|
@@ -34,7 +34,7 @@ THREE.NURBSCurve.prototype.getPoint = function ( t ) {
|
|
var u = this.knots[0] + t * (this.knots[this.knots.length - 1] - this.knots[0]); // linear mapping t->u
|
|
var u = this.knots[0] + t * (this.knots[this.knots.length - 1] - this.knots[0]); // linear mapping t->u
|
|
|
|
|
|
// following results in (wx, wy, wz, w) homogeneous point
|
|
// following results in (wx, wy, wz, w) homogeneous point
|
|
- var hpoint = THREE.NURBSCurve.Utils.calcBSplinePoint(this.degree, this.knots, this.controlPoints, u);
|
|
|
|
|
|
+ var hpoint = THREE.NURBSUtils.calcBSplinePoint(this.degree, this.knots, this.controlPoints, u);
|
|
|
|
|
|
if (hpoint.w != 1.0) { // project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1)
|
|
if (hpoint.w != 1.0) { // project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1)
|
|
hpoint.divideScalar(hpoint.w);
|
|
hpoint.divideScalar(hpoint.w);
|
|
@@ -47,354 +47,10 @@ THREE.NURBSCurve.prototype.getPoint = function ( t ) {
|
|
THREE.NURBSCurve.prototype.getTangent = function ( t ) {
|
|
THREE.NURBSCurve.prototype.getTangent = function ( t ) {
|
|
|
|
|
|
var u = this.knots[0] + t * (this.knots[this.knots.length - 1] - this.knots[0]);
|
|
var u = this.knots[0] + t * (this.knots[this.knots.length - 1] - this.knots[0]);
|
|
- var ders = THREE.NURBSCurve.Utils.calcNURBSDerivatives(this.degree, this.knots, this.controlPoints, u, 1);
|
|
|
|
|
|
+ var ders = THREE.NURBSUtils.calcNURBSDerivatives(this.degree, this.knots, this.controlPoints, u, 1);
|
|
var tangent = ders[1].clone();
|
|
var tangent = ders[1].clone();
|
|
tangent.normalize();
|
|
tangent.normalize();
|
|
|
|
|
|
return tangent;
|
|
return tangent;
|
|
};
|
|
};
|
|
|
|
|
|
-
|
|
|
|
-/**************************************************************
|
|
|
|
- * Utils
|
|
|
|
- **************************************************************/
|
|
|
|
-
|
|
|
|
-THREE.NURBSCurve.Utils = {
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- Finds knot vector span.
|
|
|
|
-
|
|
|
|
- p : degree
|
|
|
|
- u : parametric value
|
|
|
|
- U : knot vector
|
|
|
|
-
|
|
|
|
- returns the span
|
|
|
|
- */
|
|
|
|
- findSpan: function( p, u, U ) {
|
|
|
|
- var n = U.length - p - 1;
|
|
|
|
-
|
|
|
|
- if (u >= U[n]) {
|
|
|
|
- return n - 1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (u <= U[p]) {
|
|
|
|
- return p;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- var low = p;
|
|
|
|
- var high = n;
|
|
|
|
- var mid = Math.floor((low + high) / 2);
|
|
|
|
-
|
|
|
|
- while (u < U[mid] || u >= U[mid + 1]) {
|
|
|
|
-
|
|
|
|
- if (u < U[mid]) {
|
|
|
|
- high = mid;
|
|
|
|
- } else {
|
|
|
|
- low = mid;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- mid = Math.floor((low + high) / 2);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return mid;
|
|
|
|
- },
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
|
|
|
|
-
|
|
|
|
- span : span in which u lies
|
|
|
|
- u : parametric point
|
|
|
|
- p : degree
|
|
|
|
- U : knot vector
|
|
|
|
-
|
|
|
|
- returns array[p+1] with basis functions values.
|
|
|
|
- */
|
|
|
|
- calcBasisFunctions: function( span, u, p, U ) {
|
|
|
|
- var N = [];
|
|
|
|
- var left = [];
|
|
|
|
- var right = [];
|
|
|
|
- N[0] = 1.0;
|
|
|
|
-
|
|
|
|
- for (var j = 1; j <= p; ++j) {
|
|
|
|
-
|
|
|
|
- left[j] = u - U[span + 1 - j];
|
|
|
|
- right[j] = U[span + j] - u;
|
|
|
|
-
|
|
|
|
- var saved = 0.0;
|
|
|
|
-
|
|
|
|
- for (var r = 0; r < j; ++r) {
|
|
|
|
-
|
|
|
|
- var rv = right[r + 1];
|
|
|
|
- var lv = left[j - r];
|
|
|
|
- var temp = N[r] / (rv + lv);
|
|
|
|
- N[r] = saved + rv * temp;
|
|
|
|
- saved = lv * temp;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- N[j] = saved;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return N;
|
|
|
|
- },
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
|
|
|
|
-
|
|
|
|
- p : degree of B-Spline
|
|
|
|
- U : knot vector
|
|
|
|
- P : control points (x, y, z, w)
|
|
|
|
- u : parametric point
|
|
|
|
-
|
|
|
|
- returns point for given u
|
|
|
|
- */
|
|
|
|
- calcBSplinePoint: function( p, U, P, u ) {
|
|
|
|
- var span = this.findSpan(p, u, U);
|
|
|
|
- var N = this.calcBasisFunctions(span, u, p, U);
|
|
|
|
- var C = new THREE.Vector4(0, 0, 0, 0);
|
|
|
|
-
|
|
|
|
- for (var j = 0; j <= p; ++j) {
|
|
|
|
- var point = P[span - p + j];
|
|
|
|
- var Nj = N[j];
|
|
|
|
- var wNj = point.w * Nj;
|
|
|
|
- C.x += point.x * wNj;
|
|
|
|
- C.y += point.y * wNj;
|
|
|
|
- C.z += point.z * wNj;
|
|
|
|
- C.w += point.w * Nj;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return C;
|
|
|
|
- },
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
|
|
|
|
-
|
|
|
|
- span : span in which u lies
|
|
|
|
- u : parametric point
|
|
|
|
- p : degree
|
|
|
|
- n : number of derivatives to calculate
|
|
|
|
- U : knot vector
|
|
|
|
-
|
|
|
|
- returns array[n+1][p+1] with basis functions derivatives
|
|
|
|
- */
|
|
|
|
- calcBasisFunctionDerivatives: function( span, u, p, n, U ) {
|
|
|
|
-
|
|
|
|
- var zeroArr = [];
|
|
|
|
- for (var i = 0; i <= p; ++i)
|
|
|
|
- zeroArr[i] = 0.0;
|
|
|
|
-
|
|
|
|
- var ders = [];
|
|
|
|
- for (var i = 0; i <= n; ++i)
|
|
|
|
- ders[i] = zeroArr.slice(0);
|
|
|
|
-
|
|
|
|
- var ndu = [];
|
|
|
|
- for (var i = 0; i <= p; ++i)
|
|
|
|
- ndu[i] = zeroArr.slice(0);
|
|
|
|
-
|
|
|
|
- ndu[0][0] = 1.0;
|
|
|
|
-
|
|
|
|
- var left = zeroArr.slice(0);
|
|
|
|
- var right = zeroArr.slice(0);
|
|
|
|
-
|
|
|
|
- for (var j = 1; j <= p; ++j) {
|
|
|
|
- left[j] = u - U[span + 1 - j];
|
|
|
|
- right[j] = U[span + j] - u;
|
|
|
|
-
|
|
|
|
- var saved = 0.0;
|
|
|
|
-
|
|
|
|
- for (var r = 0; r < j; ++r) {
|
|
|
|
- var rv = right[r + 1];
|
|
|
|
- var lv = left[j - r];
|
|
|
|
- ndu[j][r] = rv + lv;
|
|
|
|
-
|
|
|
|
- var temp = ndu[r][j - 1] / ndu[j][r];
|
|
|
|
- ndu[r][j] = saved + rv * temp;
|
|
|
|
- saved = lv * temp;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- ndu[j][j] = saved;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (var j = 0; j <= p; ++j) {
|
|
|
|
- ders[0][j] = ndu[j][p];
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (var r = 0; r <= p; ++r) {
|
|
|
|
- var s1 = 0;
|
|
|
|
- var s2 = 1;
|
|
|
|
-
|
|
|
|
- var a = [];
|
|
|
|
- for (var i = 0; i <= p; ++i) {
|
|
|
|
- a[i] = zeroArr.slice(0);
|
|
|
|
- }
|
|
|
|
- a[0][0] = 1.0;
|
|
|
|
-
|
|
|
|
- for (var k = 1; k <= n; ++k) {
|
|
|
|
- var d = 0.0;
|
|
|
|
- var rk = r - k;
|
|
|
|
- var pk = p - k;
|
|
|
|
-
|
|
|
|
- if (r >= k) {
|
|
|
|
- a[s2][0] = a[s1][0] / ndu[pk + 1][rk];
|
|
|
|
- d = a[s2][0] * ndu[rk][pk];
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- var j1 = (rk >= -1) ? 1 : -rk;
|
|
|
|
- var j2 = (r - 1 <= pk) ? k - 1 : p - r;
|
|
|
|
-
|
|
|
|
- for (var j = j1; j <= j2; ++j) {
|
|
|
|
- a[s2][j] = (a[s1][j] - a[s1][j - 1]) / ndu[pk + 1][rk + j];
|
|
|
|
- d += a[s2][j] * ndu[rk + j][pk];
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (r <= pk) {
|
|
|
|
- a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r];
|
|
|
|
- d += a[s2][k] * ndu[r][pk];
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- ders[k][r] = d;
|
|
|
|
-
|
|
|
|
- var j = s1;
|
|
|
|
- s1 = s2;
|
|
|
|
- s2 = j;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- var r = p;
|
|
|
|
-
|
|
|
|
- for (var k = 1; k <= n; ++k) {
|
|
|
|
- for (var j = 0; j <= p; ++j) {
|
|
|
|
- ders[k][j] *= r;
|
|
|
|
- }
|
|
|
|
- r *= p - k;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return ders;
|
|
|
|
- },
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
|
|
|
|
-
|
|
|
|
- p : degree
|
|
|
|
- U : knot vector
|
|
|
|
- P : control points
|
|
|
|
- u : Parametric points
|
|
|
|
- nd : number of derivatives
|
|
|
|
-
|
|
|
|
- returns array[d+1] with derivatives
|
|
|
|
- */
|
|
|
|
- calcBSplineDerivatives: function( p, U, P, u, nd ) {
|
|
|
|
- var du = nd < p ? nd : p;
|
|
|
|
- var CK = [];
|
|
|
|
- var span = this.findSpan(p, u, U);
|
|
|
|
- var nders = this.calcBasisFunctionDerivatives(span, u, p, du, U);
|
|
|
|
- var Pw = [];
|
|
|
|
-
|
|
|
|
- for (var i = 0; i < P.length; ++i) {
|
|
|
|
- var point = P[i].clone();
|
|
|
|
- var w = point.w;
|
|
|
|
-
|
|
|
|
- point.x *= w;
|
|
|
|
- point.y *= w;
|
|
|
|
- point.z *= w;
|
|
|
|
-
|
|
|
|
- Pw[i] = point;
|
|
|
|
- }
|
|
|
|
- for (var k = 0; k <= du; ++k) {
|
|
|
|
- var point = Pw[span - p].clone().multiplyScalar(nders[k][0]);
|
|
|
|
-
|
|
|
|
- for (var j = 1; j <= p; ++j) {
|
|
|
|
- point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j]));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- CK[k] = point;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (var k = du + 1; k <= nd + 1; ++k) {
|
|
|
|
- CK[k] = new THREE.Vector4(0, 0, 0);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return CK;
|
|
|
|
- },
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- Calculate "K over I"
|
|
|
|
-
|
|
|
|
- returns k!/(i!(k-i)!)
|
|
|
|
- */
|
|
|
|
- calcKoverI: function( k, i ) {
|
|
|
|
- var nom = 1;
|
|
|
|
-
|
|
|
|
- for (var j = 2; j <= k; ++j) {
|
|
|
|
- nom *= j;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- var denom = 1;
|
|
|
|
-
|
|
|
|
- for (var j = 2; j <= i; ++j) {
|
|
|
|
- denom *= j;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- for (var j = 2; j <= k - i; ++j) {
|
|
|
|
- denom *= j;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return nom / denom;
|
|
|
|
- },
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
|
|
|
|
-
|
|
|
|
- Pders : result of function calcBSplineDerivatives
|
|
|
|
-
|
|
|
|
- returns array with derivatives for rational curve.
|
|
|
|
- */
|
|
|
|
- calcRationalCurveDerivatives: function ( Pders ) {
|
|
|
|
- var nd = Pders.length;
|
|
|
|
- var Aders = [];
|
|
|
|
- var wders = [];
|
|
|
|
-
|
|
|
|
- for (var i = 0; i < nd; ++i) {
|
|
|
|
- var point = Pders[i];
|
|
|
|
- Aders[i] = new THREE.Vector3(point.x, point.y, point.z);
|
|
|
|
- wders[i] = point.w;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- var CK = [];
|
|
|
|
-
|
|
|
|
- for (var k = 0; k < nd; ++k) {
|
|
|
|
- var v = Aders[k].clone();
|
|
|
|
-
|
|
|
|
- for (var i = 1; i <= k; ++i) {
|
|
|
|
- v.sub(CK[k - i].clone().multiplyScalar(this.calcKoverI(k,i) * wders[i]));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- CK[k] = v.divideScalar(wders[0]);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return CK;
|
|
|
|
- },
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
|
|
|
|
-
|
|
|
|
- p : degree
|
|
|
|
- U : knot vector
|
|
|
|
- P : control points in homogeneous space
|
|
|
|
- u : parametric points
|
|
|
|
- nd : number of derivatives
|
|
|
|
-
|
|
|
|
- returns array with derivatives.
|
|
|
|
- */
|
|
|
|
- calcNURBSDerivatives: function( p, U, P, u, nd ) {
|
|
|
|
- var Pders = this.calcBSplineDerivatives(p, U, P, u, nd);
|
|
|
|
- return this.calcRationalCurveDerivatives(Pders);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|