <mn>0</mn>
|
|
|
+ </math>
|
|
|
+
|
|
|
+ <p>where <math><mi>c</mi></math> designates the speed of sound in the medium. The monochromatic solution for plane waves will be taken to be</p>
|
|
|
+
|
|
|
+ <math display="block">
|
|
|
+ <mi>u</mi>
|
|
|
+ <mo>(</mo>
|
|
|
+ <mi>r</mi>
|
|
|
+ <mo>,</mo>
|
|
|
+ <mi>t</mi>
|
|
|
+ <mo>)</mo>
|
|
|
+ <mo>=</mo>
|
|
|
+ <mi>sin</mi>
|
|
|
+ <mo>(</mo>
|
|
|
+ <mi>k</mi>
|
|
|
+ <mi>r</mi>
|
|
|
+ <mo>±</mo>
|
|
|
+ <mi>ω</mi>
|
|
|
+ <mi>t</mi>
|
|
|
+ <mo>)</mo>
|
|
|
+ </math>
|
|
|
+
|
|
|
+ <p>
|
|
|
+ where <math><mi>ω</mi></math> is the frequency and
|
|
|
+
|
|
|
+ <math>
|
|
|
+ <mi>k</mi>
|
|
|
+ <mo>=</mo>
|
|
|
+ <mi>ω</mi>
|
|
|
+ <mo>/</mo>
|
|
|
+ <mi>c</mi>
|
|
|
+ </math>
|
|
|
+
|
|
|
+ is the wave number. The sign chosen in the argument determines the direction of movement of the waves.
|
|
|
+ </p>
|
|
|
|
|
|
<p>Here is a plane wave moving on a three-dimensional lattice of atoms:</p>
|
|
|
|
|
@@ -372,77 +376,104 @@
|
|
|
|
|
|
<p>Sound waves whose geometry is determined by two dimensions, cylindrical waves, obey the wave equation</p>
|
|
|
|
|
|
- <div class="math">
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- ∂<sup>2</sup><i>u</i>
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- ∂<i>r</i><sup>2</sup>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- +
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- 1
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- <i>r</i>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- ∂<i>u</i>
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- ∂<i>r</i>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- −
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- 1<sup></sup> <!-- sup for vertical alignment -->
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- <i>c</i><sup>2</sup>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- ∂<sup>2</sup><i>u</i>
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- ∂<i>t</i><sup>2</sup>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- = 0
|
|
|
-
|
|
|
- </div>
|
|
|
+ <math display="block">
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <msup>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ <mi>u</mi>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <msup>
|
|
|
+ <mi>r</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>+</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <mn>1</mn>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>r</mi>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>⋅</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mi>u</mi>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mi>r</mi>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>−</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <mn>1</mn>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <msup>
|
|
|
+ <mi>c</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>⋅</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <msup>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ <mi>u</mi>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <msup>
|
|
|
+ <mi>t</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>=</mo>
|
|
|
+ <mn>0</mn>
|
|
|
+ </math>
|
|
|
|
|
|
<p>The monochromatic solution for cylindrical sound waves will be taken to be</p>
|
|
|
|
|
|
- <div class="math">
|
|
|
-
|
|
|
- <i>u</i>(<i>r</i>,<i>t</i>) =
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- sin(<i>k</i><i>r</i> ± ω<i>t</i>)
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- <span class="math-sqrt">√</span><span class="math-sqrt-stem"><i>r</i></span>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- </div>
|
|
|
+ <math display="block">
|
|
|
+ <mi>u</mi>
|
|
|
+ <mo stretchy="false">(</mo>
|
|
|
+ <mi>r</mi>
|
|
|
+ <mo>,</mo>
|
|
|
+ <mi>t</mi>
|
|
|
+ <mo stretchy="false">)</mo>
|
|
|
+ <mo>=</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <mi>sin</mi>
|
|
|
+ <mo>(</mo>
|
|
|
+ <mi>k</mi>
|
|
|
+ <mi>r</mi>
|
|
|
+ <mo>±</mo>
|
|
|
+ <mi>ω</mi>
|
|
|
+ <mi>t</mi>
|
|
|
+ <mo>)</mo>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <msqrt>
|
|
|
+ <mi>r</mi>
|
|
|
+ </msqrt>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ </math>
|
|
|
|
|
|
<p>Here is a cylindrical wave moving on a three-dimensional lattice of atoms:</p>
|
|
|
|
|
@@ -508,77 +539,102 @@
|
|
|
|
|
|
<p>Sound waves whose geometry is determined by three dimensions, spherical waves, obey the wave equation</p>
|
|
|
|
|
|
- <div class="math">
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- ∂<sup>2</sup><i>u</i>
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- ∂<i>r</i><sup>2</sup>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- +
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- 2
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- <i>r</i>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- ∂<i>u</i>
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- ∂<i>r</i>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- −
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- 1<sup></sup> <!-- sup for vertical alignment -->
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- <i>c</i><sup>2</sup>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- ∂<sup>2</sup><i>u</i>
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- ∂<i>t</i><sup>2</sup>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- = 0
|
|
|
-
|
|
|
- </div>
|
|
|
+ <math display="block">
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <msup>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ <mi>u</mi>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <msup>
|
|
|
+ <mi>r</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>+</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <mn>2</mn>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>r</mi>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>⋅</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mi>u</mi>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mi>r</mi>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>−</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <mn>1</mn>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <msup>
|
|
|
+ <mi>c</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>⋅</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <msup>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ <mi>u</mi>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>∂</mi>
|
|
|
+ <msup>
|
|
|
+ <mi>t</mi>
|
|
|
+ <mn>2</mn>
|
|
|
+ </msup>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ <mo>=</mo>
|
|
|
+ <mn>0</mn>
|
|
|
+ </math>
|
|
|
|
|
|
<p>The monochromatic solution for spherical sound waves will be taken to be</p>
|
|
|
|
|
|
- <div class="math">
|
|
|
-
|
|
|
- <i>u</i>(<i>r</i>,<i>t</i>) =
|
|
|
-
|
|
|
- <span class="math-frac">
|
|
|
- <span class="math-num">
|
|
|
- sin(<i>k</i><i>r</i> ± ω<i>t</i>)
|
|
|
- </span>
|
|
|
- <span class="math-denom">
|
|
|
- <i>r</i>
|
|
|
- </span>
|
|
|
- </span>
|
|
|
-
|
|
|
- </div>
|
|
|
+ <math display="block">
|
|
|
+ <mi>u</mi>
|
|
|
+ <mo stretchy="false">(</mo>
|
|
|
+ <mi>r</mi>
|
|
|
+ <mo>,</mo>
|
|
|
+ <mi>t</mi>
|
|
|
+ <mo stretchy="false">)</mo>
|
|
|
+ <mo>=</mo>
|
|
|
+ <mfrac>
|
|
|
+ <mrow>
|
|
|
+ <mi>sin</mi>
|
|
|
+ <mo>(</mo>
|
|
|
+ <mi>k</mi>
|
|
|
+ <mi>r</mi>
|
|
|
+ <mo>±</mo>
|
|
|
+ <mi>ω</mi>
|
|
|
+ <mi>t</mi>
|
|
|
+ <mo>)</mo>
|
|
|
+ </mrow>
|
|
|
+ <mrow>
|
|
|
+ <mi>r</mi>
|
|
|
+ </mrow>
|
|
|
+ </mfrac>
|
|
|
+ </math>
|
|
|
|
|
|
<p>Here is a spherical wave moving on a three-dimensional lattice of atoms:</p>
|
|
|
|