|
@@ -72,564 +72,4 @@ THREE.Shape.prototype.extractPoints = function ( divisions ) {
|
|
|
|
|
|
};
|
|
|
|
|
|
-/**************************************************************
|
|
|
- * Utils
|
|
|
- **************************************************************/
|
|
|
-
|
|
|
-THREE.Shape.Utils = {
|
|
|
-
|
|
|
- triangulateShape: function ( contour, holes ) {
|
|
|
-
|
|
|
- function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) {
|
|
|
-
|
|
|
- // inOtherPt needs to be collinear to the inSegment
|
|
|
- if ( inSegPt1.x !== inSegPt2.x ) {
|
|
|
-
|
|
|
- if ( inSegPt1.x < inSegPt2.x ) {
|
|
|
-
|
|
|
- return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) );
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- if ( inSegPt1.y < inSegPt2.y ) {
|
|
|
-
|
|
|
- return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) );
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) {
|
|
|
-
|
|
|
- var EPSILON = 0.0000000001;
|
|
|
-
|
|
|
- var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y;
|
|
|
- var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y;
|
|
|
-
|
|
|
- var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x;
|
|
|
- var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y;
|
|
|
-
|
|
|
- var limit = seg1dy * seg2dx - seg1dx * seg2dy;
|
|
|
- var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy;
|
|
|
-
|
|
|
- if ( Math.abs( limit ) > EPSILON ) {
|
|
|
-
|
|
|
- // not parallel
|
|
|
-
|
|
|
- var perpSeg2;
|
|
|
- if ( limit > 0 ) {
|
|
|
-
|
|
|
- if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return [];
|
|
|
- perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
|
|
|
- if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return [];
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return [];
|
|
|
- perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
|
|
|
- if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return [];
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- // i.e. to reduce rounding errors
|
|
|
- // intersection at endpoint of segment#1?
|
|
|
- if ( perpSeg2 === 0 ) {
|
|
|
-
|
|
|
- if ( ( inExcludeAdjacentSegs ) &&
|
|
|
- ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
|
|
|
- return [ inSeg1Pt1 ];
|
|
|
-
|
|
|
- }
|
|
|
- if ( perpSeg2 === limit ) {
|
|
|
-
|
|
|
- if ( ( inExcludeAdjacentSegs ) &&
|
|
|
- ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
|
|
|
- return [ inSeg1Pt2 ];
|
|
|
-
|
|
|
- }
|
|
|
- // intersection at endpoint of segment#2?
|
|
|
- if ( perpSeg1 === 0 ) return [ inSeg2Pt1 ];
|
|
|
- if ( perpSeg1 === limit ) return [ inSeg2Pt2 ];
|
|
|
-
|
|
|
- // return real intersection point
|
|
|
- var factorSeg1 = perpSeg2 / limit;
|
|
|
- return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx,
|
|
|
- y: inSeg1Pt1.y + factorSeg1 * seg1dy } ];
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- // parallel or collinear
|
|
|
- if ( ( perpSeg1 !== 0 ) ||
|
|
|
- ( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) return [];
|
|
|
-
|
|
|
- // they are collinear or degenerate
|
|
|
- var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) ); // segment1 is just a point?
|
|
|
- var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) ); // segment2 is just a point?
|
|
|
- // both segments are points
|
|
|
- if ( seg1Pt && seg2Pt ) {
|
|
|
-
|
|
|
- if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) ||
|
|
|
- ( inSeg1Pt1.y !== inSeg2Pt1.y ) ) return []; // they are distinct points
|
|
|
- return [ inSeg1Pt1 ]; // they are the same point
|
|
|
-
|
|
|
- }
|
|
|
- // segment#1 is a single point
|
|
|
- if ( seg1Pt ) {
|
|
|
-
|
|
|
- if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2
|
|
|
- return [ inSeg1Pt1 ];
|
|
|
-
|
|
|
- }
|
|
|
- // segment#2 is a single point
|
|
|
- if ( seg2Pt ) {
|
|
|
-
|
|
|
- if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1
|
|
|
- return [ inSeg2Pt1 ];
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- // they are collinear segments, which might overlap
|
|
|
- var seg1min, seg1max, seg1minVal, seg1maxVal;
|
|
|
- var seg2min, seg2max, seg2minVal, seg2maxVal;
|
|
|
- if ( seg1dx !== 0 ) {
|
|
|
-
|
|
|
- // the segments are NOT on a vertical line
|
|
|
- if ( inSeg1Pt1.x < inSeg1Pt2.x ) {
|
|
|
-
|
|
|
- seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x;
|
|
|
- seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x;
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x;
|
|
|
- seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x;
|
|
|
-
|
|
|
- }
|
|
|
- if ( inSeg2Pt1.x < inSeg2Pt2.x ) {
|
|
|
-
|
|
|
- seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x;
|
|
|
- seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x;
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x;
|
|
|
- seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- // the segments are on a vertical line
|
|
|
- if ( inSeg1Pt1.y < inSeg1Pt2.y ) {
|
|
|
-
|
|
|
- seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y;
|
|
|
- seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y;
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y;
|
|
|
- seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y;
|
|
|
-
|
|
|
- }
|
|
|
- if ( inSeg2Pt1.y < inSeg2Pt2.y ) {
|
|
|
-
|
|
|
- seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y;
|
|
|
- seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y;
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y;
|
|
|
- seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
- if ( seg1minVal <= seg2minVal ) {
|
|
|
-
|
|
|
- if ( seg1maxVal < seg2minVal ) return [];
|
|
|
- if ( seg1maxVal === seg2minVal ) {
|
|
|
-
|
|
|
- if ( inExcludeAdjacentSegs ) return [];
|
|
|
- return [ seg2min ];
|
|
|
-
|
|
|
- }
|
|
|
- if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ];
|
|
|
- return [ seg2min, seg2max ];
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- if ( seg1minVal > seg2maxVal ) return [];
|
|
|
- if ( seg1minVal === seg2maxVal ) {
|
|
|
-
|
|
|
- if ( inExcludeAdjacentSegs ) return [];
|
|
|
- return [ seg1min ];
|
|
|
-
|
|
|
- }
|
|
|
- if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ];
|
|
|
- return [ seg1min, seg2max ];
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) {
|
|
|
-
|
|
|
- // The order of legs is important
|
|
|
-
|
|
|
- var EPSILON = 0.0000000001;
|
|
|
-
|
|
|
- // translation of all points, so that Vertex is at (0,0)
|
|
|
- var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y;
|
|
|
- var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y;
|
|
|
- var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y;
|
|
|
-
|
|
|
- // main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg.
|
|
|
- var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX;
|
|
|
- var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX;
|
|
|
-
|
|
|
- if ( Math.abs( from2toAngle ) > EPSILON ) {
|
|
|
-
|
|
|
- // angle != 180 deg.
|
|
|
-
|
|
|
- var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX;
|
|
|
- // console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle );
|
|
|
-
|
|
|
- if ( from2toAngle > 0 ) {
|
|
|
-
|
|
|
- // main angle < 180 deg.
|
|
|
- return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) );
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- // main angle > 180 deg.
|
|
|
- return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- // angle == 180 deg.
|
|
|
- // console.log( "from2to: 180 deg., from2other: " + from2otherAngle );
|
|
|
- return ( from2otherAngle > 0 );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- function removeHoles( contour, holes ) {
|
|
|
-
|
|
|
- var shape = contour.concat(); // work on this shape
|
|
|
- var hole;
|
|
|
-
|
|
|
- function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) {
|
|
|
-
|
|
|
- // Check if hole point lies within angle around shape point
|
|
|
- var lastShapeIdx = shape.length - 1;
|
|
|
-
|
|
|
- var prevShapeIdx = inShapeIdx - 1;
|
|
|
- if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx;
|
|
|
-
|
|
|
- var nextShapeIdx = inShapeIdx + 1;
|
|
|
- if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0;
|
|
|
-
|
|
|
- var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] );
|
|
|
- if ( ! insideAngle ) {
|
|
|
-
|
|
|
- // console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y );
|
|
|
- return false;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- // Check if shape point lies within angle around hole point
|
|
|
- var lastHoleIdx = hole.length - 1;
|
|
|
-
|
|
|
- var prevHoleIdx = inHoleIdx - 1;
|
|
|
- if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx;
|
|
|
-
|
|
|
- var nextHoleIdx = inHoleIdx + 1;
|
|
|
- if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0;
|
|
|
-
|
|
|
- insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] );
|
|
|
- if ( ! insideAngle ) {
|
|
|
-
|
|
|
- // console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y );
|
|
|
- return false;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- return true;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function intersectsShapeEdge( inShapePt, inHolePt ) {
|
|
|
-
|
|
|
- // checks for intersections with shape edges
|
|
|
- var sIdx, nextIdx, intersection;
|
|
|
- for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) {
|
|
|
-
|
|
|
- nextIdx = sIdx + 1; nextIdx %= shape.length;
|
|
|
- intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true );
|
|
|
- if ( intersection.length > 0 ) return true;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- return false;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- var indepHoles = [];
|
|
|
-
|
|
|
- function intersectsHoleEdge( inShapePt, inHolePt ) {
|
|
|
-
|
|
|
- // checks for intersections with hole edges
|
|
|
- var ihIdx, chkHole,
|
|
|
- hIdx, nextIdx, intersection;
|
|
|
- for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) {
|
|
|
-
|
|
|
- chkHole = holes[ indepHoles[ ihIdx ]];
|
|
|
- for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) {
|
|
|
-
|
|
|
- nextIdx = hIdx + 1; nextIdx %= chkHole.length;
|
|
|
- intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true );
|
|
|
- if ( intersection.length > 0 ) return true;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
- return false;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- var holeIndex, shapeIndex,
|
|
|
- shapePt, holePt,
|
|
|
- holeIdx, cutKey, failedCuts = [],
|
|
|
- tmpShape1, tmpShape2,
|
|
|
- tmpHole1, tmpHole2;
|
|
|
-
|
|
|
- for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
|
|
|
-
|
|
|
- indepHoles.push( h );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- var minShapeIndex = 0;
|
|
|
- var counter = indepHoles.length * 2;
|
|
|
- while ( indepHoles.length > 0 ) {
|
|
|
-
|
|
|
- counter --;
|
|
|
- if ( counter < 0 ) {
|
|
|
-
|
|
|
- console.log( "Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!" );
|
|
|
- break;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- // search for shape-vertex and hole-vertex,
|
|
|
- // which can be connected without intersections
|
|
|
- for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) {
|
|
|
-
|
|
|
- shapePt = shape[ shapeIndex ];
|
|
|
- holeIndex = - 1;
|
|
|
-
|
|
|
- // search for hole which can be reached without intersections
|
|
|
- for ( var h = 0; h < indepHoles.length; h ++ ) {
|
|
|
-
|
|
|
- holeIdx = indepHoles[ h ];
|
|
|
-
|
|
|
- // prevent multiple checks
|
|
|
- cutKey = shapePt.x + ":" + shapePt.y + ":" + holeIdx;
|
|
|
- if ( failedCuts[ cutKey ] !== undefined ) continue;
|
|
|
-
|
|
|
- hole = holes[ holeIdx ];
|
|
|
- for ( var h2 = 0; h2 < hole.length; h2 ++ ) {
|
|
|
-
|
|
|
- holePt = hole[ h2 ];
|
|
|
- if ( ! isCutLineInsideAngles( shapeIndex, h2 ) ) continue;
|
|
|
- if ( intersectsShapeEdge( shapePt, holePt ) ) continue;
|
|
|
- if ( intersectsHoleEdge( shapePt, holePt ) ) continue;
|
|
|
-
|
|
|
- holeIndex = h2;
|
|
|
- indepHoles.splice( h, 1 );
|
|
|
-
|
|
|
- tmpShape1 = shape.slice( 0, shapeIndex + 1 );
|
|
|
- tmpShape2 = shape.slice( shapeIndex );
|
|
|
- tmpHole1 = hole.slice( holeIndex );
|
|
|
- tmpHole2 = hole.slice( 0, holeIndex + 1 );
|
|
|
-
|
|
|
- shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 );
|
|
|
-
|
|
|
- minShapeIndex = shapeIndex;
|
|
|
-
|
|
|
- // Debug only, to show the selected cuts
|
|
|
- // glob_CutLines.push( [ shapePt, holePt ] );
|
|
|
-
|
|
|
- break;
|
|
|
-
|
|
|
- }
|
|
|
- if ( holeIndex >= 0 ) break; // hole-vertex found
|
|
|
-
|
|
|
- failedCuts[ cutKey ] = true; // remember failure
|
|
|
-
|
|
|
- }
|
|
|
- if ( holeIndex >= 0 ) break; // hole-vertex found
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- return shape; /* shape with no holes */
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- var i, il, f, face,
|
|
|
- key, index,
|
|
|
- allPointsMap = {};
|
|
|
-
|
|
|
- // To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first.
|
|
|
-
|
|
|
- var allpoints = contour.concat();
|
|
|
-
|
|
|
- for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
|
|
|
-
|
|
|
- Array.prototype.push.apply( allpoints, holes[ h ] );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- //console.log( "allpoints",allpoints, allpoints.length );
|
|
|
-
|
|
|
- // prepare all points map
|
|
|
-
|
|
|
- for ( i = 0, il = allpoints.length; i < il; i ++ ) {
|
|
|
-
|
|
|
- key = allpoints[ i ].x + ":" + allpoints[ i ].y;
|
|
|
-
|
|
|
- if ( allPointsMap[ key ] !== undefined ) {
|
|
|
-
|
|
|
- console.warn( "THREE.Shape: Duplicate point", key );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- allPointsMap[ key ] = i;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- // remove holes by cutting paths to holes and adding them to the shape
|
|
|
- var shapeWithoutHoles = removeHoles( contour, holes );
|
|
|
-
|
|
|
- var triangles = THREE.FontUtils.Triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape
|
|
|
- //console.log( "triangles",triangles, triangles.length );
|
|
|
-
|
|
|
- // check all face vertices against all points map
|
|
|
-
|
|
|
- for ( i = 0, il = triangles.length; i < il; i ++ ) {
|
|
|
-
|
|
|
- face = triangles[ i ];
|
|
|
-
|
|
|
- for ( f = 0; f < 3; f ++ ) {
|
|
|
-
|
|
|
- key = face[ f ].x + ":" + face[ f ].y;
|
|
|
-
|
|
|
- index = allPointsMap[ key ];
|
|
|
-
|
|
|
- if ( index !== undefined ) {
|
|
|
-
|
|
|
- face[ f ] = index;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- return triangles.concat();
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- isClockWise: function ( pts ) {
|
|
|
-
|
|
|
- return THREE.FontUtils.Triangulate.area( pts ) < 0;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- // Bezier Curves formulas obtained from
|
|
|
- // http://en.wikipedia.org/wiki/B%C3%A9zier_curve
|
|
|
-
|
|
|
- // Quad Bezier Functions
|
|
|
-
|
|
|
- b2p0: function ( t, p ) {
|
|
|
-
|
|
|
- var k = 1 - t;
|
|
|
- return k * k * p;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- b2p1: function ( t, p ) {
|
|
|
-
|
|
|
- return 2 * ( 1 - t ) * t * p;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- b2p2: function ( t, p ) {
|
|
|
-
|
|
|
- return t * t * p;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- b2: function ( t, p0, p1, p2 ) {
|
|
|
-
|
|
|
- return this.b2p0( t, p0 ) + this.b2p1( t, p1 ) + this.b2p2( t, p2 );
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- // Cubic Bezier Functions
|
|
|
-
|
|
|
- b3p0: function ( t, p ) {
|
|
|
-
|
|
|
- var k = 1 - t;
|
|
|
- return k * k * k * p;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- b3p1: function ( t, p ) {
|
|
|
-
|
|
|
- var k = 1 - t;
|
|
|
- return 3 * k * k * t * p;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- b3p2: function ( t, p ) {
|
|
|
-
|
|
|
- var k = 1 - t;
|
|
|
- return 3 * k * t * t * p;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- b3p3: function ( t, p ) {
|
|
|
-
|
|
|
- return t * t * t * p;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- b3: function ( t, p0, p1, p2, p3 ) {
|
|
|
-
|
|
|
- return this.b3p0( t, p0 ) + this.b3p1( t, p1 ) + this.b3p2( t, p2 ) + this.b3p3( t, p3 );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
-};
|
|
|
+THREE.Shape.Utils = THREE.ShapeUtils; // backwards compatibility
|