Selaa lähdekoodia

JSM: Added module and TS file for VolumeShader.

Mugen87 6 vuotta sitten
vanhempi
commit
c279e04648

+ 1 - 0
docs/manual/en/introduction/Import-via-modules.html

@@ -312,6 +312,7 @@
 						<li>VerticalBlurShader</li>
 						<li>VerticalBlurShader</li>
 						<li>VerticalTiltShiftShader</li>
 						<li>VerticalTiltShiftShader</li>
 						<li>VignetteShader</li>
 						<li>VignetteShader</li>
+						<li>VolumeShader</li>
 						<li>WaterRefractionShader</li>
 						<li>WaterRefractionShader</li>
 					</ul>
 					</ul>
 				</li>
 				</li>

+ 311 - 311
examples/js/shaders/VolumeShader.js

@@ -8,317 +8,317 @@
 
 
 THREE.VolumeRenderShader1 = {
 THREE.VolumeRenderShader1 = {
 	uniforms: {
 	uniforms: {
-        "u_size": { value: new THREE.Vector3( 1, 1, 1 ) },
-        "u_renderstyle": { value: 0 },
-        "u_renderthreshold": { value: 0.5 },
-        "u_clim": { value: new THREE.Vector2( 1, 1 ) },
-        "u_data": { value: null },
-        "u_cmdata": { value: null }
-    },
-    vertexShader: [
-        'varying vec4 v_nearpos;',
-        'varying vec4 v_farpos;',
-        'varying vec3 v_position;',
-
-        'mat4 inversemat(mat4 m) {',
-            // Taken from https://github.com/stackgl/glsl-inverse/blob/master/index.glsl
-            // This function is licenced by the MIT license to Mikola Lysenko
-            'float',
-            'a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],',
-            'a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],',
-            'a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],',
-            'a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],',
-
-            'b00 = a00 * a11 - a01 * a10,',
-            'b01 = a00 * a12 - a02 * a10,',
-            'b02 = a00 * a13 - a03 * a10,',
-            'b03 = a01 * a12 - a02 * a11,',
-            'b04 = a01 * a13 - a03 * a11,',
-            'b05 = a02 * a13 - a03 * a12,',
-            'b06 = a20 * a31 - a21 * a30,',
-            'b07 = a20 * a32 - a22 * a30,',
-            'b08 = a20 * a33 - a23 * a30,',
-            'b09 = a21 * a32 - a22 * a31,',
-            'b10 = a21 * a33 - a23 * a31,',
-            'b11 = a22 * a33 - a23 * a32,',
-
-            'det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;',
-
-        'return mat4(',
-            'a11 * b11 - a12 * b10 + a13 * b09,',
-            'a02 * b10 - a01 * b11 - a03 * b09,',
-            'a31 * b05 - a32 * b04 + a33 * b03,',
-            'a22 * b04 - a21 * b05 - a23 * b03,',
-            'a12 * b08 - a10 * b11 - a13 * b07,',
-            'a00 * b11 - a02 * b08 + a03 * b07,',
-            'a32 * b02 - a30 * b05 - a33 * b01,',
-            'a20 * b05 - a22 * b02 + a23 * b01,',
-            'a10 * b10 - a11 * b08 + a13 * b06,',
-            'a01 * b08 - a00 * b10 - a03 * b06,',
-            'a30 * b04 - a31 * b02 + a33 * b00,',
-            'a21 * b02 - a20 * b04 - a23 * b00,',
-            'a11 * b07 - a10 * b09 - a12 * b06,',
-            'a00 * b09 - a01 * b07 + a02 * b06,',
-            'a31 * b01 - a30 * b03 - a32 * b00,',
-            'a20 * b03 - a21 * b01 + a22 * b00) / det;',
-        '}',
-
-
-        'void main() {',
-            // Prepare transforms to map to "camera view". See also:
-            // https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
-            'mat4 viewtransformf = viewMatrix;',
-            'mat4 viewtransformi = inversemat(viewMatrix);',
-
-            // Project local vertex coordinate to camera position. Then do a step
-            // backward (in cam coords) to the near clipping plane, and project back. Do
-            // the same for the far clipping plane. This gives us all the information we
-            // need to calculate the ray and truncate it to the viewing cone.
-            'vec4 position4 = vec4(position, 1.0);',
-            'vec4 pos_in_cam = viewtransformf * position4;',
-
-            // Intersection of ray and near clipping plane (z = -1 in clip coords)
-            'pos_in_cam.z = -pos_in_cam.w;',
-            'v_nearpos = viewtransformi * pos_in_cam;',
-
-            // Intersection of ray and far clipping plane (z = +1 in clip coords)
-            'pos_in_cam.z = pos_in_cam.w;',
-            'v_farpos = viewtransformi * pos_in_cam;',
-
-            // Set varyings and output pos
-            'v_position = position;',
-            'gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;',
-        '}',
-    ].join( '\n' ),
+				"u_size": { value: new THREE.Vector3( 1, 1, 1 ) },
+				"u_renderstyle": { value: 0 },
+				"u_renderthreshold": { value: 0.5 },
+				"u_clim": { value: new THREE.Vector2( 1, 1 ) },
+				"u_data": { value: null },
+				"u_cmdata": { value: null }
+		},
+		vertexShader: [
+				'varying vec4 v_nearpos;',
+				'varying vec4 v_farpos;',
+				'varying vec3 v_position;',
+
+				'mat4 inversemat(mat4 m) {',
+						// Taken from https://github.com/stackgl/glsl-inverse/blob/master/index.glsl
+						// This function is licenced by the MIT license to Mikola Lysenko
+						'float',
+						'a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],',
+						'a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],',
+						'a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],',
+						'a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],',
+
+						'b00 = a00 * a11 - a01 * a10,',
+						'b01 = a00 * a12 - a02 * a10,',
+						'b02 = a00 * a13 - a03 * a10,',
+						'b03 = a01 * a12 - a02 * a11,',
+						'b04 = a01 * a13 - a03 * a11,',
+						'b05 = a02 * a13 - a03 * a12,',
+						'b06 = a20 * a31 - a21 * a30,',
+						'b07 = a20 * a32 - a22 * a30,',
+						'b08 = a20 * a33 - a23 * a30,',
+						'b09 = a21 * a32 - a22 * a31,',
+						'b10 = a21 * a33 - a23 * a31,',
+						'b11 = a22 * a33 - a23 * a32,',
+
+						'det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;',
+
+				'return mat4(',
+						'a11 * b11 - a12 * b10 + a13 * b09,',
+						'a02 * b10 - a01 * b11 - a03 * b09,',
+						'a31 * b05 - a32 * b04 + a33 * b03,',
+						'a22 * b04 - a21 * b05 - a23 * b03,',
+						'a12 * b08 - a10 * b11 - a13 * b07,',
+						'a00 * b11 - a02 * b08 + a03 * b07,',
+						'a32 * b02 - a30 * b05 - a33 * b01,',
+						'a20 * b05 - a22 * b02 + a23 * b01,',
+						'a10 * b10 - a11 * b08 + a13 * b06,',
+						'a01 * b08 - a00 * b10 - a03 * b06,',
+						'a30 * b04 - a31 * b02 + a33 * b00,',
+						'a21 * b02 - a20 * b04 - a23 * b00,',
+						'a11 * b07 - a10 * b09 - a12 * b06,',
+						'a00 * b09 - a01 * b07 + a02 * b06,',
+						'a31 * b01 - a30 * b03 - a32 * b00,',
+						'a20 * b03 - a21 * b01 + a22 * b00) / det;',
+				'}',
+
+
+				'void main() {',
+						// Prepare transforms to map to "camera view". See also:
+						// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
+						'mat4 viewtransformf = viewMatrix;',
+						'mat4 viewtransformi = inversemat(viewMatrix);',
+
+						// Project local vertex coordinate to camera position. Then do a step
+						// backward (in cam coords) to the near clipping plane, and project back. Do
+						// the same for the far clipping plane. This gives us all the information we
+						// need to calculate the ray and truncate it to the viewing cone.
+						'vec4 position4 = vec4(position, 1.0);',
+						'vec4 pos_in_cam = viewtransformf * position4;',
+
+						// Intersection of ray and near clipping plane (z = -1 in clip coords)
+						'pos_in_cam.z = -pos_in_cam.w;',
+						'v_nearpos = viewtransformi * pos_in_cam;',
+
+						// Intersection of ray and far clipping plane (z = +1 in clip coords)
+						'pos_in_cam.z = pos_in_cam.w;',
+						'v_farpos = viewtransformi * pos_in_cam;',
+
+						// Set varyings and output pos
+						'v_position = position;',
+						'gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;',
+				'}',
+		].join( '\n' ),
 	fragmentShader: [
 	fragmentShader: [
-        'precision highp float;',
-        'precision mediump sampler3D;',
-
-        'uniform vec3 u_size;',
-        'uniform int u_renderstyle;',
-        'uniform float u_renderthreshold;',
-        'uniform vec2 u_clim;',
-
-        'uniform sampler3D u_data;',
-        'uniform sampler2D u_cmdata;',
-
-        'varying vec3 v_position;',
-        'varying vec4 v_nearpos;',
-        'varying vec4 v_farpos;',
-
-        // The maximum distance through our rendering volume is sqrt(3).
-        'const int MAX_STEPS = 887;  // 887 for 512^3, 1774 for 1024^3',
-        'const int REFINEMENT_STEPS = 4;',
-        'const float relative_step_size = 1.0;',
-        'const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);',
-        'const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);',
-        'const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);',
-        'const float shininess = 40.0;',
-
-        'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
-        'void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
-
-        'float sample1(vec3 texcoords);',
-        'vec4 apply_colormap(float val);',
-        'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);',
-
-
-        'void main() {',
-            // Normalize clipping plane info
-            'vec3 farpos = v_farpos.xyz / v_farpos.w;',
-            'vec3 nearpos = v_nearpos.xyz / v_nearpos.w;',
-
-            // Calculate unit vector pointing in the view direction through this fragment.
-            'vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);',
-
-            // Compute the (negative) distance to the front surface or near clipping plane.
-            // v_position is the back face of the cuboid, so the initial distance calculated in the dot
-            // product below is the distance from near clip plane to the back of the cuboid
-            'float distance = dot(nearpos - v_position, view_ray);',
-            'distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,',
-                                        '(u_size.x - 0.5 - v_position.x) / view_ray.x));',
-            'distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,',
-                                        '(u_size.y - 0.5 - v_position.y) / view_ray.y));',
-            'distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,',
-                                        '(u_size.z - 0.5 - v_position.z) / view_ray.z));',
-
-                                        // Now we have the starting position on the front surface
-            'vec3 front = v_position + view_ray * distance;',
-
-            // Decide how many steps to take
-            'int nsteps = int(-distance / relative_step_size + 0.5);',
-            'if ( nsteps < 1 )',
-                'discard;',
-
-            // Get starting location and step vector in texture coordinates
-            'vec3 step = ((v_position - front) / u_size) / float(nsteps);',
-            'vec3 start_loc = front / u_size;',
-
-            // For testing: show the number of steps. This helps to establish
-            // whether the rays are correctly oriented
-            //'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
-            //'return;',
-
-            'if (u_renderstyle == 0)',
-                'cast_mip(start_loc, step, nsteps, view_ray);',
-            'else if (u_renderstyle == 1)',
-                'cast_iso(start_loc, step, nsteps, view_ray);',
-
-            'if (gl_FragColor.a < 0.05)',
-                'discard;',
-        '}',
-
-
-        'float sample1(vec3 texcoords) {',
-            '/* Sample float value from a 3D texture. Assumes intensity data. */',
-            'return texture(u_data, texcoords.xyz).r;',
-        '}',
-
-
-        'vec4 apply_colormap(float val) {',
-            'val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);',
-            'return texture2D(u_cmdata, vec2(val, 0.5));',
-        '}',
-
-
-        'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
-
-            'float max_val = -1e6;',
-            'int max_i = 100;',
-            'vec3 loc = start_loc;',
-
-            // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
-            // non-constant expression. So we use a hard-coded max, and an additional condition
-            // inside the loop.
-            'for (int iter=0; iter<MAX_STEPS; iter++) {',
-                'if (iter >= nsteps)',
-                    'break;',
-                // Sample from the 3D texture
-                'float val = sample1(loc);',
-                // Apply MIP operation
-                'if (val > max_val) {',
-                    'max_val = val;',
-                    'max_i = iter;',
-                '}',
-                // Advance location deeper into the volume
-                'loc += step;',
-            '}',
-
-            // Refine location, gives crispier images
-            'vec3 iloc = start_loc + step * (float(max_i) - 0.5);',
-            'vec3 istep = step / float(REFINEMENT_STEPS);',
-            'for (int i=0; i<REFINEMENT_STEPS; i++) {',
-                'max_val = max(max_val, sample1(iloc));',
-                'iloc += istep;',
-            '}',
-
-            // Resolve final color
-            'gl_FragColor = apply_colormap(max_val);',
-        '}',
-
-
-        'void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
-
-            'gl_FragColor = vec4(0.0);  // init transparent',
-            'vec4 color3 = vec4(0.0);  // final color',
-            'vec3 dstep = 1.5 / u_size;  // step to sample derivative',
-            'vec3 loc = start_loc;',
-
-            'float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);',
-
-            // Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
-            // non-constant expression. So we use a hard-coded max, and an additional condition
-            // inside the loop.
-            'for (int iter=0; iter<MAX_STEPS; iter++) {',
-                'if (iter >= nsteps)',
-                    'break;',
-
-                    // Sample from the 3D texture
-                'float val = sample1(loc);',
-
-                'if (val > low_threshold) {',
-                // Take the last interval in smaller steps
-                    'vec3 iloc = loc - 0.5 * step;',
-                    'vec3 istep = step / float(REFINEMENT_STEPS);',
-                    'for (int i=0; i<REFINEMENT_STEPS; i++) {',
-                        'val = sample1(iloc);',
-                        'if (val > u_renderthreshold) {',
-                            'gl_FragColor = add_lighting(val, iloc, dstep, view_ray);',
-                            'return;',
-                        '}',
-                        'iloc += istep;',
-                    '}',
-                '}',
-
-                // Advance location deeper into the volume
-                'loc += step;',
-            '}',
-        '}',
-
-
-        'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)',
-        '{',
-            // Calculate color by incorporating lighting
-
-            // View direction
-            'vec3 V = normalize(view_ray);',
-
-            // calculate normal vector from gradient
-            'vec3 N;',
-            'float val1, val2;',
-            'val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));',
-            'val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));',
-            'N[0] = val1 - val2;',
-            'val = max(max(val1, val2), val);',
-            'val1 = sample1(loc + vec3(0.0, -step[1], 0.0));',
-            'val2 = sample1(loc + vec3(0.0, +step[1], 0.0));',
-            'N[1] = val1 - val2;',
-            'val = max(max(val1, val2), val);',
-            'val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));',
-            'val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));',
-            'N[2] = val1 - val2;',
-            'val = max(max(val1, val2), val);',
-
-            'float gm = length(N); // gradient magnitude',
-            'N = normalize(N);',
-
-            // Flip normal so it points towards viewer
-            'float Nselect = float(dot(N, V) > 0.0);',
-            'N = (2.0 * Nselect - 1.0) * N;  // ==  Nselect * N - (1.0-Nselect)*N;',
-
-            // Init colors
-            'vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);',
-            'vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);',
-            'vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);',
-
-            // note: could allow multiple lights
-            'for (int i=0; i<1; i++)',
-            '{',
-                 // Get light direction (make sure to prevent zero devision)
-                'vec3 L = normalize(view_ray);  //lightDirs[i];',
-                'float lightEnabled = float( length(L) > 0.0 );',
-                'L = normalize(L + (1.0 - lightEnabled));',
-
-                // Calculate lighting properties
-                'float lambertTerm = clamp(dot(N, L), 0.0, 1.0);',
-                'vec3 H = normalize(L+V); // Halfway vector',
-                'float specularTerm = pow(max(dot(H, N), 0.0), shininess);',
-
-                // Calculate mask
-                'float mask1 = lightEnabled;',
-
-                // Calculate colors
-                'ambient_color +=  mask1 * ambient_color;  // * gl_LightSource[i].ambient;',
-                'diffuse_color +=  mask1 * lambertTerm;',
-                'specular_color += mask1 * specularTerm * specular_color;',
-            '}',
-
-            // Calculate final color by componing different components
-            'vec4 final_color;',
-            'vec4 color = apply_colormap(val);',
-            'final_color = color * (ambient_color + diffuse_color) + specular_color;',
-            'final_color.a = color.a;',
-            'return final_color;',
-        '}',
+				'precision highp float;',
+				'precision mediump sampler3D;',
+
+				'uniform vec3 u_size;',
+				'uniform int u_renderstyle;',
+				'uniform float u_renderthreshold;',
+				'uniform vec2 u_clim;',
+
+				'uniform sampler3D u_data;',
+				'uniform sampler2D u_cmdata;',
+
+				'varying vec3 v_position;',
+				'varying vec4 v_nearpos;',
+				'varying vec4 v_farpos;',
+
+				// The maximum distance through our rendering volume is sqrt(3).
+				'const int MAX_STEPS = 887;	// 887 for 512^3, 1774 for 1024^3',
+				'const int REFINEMENT_STEPS = 4;',
+				'const float relative_step_size = 1.0;',
+				'const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);',
+				'const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);',
+				'const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);',
+				'const float shininess = 40.0;',
+
+				'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
+				'void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
+
+				'float sample1(vec3 texcoords);',
+				'vec4 apply_colormap(float val);',
+				'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);',
+
+
+				'void main() {',
+						// Normalize clipping plane info
+						'vec3 farpos = v_farpos.xyz / v_farpos.w;',
+						'vec3 nearpos = v_nearpos.xyz / v_nearpos.w;',
+
+						// Calculate unit vector pointing in the view direction through this fragment.
+						'vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);',
+
+						// Compute the (negative) distance to the front surface or near clipping plane.
+						// v_position is the back face of the cuboid, so the initial distance calculated in the dot
+						// product below is the distance from near clip plane to the back of the cuboid
+						'float distance = dot(nearpos - v_position, view_ray);',
+						'distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,',
+																				'(u_size.x - 0.5 - v_position.x) / view_ray.x));',
+						'distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,',
+																				'(u_size.y - 0.5 - v_position.y) / view_ray.y));',
+						'distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,',
+																				'(u_size.z - 0.5 - v_position.z) / view_ray.z));',
+
+																				// Now we have the starting position on the front surface
+						'vec3 front = v_position + view_ray * distance;',
+
+						// Decide how many steps to take
+						'int nsteps = int(-distance / relative_step_size + 0.5);',
+						'if ( nsteps < 1 )',
+								'discard;',
+
+						// Get starting location and step vector in texture coordinates
+						'vec3 step = ((v_position - front) / u_size) / float(nsteps);',
+						'vec3 start_loc = front / u_size;',
+
+						// For testing: show the number of steps. This helps to establish
+						// whether the rays are correctly oriented
+						//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
+						//'return;',
+
+						'if (u_renderstyle == 0)',
+								'cast_mip(start_loc, step, nsteps, view_ray);',
+						'else if (u_renderstyle == 1)',
+								'cast_iso(start_loc, step, nsteps, view_ray);',
+
+						'if (gl_FragColor.a < 0.05)',
+								'discard;',
+				'}',
+
+
+				'float sample1(vec3 texcoords) {',
+						'/* Sample float value from a 3D texture. Assumes intensity data. */',
+						'return texture(u_data, texcoords.xyz).r;',
+				'}',
+
+
+				'vec4 apply_colormap(float val) {',
+						'val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);',
+						'return texture2D(u_cmdata, vec2(val, 0.5));',
+				'}',
+
+
+				'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
+
+						'float max_val = -1e6;',
+						'int max_i = 100;',
+						'vec3 loc = start_loc;',
+
+						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
+						// non-constant expression. So we use a hard-coded max, and an additional condition
+						// inside the loop.
+						'for (int iter=0; iter<MAX_STEPS; iter++) {',
+								'if (iter >= nsteps)',
+										'break;',
+								// Sample from the 3D texture
+								'float val = sample1(loc);',
+								// Apply MIP operation
+								'if (val > max_val) {',
+										'max_val = val;',
+										'max_i = iter;',
+								'}',
+								// Advance location deeper into the volume
+								'loc += step;',
+						'}',
+
+						// Refine location, gives crispier images
+						'vec3 iloc = start_loc + step * (float(max_i) - 0.5);',
+						'vec3 istep = step / float(REFINEMENT_STEPS);',
+						'for (int i=0; i<REFINEMENT_STEPS; i++) {',
+								'max_val = max(max_val, sample1(iloc));',
+								'iloc += istep;',
+						'}',
+
+						// Resolve final color
+						'gl_FragColor = apply_colormap(max_val);',
+				'}',
+
+
+				'void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
+
+						'gl_FragColor = vec4(0.0);	// init transparent',
+						'vec4 color3 = vec4(0.0);	// final color',
+						'vec3 dstep = 1.5 / u_size;	// step to sample derivative',
+						'vec3 loc = start_loc;',
+
+						'float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);',
+
+						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
+						// non-constant expression. So we use a hard-coded max, and an additional condition
+						// inside the loop.
+						'for (int iter=0; iter<MAX_STEPS; iter++) {',
+								'if (iter >= nsteps)',
+										'break;',
+
+										// Sample from the 3D texture
+								'float val = sample1(loc);',
+
+								'if (val > low_threshold) {',
+								// Take the last interval in smaller steps
+										'vec3 iloc = loc - 0.5 * step;',
+										'vec3 istep = step / float(REFINEMENT_STEPS);',
+										'for (int i=0; i<REFINEMENT_STEPS; i++) {',
+												'val = sample1(iloc);',
+												'if (val > u_renderthreshold) {',
+														'gl_FragColor = add_lighting(val, iloc, dstep, view_ray);',
+														'return;',
+												'}',
+												'iloc += istep;',
+										'}',
+								'}',
+
+								// Advance location deeper into the volume
+								'loc += step;',
+						'}',
+				'}',
+
+
+				'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)',
+				'{',
+						// Calculate color by incorporating lighting
+
+						// View direction
+						'vec3 V = normalize(view_ray);',
+
+						// calculate normal vector from gradient
+						'vec3 N;',
+						'float val1, val2;',
+						'val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));',
+						'val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));',
+						'N[0] = val1 - val2;',
+						'val = max(max(val1, val2), val);',
+						'val1 = sample1(loc + vec3(0.0, -step[1], 0.0));',
+						'val2 = sample1(loc + vec3(0.0, +step[1], 0.0));',
+						'N[1] = val1 - val2;',
+						'val = max(max(val1, val2), val);',
+						'val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));',
+						'val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));',
+						'N[2] = val1 - val2;',
+						'val = max(max(val1, val2), val);',
+
+						'float gm = length(N); // gradient magnitude',
+						'N = normalize(N);',
+
+						// Flip normal so it points towards viewer
+						'float Nselect = float(dot(N, V) > 0.0);',
+						'N = (2.0 * Nselect - 1.0) * N;	// ==	Nselect * N - (1.0-Nselect)*N;',
+
+						// Init colors
+						'vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);',
+						'vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);',
+						'vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);',
+
+						// note: could allow multiple lights
+						'for (int i=0; i<1; i++)',
+						'{',
+								 // Get light direction (make sure to prevent zero devision)
+								'vec3 L = normalize(view_ray);	//lightDirs[i];',
+								'float lightEnabled = float( length(L) > 0.0 );',
+								'L = normalize(L + (1.0 - lightEnabled));',
+
+								// Calculate lighting properties
+								'float lambertTerm = clamp(dot(N, L), 0.0, 1.0);',
+								'vec3 H = normalize(L+V); // Halfway vector',
+								'float specularTerm = pow(max(dot(H, N), 0.0), shininess);',
+
+								// Calculate mask
+								'float mask1 = lightEnabled;',
+
+								// Calculate colors
+								'ambient_color +=	mask1 * ambient_color;	// * gl_LightSource[i].ambient;',
+								'diffuse_color +=	mask1 * lambertTerm;',
+								'specular_color += mask1 * specularTerm * specular_color;',
+						'}',
+
+						// Calculate final color by componing different components
+						'vec4 final_color;',
+						'vec4 color = apply_colormap(val);',
+						'final_color = color * (ambient_color + diffuse_color) + specular_color;',
+						'final_color.a = color.a;',
+						'return final_color;',
+				'}',
 	].join( '\n' )
 	].join( '\n' )
 };
 };

+ 16 - 0
examples/jsm/shaders/VolumeShader.d.ts

@@ -0,0 +1,16 @@
+import {
+  Uniform
+} from '../../../src/Three';
+
+export interface VolumeShader {
+  uniforms: {
+    u_size: Uniform;
+    u_renderstyle: Uniform;
+    u_renderthreshold: Uniform;
+    u_clim: Uniform;
+    u_data: Uniform;
+    u_cmdata: Uniform;
+  };
+  vertexShader: string;
+  fragmentShader: string;
+}

+ 331 - 0
examples/jsm/shaders/VolumeShader.js

@@ -0,0 +1,331 @@
+/**
+ * @author Almar Klein / http://almarklein.org
+ *
+ * Shaders to render 3D volumes using raycasting.
+ * The applied techniques are based on similar implementations in the Visvis and Vispy projects.
+ * This is not the only approach, therefore it's marked 1.
+ */
+
+import {
+	Vector2,
+	Vector3
+} from "../../../build/three.module.js";
+
+var VolumeRenderShader1 = {
+	uniforms: {
+				"u_size": { value: new Vector3( 1, 1, 1 ) },
+				"u_renderstyle": { value: 0 },
+				"u_renderthreshold": { value: 0.5 },
+				"u_clim": { value: new Vector2( 1, 1 ) },
+				"u_data": { value: null },
+				"u_cmdata": { value: null }
+		},
+		vertexShader: [
+				'varying vec4 v_nearpos;',
+				'varying vec4 v_farpos;',
+				'varying vec3 v_position;',
+
+				'mat4 inversemat(mat4 m) {',
+						// Taken from https://github.com/stackgl/glsl-inverse/blob/master/index.glsl
+						// This function is licenced by the MIT license to Mikola Lysenko
+						'float',
+						'a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],',
+						'a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],',
+						'a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],',
+						'a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],',
+
+						'b00 = a00 * a11 - a01 * a10,',
+						'b01 = a00 * a12 - a02 * a10,',
+						'b02 = a00 * a13 - a03 * a10,',
+						'b03 = a01 * a12 - a02 * a11,',
+						'b04 = a01 * a13 - a03 * a11,',
+						'b05 = a02 * a13 - a03 * a12,',
+						'b06 = a20 * a31 - a21 * a30,',
+						'b07 = a20 * a32 - a22 * a30,',
+						'b08 = a20 * a33 - a23 * a30,',
+						'b09 = a21 * a32 - a22 * a31,',
+						'b10 = a21 * a33 - a23 * a31,',
+						'b11 = a22 * a33 - a23 * a32,',
+
+						'det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;',
+
+				'return mat4(',
+						'a11 * b11 - a12 * b10 + a13 * b09,',
+						'a02 * b10 - a01 * b11 - a03 * b09,',
+						'a31 * b05 - a32 * b04 + a33 * b03,',
+						'a22 * b04 - a21 * b05 - a23 * b03,',
+						'a12 * b08 - a10 * b11 - a13 * b07,',
+						'a00 * b11 - a02 * b08 + a03 * b07,',
+						'a32 * b02 - a30 * b05 - a33 * b01,',
+						'a20 * b05 - a22 * b02 + a23 * b01,',
+						'a10 * b10 - a11 * b08 + a13 * b06,',
+						'a01 * b08 - a00 * b10 - a03 * b06,',
+						'a30 * b04 - a31 * b02 + a33 * b00,',
+						'a21 * b02 - a20 * b04 - a23 * b00,',
+						'a11 * b07 - a10 * b09 - a12 * b06,',
+						'a00 * b09 - a01 * b07 + a02 * b06,',
+						'a31 * b01 - a30 * b03 - a32 * b00,',
+						'a20 * b03 - a21 * b01 + a22 * b00) / det;',
+				'}',
+
+
+				'void main() {',
+						// Prepare transforms to map to "camera view". See also:
+						// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
+						'mat4 viewtransformf = viewMatrix;',
+						'mat4 viewtransformi = inversemat(viewMatrix);',
+
+						// Project local vertex coordinate to camera position. Then do a step
+						// backward (in cam coords) to the near clipping plane, and project back. Do
+						// the same for the far clipping plane. This gives us all the information we
+						// need to calculate the ray and truncate it to the viewing cone.
+						'vec4 position4 = vec4(position, 1.0);',
+						'vec4 pos_in_cam = viewtransformf * position4;',
+
+						// Intersection of ray and near clipping plane (z = -1 in clip coords)
+						'pos_in_cam.z = -pos_in_cam.w;',
+						'v_nearpos = viewtransformi * pos_in_cam;',
+
+						// Intersection of ray and far clipping plane (z = +1 in clip coords)
+						'pos_in_cam.z = pos_in_cam.w;',
+						'v_farpos = viewtransformi * pos_in_cam;',
+
+						// Set varyings and output pos
+						'v_position = position;',
+						'gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;',
+				'}',
+		].join( '\n' ),
+	fragmentShader: [
+				'precision highp float;',
+				'precision mediump sampler3D;',
+
+				'uniform vec3 u_size;',
+				'uniform int u_renderstyle;',
+				'uniform float u_renderthreshold;',
+				'uniform vec2 u_clim;',
+
+				'uniform sampler3D u_data;',
+				'uniform sampler2D u_cmdata;',
+
+				'varying vec3 v_position;',
+				'varying vec4 v_nearpos;',
+				'varying vec4 v_farpos;',
+
+				// The maximum distance through our rendering volume is sqrt(3).
+				'const int MAX_STEPS = 887;	// 887 for 512^3, 1774 for 1024^3',
+				'const int REFINEMENT_STEPS = 4;',
+				'const float relative_step_size = 1.0;',
+				'const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);',
+				'const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);',
+				'const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);',
+				'const float shininess = 40.0;',
+
+				'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
+				'void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
+
+				'float sample1(vec3 texcoords);',
+				'vec4 apply_colormap(float val);',
+				'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);',
+
+
+				'void main() {',
+						// Normalize clipping plane info
+						'vec3 farpos = v_farpos.xyz / v_farpos.w;',
+						'vec3 nearpos = v_nearpos.xyz / v_nearpos.w;',
+
+						// Calculate unit vector pointing in the view direction through this fragment.
+						'vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);',
+
+						// Compute the (negative) distance to the front surface or near clipping plane.
+						// v_position is the back face of the cuboid, so the initial distance calculated in the dot
+						// product below is the distance from near clip plane to the back of the cuboid
+						'float distance = dot(nearpos - v_position, view_ray);',
+						'distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,',
+																				'(u_size.x - 0.5 - v_position.x) / view_ray.x));',
+						'distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,',
+																				'(u_size.y - 0.5 - v_position.y) / view_ray.y));',
+						'distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,',
+																				'(u_size.z - 0.5 - v_position.z) / view_ray.z));',
+
+																				// Now we have the starting position on the front surface
+						'vec3 front = v_position + view_ray * distance;',
+
+						// Decide how many steps to take
+						'int nsteps = int(-distance / relative_step_size + 0.5);',
+						'if ( nsteps < 1 )',
+								'discard;',
+
+						// Get starting location and step vector in texture coordinates
+						'vec3 step = ((v_position - front) / u_size) / float(nsteps);',
+						'vec3 start_loc = front / u_size;',
+
+						// For testing: show the number of steps. This helps to establish
+						// whether the rays are correctly oriented
+						//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
+						//'return;',
+
+						'if (u_renderstyle == 0)',
+								'cast_mip(start_loc, step, nsteps, view_ray);',
+						'else if (u_renderstyle == 1)',
+								'cast_iso(start_loc, step, nsteps, view_ray);',
+
+						'if (gl_FragColor.a < 0.05)',
+								'discard;',
+				'}',
+
+
+				'float sample1(vec3 texcoords) {',
+						'/* Sample float value from a 3D texture. Assumes intensity data. */',
+						'return texture(u_data, texcoords.xyz).r;',
+				'}',
+
+
+				'vec4 apply_colormap(float val) {',
+						'val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);',
+						'return texture2D(u_cmdata, vec2(val, 0.5));',
+				'}',
+
+
+				'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
+
+						'float max_val = -1e6;',
+						'int max_i = 100;',
+						'vec3 loc = start_loc;',
+
+						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
+						// non-constant expression. So we use a hard-coded max, and an additional condition
+						// inside the loop.
+						'for (int iter=0; iter<MAX_STEPS; iter++) {',
+								'if (iter >= nsteps)',
+										'break;',
+								// Sample from the 3D texture
+								'float val = sample1(loc);',
+								// Apply MIP operation
+								'if (val > max_val) {',
+										'max_val = val;',
+										'max_i = iter;',
+								'}',
+								// Advance location deeper into the volume
+								'loc += step;',
+						'}',
+
+						// Refine location, gives crispier images
+						'vec3 iloc = start_loc + step * (float(max_i) - 0.5);',
+						'vec3 istep = step / float(REFINEMENT_STEPS);',
+						'for (int i=0; i<REFINEMENT_STEPS; i++) {',
+								'max_val = max(max_val, sample1(iloc));',
+								'iloc += istep;',
+						'}',
+
+						// Resolve final color
+						'gl_FragColor = apply_colormap(max_val);',
+				'}',
+
+
+				'void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
+
+						'gl_FragColor = vec4(0.0);	// init transparent',
+						'vec4 color3 = vec4(0.0);	// final color',
+						'vec3 dstep = 1.5 / u_size;	// step to sample derivative',
+						'vec3 loc = start_loc;',
+
+						'float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);',
+
+						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
+						// non-constant expression. So we use a hard-coded max, and an additional condition
+						// inside the loop.
+						'for (int iter=0; iter<MAX_STEPS; iter++) {',
+								'if (iter >= nsteps)',
+										'break;',
+
+										// Sample from the 3D texture
+								'float val = sample1(loc);',
+
+								'if (val > low_threshold) {',
+								// Take the last interval in smaller steps
+										'vec3 iloc = loc - 0.5 * step;',
+										'vec3 istep = step / float(REFINEMENT_STEPS);',
+										'for (int i=0; i<REFINEMENT_STEPS; i++) {',
+												'val = sample1(iloc);',
+												'if (val > u_renderthreshold) {',
+														'gl_FragColor = add_lighting(val, iloc, dstep, view_ray);',
+														'return;',
+												'}',
+												'iloc += istep;',
+										'}',
+								'}',
+
+								// Advance location deeper into the volume
+								'loc += step;',
+						'}',
+				'}',
+
+
+				'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)',
+				'{',
+						// Calculate color by incorporating lighting
+
+						// View direction
+						'vec3 V = normalize(view_ray);',
+
+						// calculate normal vector from gradient
+						'vec3 N;',
+						'float val1, val2;',
+						'val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));',
+						'val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));',
+						'N[0] = val1 - val2;',
+						'val = max(max(val1, val2), val);',
+						'val1 = sample1(loc + vec3(0.0, -step[1], 0.0));',
+						'val2 = sample1(loc + vec3(0.0, +step[1], 0.0));',
+						'N[1] = val1 - val2;',
+						'val = max(max(val1, val2), val);',
+						'val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));',
+						'val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));',
+						'N[2] = val1 - val2;',
+						'val = max(max(val1, val2), val);',
+
+						'float gm = length(N); // gradient magnitude',
+						'N = normalize(N);',
+
+						// Flip normal so it points towards viewer
+						'float Nselect = float(dot(N, V) > 0.0);',
+						'N = (2.0 * Nselect - 1.0) * N;	// ==	Nselect * N - (1.0-Nselect)*N;',
+
+						// Init colors
+						'vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);',
+						'vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);',
+						'vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);',
+
+						// note: could allow multiple lights
+						'for (int i=0; i<1; i++)',
+						'{',
+								 // Get light direction (make sure to prevent zero devision)
+								'vec3 L = normalize(view_ray);	//lightDirs[i];',
+								'float lightEnabled = float( length(L) > 0.0 );',
+								'L = normalize(L + (1.0 - lightEnabled));',
+
+								// Calculate lighting properties
+								'float lambertTerm = clamp(dot(N, L), 0.0, 1.0);',
+								'vec3 H = normalize(L+V); // Halfway vector',
+								'float specularTerm = pow(max(dot(H, N), 0.0), shininess);',
+
+								// Calculate mask
+								'float mask1 = lightEnabled;',
+
+								// Calculate colors
+								'ambient_color +=	mask1 * ambient_color;	// * gl_LightSource[i].ambient;',
+								'diffuse_color +=	mask1 * lambertTerm;',
+								'specular_color += mask1 * specularTerm * specular_color;',
+						'}',
+
+						// Calculate final color by componing different components
+						'vec4 final_color;',
+						'vec4 color = apply_colormap(val);',
+						'final_color = color * (ambient_color + diffuse_color) + specular_color;',
+						'final_color.a = color.a;',
+						'return final_color;',
+				'}',
+	].join( '\n' )
+};
+
+export { VolumeRenderShader1 };

+ 1 - 0
utils/modularize.js

@@ -198,6 +198,7 @@ var files = [
 	{ path: 'shaders/VerticalBlurShader.js', dependencies: [], ignoreList: [] },
 	{ path: 'shaders/VerticalBlurShader.js', dependencies: [], ignoreList: [] },
 	{ path: 'shaders/VerticalTiltShiftShader.js', dependencies: [], ignoreList: [] },
 	{ path: 'shaders/VerticalTiltShiftShader.js', dependencies: [], ignoreList: [] },
 	{ path: 'shaders/VignetteShader.js', dependencies: [], ignoreList: [] },
 	{ path: 'shaders/VignetteShader.js', dependencies: [], ignoreList: [] },
+	{ path: 'shaders/VolumeShader.js', dependencies: [], ignoreList: [] },
 	{ path: 'shaders/WaterRefractionShader.js', dependencies: [], ignoreList: [] },
 	{ path: 'shaders/WaterRefractionShader.js', dependencies: [], ignoreList: [] },
 
 
 	{ path: 'utils/BufferGeometryUtils.js', dependencies: [], ignoreList: [] },
 	{ path: 'utils/BufferGeometryUtils.js', dependencies: [], ignoreList: [] },