|
@@ -81,6 +81,11 @@
|
|
|
|
|
|
if ( geometry instanceof THREE.BufferGeometry ) {
|
|
|
|
|
|
+ var material = object.material;
|
|
|
+
|
|
|
+ if ( material === undefined ) return intersects;
|
|
|
+ if ( ! geometry.dynamic ) return intersects;
|
|
|
+
|
|
|
var isFaceMaterial = object.material instanceof THREE.MeshFaceMaterial;
|
|
|
var objectMaterials = isFaceMaterial === true ? object.material.materials : null;
|
|
|
|
|
@@ -89,96 +94,94 @@
|
|
|
var a, b, c;
|
|
|
var precision = raycaster.precision;
|
|
|
|
|
|
- inverseMatrix.getInverse(object.matrixWorld);
|
|
|
-
|
|
|
- localRay.copy(raycaster.ray).applyMatrix4(inverseMatrix);
|
|
|
+ inverseMatrix.getInverse( object.matrixWorld );
|
|
|
|
|
|
- if (!geometry.dynamic) return intersects;
|
|
|
+ localRay.copy( raycaster.ray ).applyMatrix4( inverseMatrix );
|
|
|
|
|
|
var fl;
|
|
|
var indexed = false;
|
|
|
- if (geometry.attributes.index) {
|
|
|
+ if ( geometry.attributes.index ) {
|
|
|
+
|
|
|
indexed = true;
|
|
|
fl = geometry.attributes.index.numItems / 3;
|
|
|
+
|
|
|
} else {
|
|
|
+
|
|
|
fl = geometry.attributes.position.numItems / 9;
|
|
|
}
|
|
|
|
|
|
- for (var f = 0; f < fl; f++) {
|
|
|
+ var vA = new THREE.Vector3();
|
|
|
+ var vB = new THREE.Vector3();
|
|
|
+ var vC = new THREE.Vector3();
|
|
|
+ var vCB = new THREE.Vector3();
|
|
|
+ var vAB = new THREE.Vector3();
|
|
|
|
|
|
- if (indexed) {
|
|
|
- a = geometry.attributes.index.array[f * 3];
|
|
|
- b = geometry.attributes.index.array[f * 3 + 1];
|
|
|
- c = geometry.attributes.index.array[f * 3 + 2];
|
|
|
- } else {
|
|
|
- a = f * 3;
|
|
|
- b = f * 3 + 1;
|
|
|
- c = f * 3 + 2;
|
|
|
- }
|
|
|
+ for ( var oi = 0; oi < geometry.offsets.length; ++oi ) {
|
|
|
|
|
|
- var v1 = [geometry.attributes.position.array[a * 3],
|
|
|
- geometry.attributes.position.array[a * 3 + 1],
|
|
|
- geometry.attributes.position.array[a * 3 + 2]];
|
|
|
- var v2 = [geometry.attributes.position.array[b * 3],
|
|
|
- geometry.attributes.position.array[b * 3 + 1],
|
|
|
- geometry.attributes.position.array[b * 3 + 2]];
|
|
|
- var v3 = [geometry.attributes.position.array[c * 3],
|
|
|
- geometry.attributes.position.array[c * 3 + 1],
|
|
|
- geometry.attributes.position.array[c * 3 + 2]];
|
|
|
+ var start = geometry.offsets[ oi ].start;
|
|
|
+ var count = geometry.offsets[ oi ].count;
|
|
|
+ var index = geometry.offsets[ oi ].index;
|
|
|
|
|
|
- var material = object.material;
|
|
|
- if (material === undefined) continue;
|
|
|
+ for ( var i = start, il = start + count; i < il; i += 3 ) {
|
|
|
|
|
|
- var cb = new THREE.Vector3(), ab = new THREE.Vector3();
|
|
|
- var vA = new THREE.Vector3(v1[0], v1[1], v1[2]);
|
|
|
- var vB = new THREE.Vector3(v2[0], v2[1], v2[2]);
|
|
|
- var vC = new THREE.Vector3(v3[0], v3[1], v3[2]);
|
|
|
+ if ( indexed ) {
|
|
|
+ a = index + geometry.attributes.index.array[ i ];
|
|
|
+ b = index + geometry.attributes.index.array[ i + 1 ];
|
|
|
+ c = index + geometry.attributes.index.array[ i + 2 ];
|
|
|
+ } else {
|
|
|
+ a = index;
|
|
|
+ b = index + 1;
|
|
|
+ c = index + 2;
|
|
|
+ }
|
|
|
|
|
|
- cb.subVectors(vC, vB);
|
|
|
- ab.subVectors(vA, vB);
|
|
|
- cb.cross(ab);
|
|
|
- cb.normalize();
|
|
|
+ vA.set( geometry.attributes.position.array[ a * 3 ],
|
|
|
+ geometry.attributes.position.array[ a * 3 + 1 ],
|
|
|
+ geometry.attributes.position.array[ a * 3 + 2] );
|
|
|
+ vB.set( geometry.attributes.position.array[ b * 3 ],
|
|
|
+ geometry.attributes.position.array[ b * 3 + 1 ],
|
|
|
+ geometry.attributes.position.array[ b * 3 + 2] );
|
|
|
+ vC.set( geometry.attributes.position.array[ c * 3 ],
|
|
|
+ geometry.attributes.position.array[ c * 3 + 1 ],
|
|
|
+ geometry.attributes.position.array[ c * 3 + 2 ] );
|
|
|
|
|
|
- facePlane.setFromNormalAndCoplanarPoint(cb, vA);
|
|
|
+ facePlane.setFromCoplanarPoints( vA, vB, vC );
|
|
|
|
|
|
- var planeDistance = localRay.distanceToPlane(facePlane);
|
|
|
+ var planeDistance = localRay.distanceToPlane( facePlane );
|
|
|
|
|
|
- // bail if raycaster and plane are parallel
|
|
|
- if (Math.abs(planeDistance) < precision) continue;
|
|
|
+ // bail if raycaster and plane are parallel
|
|
|
+ if ( Math.abs( planeDistance ) < precision ) continue;
|
|
|
|
|
|
- // if negative distance, then plane is behind raycaster
|
|
|
- if (planeDistance < 0) continue;
|
|
|
+ // if negative distance, then plane is behind raycaster
|
|
|
+ if ( planeDistance < 0 ) continue;
|
|
|
|
|
|
- // check if we hit the wrong side of a single sided face
|
|
|
- side = material.side;
|
|
|
- if (side !== THREE.DoubleSide) {
|
|
|
+ // check if we hit the wrong side of a single sided face
|
|
|
+ side = material.side;
|
|
|
+ if ( side !== THREE.DoubleSide ) {
|
|
|
|
|
|
- var planeSign = localRay.direction.dot(facePlane.normal);
|
|
|
+ var planeSign = localRay.direction.dot( facePlane.normal );
|
|
|
|
|
|
- if (!(side === THREE.FrontSide ? planeSign < 0 : planeSign > 0)) continue;
|
|
|
+ if ( ! ( side === THREE.FrontSide ? planeSign < 0 : planeSign > 0 ) ) continue;
|
|
|
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
- // this can be done using the planeDistance from localRay because localRay wasn't normalized, but ray was
|
|
|
- if (planeDistance < raycaster.near || planeDistance > raycaster.far) continue;
|
|
|
+ // this can be done using the planeDistance from localRay because localRay wasn't normalized, but ray was
|
|
|
+ if ( planeDistance < raycaster.near || planeDistance > raycaster.far ) continue;
|
|
|
|
|
|
- intersectPoint = localRay.at(planeDistance, intersectPoint); // passing in intersectPoint avoids a copy
|
|
|
+ intersectPoint = localRay.at( planeDistance, intersectPoint ); // passing in intersectPoint avoids a copy
|
|
|
|
|
|
- if (!THREE.Triangle.containsPoint(intersectPoint, vA, vB, vC)) continue;
|
|
|
+ if ( ! THREE.Triangle.containsPoint( intersectPoint, vA, vB, vC ) ) continue;
|
|
|
|
|
|
- var face = new THREE.Face3(a, b, c);
|
|
|
- var colors = geometry.attributes.color.array;
|
|
|
- face.vertexColors[0] = new THREE.Color(colors[a * 3], colors[a * 3 + 1], colors[a * 3 + 2]);
|
|
|
- face.vertexColors[1] = new THREE.Color(colors[b * 3], colors[b * 3 + 1], colors[b * 3 + 2]);
|
|
|
- face.vertexColors[2] = new THREE.Color(colors[c * 3], colors[c * 3 + 1], colors[c * 3 + 2]);
|
|
|
- intersects.push({
|
|
|
- distance: planeDistance, // this works because the original ray was normalized, and the transformed localRay wasn't
|
|
|
- point: raycaster.ray.at(planeDistance),
|
|
|
- face: face,
|
|
|
- faceIndex: f,
|
|
|
- object: object
|
|
|
- });
|
|
|
+ intersects.push( {
|
|
|
+
|
|
|
+ distance: planeDistance, // this works because the original ray was normalized, and the transformed localRay wasn't
|
|
|
+ point: raycaster.ray.at(planeDistance),
|
|
|
+ face: null,
|
|
|
+ faceIndex: null,
|
|
|
+ object: object
|
|
|
|
|
|
+ } );
|
|
|
+
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
} else if ( geometry instanceof THREE.Geometry ) {
|
|
@@ -256,7 +259,7 @@
|
|
|
|
|
|
intersects.push( {
|
|
|
|
|
|
- distance: planeDistance, // this works because the original ray was normalized, and the transformed localRay wasn't
|
|
|
+ distance: planeDistance, // this works because the original ray was normalized, and the transformed localRay wasn't
|
|
|
point: raycaster.ray.at( planeDistance ),
|
|
|
face: face,
|
|
|
faceIndex: f,
|