Explorar o código

VolumeShader indents

Garrett Johnson %!s(int64=5) %!d(string=hai) anos
pai
achega
e436a145a1
Modificáronse 1 ficheiros con 213 adicións e 213 borrados
  1. 213 213
      examples/js/shaders/VolumeShader.js

+ 213 - 213
examples/js/shaders/VolumeShader.js

@@ -8,317 +8,317 @@
 
 THREE.VolumeRenderShader1 = {
 	uniforms: {
-				"u_size": { value: new THREE.Vector3( 1, 1, 1 ) },
-				"u_renderstyle": { value: 0 },
-				"u_renderthreshold": { value: 0.5 },
-				"u_clim": { value: new THREE.Vector2( 1, 1 ) },
-				"u_data": { value: null },
-				"u_cmdata": { value: null }
-		},
-		vertexShader: [
-				'varying vec4 v_nearpos;',
-				'varying vec4 v_farpos;',
-				'varying vec3 v_position;',
-
-				'mat4 inversemat(mat4 m) {',
+		"u_size": { value: new THREE.Vector3( 1, 1, 1 ) },
+		"u_renderstyle": { value: 0 },
+		"u_renderthreshold": { value: 0.5 },
+		"u_clim": { value: new THREE.Vector2( 1, 1 ) },
+		"u_data": { value: null },
+		"u_cmdata": { value: null }
+	},
+	vertexShader: [
+		'		varying vec4 v_nearpos;',
+		'		varying vec4 v_farpos;',
+		'		varying vec3 v_position;',
+
+		'		mat4 inversemat(mat4 m) {',
 						// Taken from https://github.com/stackgl/glsl-inverse/blob/master/index.glsl
 						// This function is licenced by the MIT license to Mikola Lysenko
-						'float',
-						'a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],',
-						'a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],',
-						'a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],',
-						'a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],',
-
-						'b00 = a00 * a11 - a01 * a10,',
-						'b01 = a00 * a12 - a02 * a10,',
-						'b02 = a00 * a13 - a03 * a10,',
-						'b03 = a01 * a12 - a02 * a11,',
-						'b04 = a01 * a13 - a03 * a11,',
-						'b05 = a02 * a13 - a03 * a12,',
-						'b06 = a20 * a31 - a21 * a30,',
-						'b07 = a20 * a32 - a22 * a30,',
-						'b08 = a20 * a33 - a23 * a30,',
-						'b09 = a21 * a32 - a22 * a31,',
-						'b10 = a21 * a33 - a23 * a31,',
-						'b11 = a22 * a33 - a23 * a32,',
-
-						'det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;',
-
-				'return mat4(',
-						'a11 * b11 - a12 * b10 + a13 * b09,',
-						'a02 * b10 - a01 * b11 - a03 * b09,',
-						'a31 * b05 - a32 * b04 + a33 * b03,',
-						'a22 * b04 - a21 * b05 - a23 * b03,',
-						'a12 * b08 - a10 * b11 - a13 * b07,',
-						'a00 * b11 - a02 * b08 + a03 * b07,',
-						'a32 * b02 - a30 * b05 - a33 * b01,',
-						'a20 * b05 - a22 * b02 + a23 * b01,',
-						'a10 * b10 - a11 * b08 + a13 * b06,',
-						'a01 * b08 - a00 * b10 - a03 * b06,',
-						'a30 * b04 - a31 * b02 + a33 * b00,',
-						'a21 * b02 - a20 * b04 - a23 * b00,',
-						'a11 * b07 - a10 * b09 - a12 * b06,',
-						'a00 * b09 - a01 * b07 + a02 * b06,',
-						'a31 * b01 - a30 * b03 - a32 * b00,',
-						'a20 * b03 - a21 * b01 + a22 * b00) / det;',
-				'}',
-
-
-				'void main() {',
+		'				float',
+		'				a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],',
+		'				a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],',
+		'				a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],',
+		'				a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],',
+
+		'				b00 = a00 * a11 - a01 * a10,',
+		'				b01 = a00 * a12 - a02 * a10,',
+		'				b02 = a00 * a13 - a03 * a10,',
+		'				b03 = a01 * a12 - a02 * a11,',
+		'				b04 = a01 * a13 - a03 * a11,',
+		'				b05 = a02 * a13 - a03 * a12,',
+		'				b06 = a20 * a31 - a21 * a30,',
+		'				b07 = a20 * a32 - a22 * a30,',
+		'				b08 = a20 * a33 - a23 * a30,',
+		'				b09 = a21 * a32 - a22 * a31,',
+		'				b10 = a21 * a33 - a23 * a31,',
+		'				b11 = a22 * a33 - a23 * a32,',
+
+		'				det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;',
+
+		'		return mat4(',
+		'				a11 * b11 - a12 * b10 + a13 * b09,',
+		'				a02 * b10 - a01 * b11 - a03 * b09,',
+		'				a31 * b05 - a32 * b04 + a33 * b03,',
+		'				a22 * b04 - a21 * b05 - a23 * b03,',
+		'				a12 * b08 - a10 * b11 - a13 * b07,',
+		'				a00 * b11 - a02 * b08 + a03 * b07,',
+		'				a32 * b02 - a30 * b05 - a33 * b01,',
+		'				a20 * b05 - a22 * b02 + a23 * b01,',
+		'				a10 * b10 - a11 * b08 + a13 * b06,',
+		'				a01 * b08 - a00 * b10 - a03 * b06,',
+		'				a30 * b04 - a31 * b02 + a33 * b00,',
+		'				a21 * b02 - a20 * b04 - a23 * b00,',
+		'				a11 * b07 - a10 * b09 - a12 * b06,',
+		'				a00 * b09 - a01 * b07 + a02 * b06,',
+		'				a31 * b01 - a30 * b03 - a32 * b00,',
+		'				a20 * b03 - a21 * b01 + a22 * b00) / det;',
+		'		}',
+
+
+		'		void main() {',
 						// Prepare transforms to map to "camera view". See also:
 						// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
-						'mat4 viewtransformf = viewMatrix;',
-						'mat4 viewtransformi = inversemat(viewMatrix);',
+		'				mat4 viewtransformf = viewMatrix;',
+		'				mat4 viewtransformi = inversemat(viewMatrix);',
 
 						// Project local vertex coordinate to camera position. Then do a step
 						// backward (in cam coords) to the near clipping plane, and project back. Do
 						// the same for the far clipping plane. This gives us all the information we
 						// need to calculate the ray and truncate it to the viewing cone.
-						'vec4 position4 = vec4(position, 1.0);',
-						'vec4 pos_in_cam = viewtransformf * position4;',
+		'				vec4 position4 = vec4(position, 1.0);',
+		'				vec4 pos_in_cam = viewtransformf * position4;',
 
 						// Intersection of ray and near clipping plane (z = -1 in clip coords)
-						'pos_in_cam.z = -pos_in_cam.w;',
-						'v_nearpos = viewtransformi * pos_in_cam;',
+		'				pos_in_cam.z = -pos_in_cam.w;',
+		'				v_nearpos = viewtransformi * pos_in_cam;',
 
 						// Intersection of ray and far clipping plane (z = +1 in clip coords)
-						'pos_in_cam.z = pos_in_cam.w;',
-						'v_farpos = viewtransformi * pos_in_cam;',
+		'				pos_in_cam.z = pos_in_cam.w;',
+		'				v_farpos = viewtransformi * pos_in_cam;',
 
 						// Set varyings and output pos
-						'v_position = position;',
-						'gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;',
-				'}',
-		].join( '\n' ),
+		'				v_position = position;',
+		'				gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;',
+		'		}',
+	].join( '\n' ),
 	fragmentShader: [
-				'precision highp float;',
-				'precision mediump sampler3D;',
+		'		precision highp float;',
+		'		precision mediump sampler3D;',
 
-				'uniform vec3 u_size;',
-				'uniform int u_renderstyle;',
-				'uniform float u_renderthreshold;',
-				'uniform vec2 u_clim;',
+		'		uniform vec3 u_size;',
+		'		uniform int u_renderstyle;',
+		'		uniform float u_renderthreshold;',
+		'		uniform vec2 u_clim;',
 
-				'uniform sampler3D u_data;',
-				'uniform sampler2D u_cmdata;',
+		'		uniform sampler3D u_data;',
+		'		uniform sampler2D u_cmdata;',
 
-				'varying vec3 v_position;',
-				'varying vec4 v_nearpos;',
-				'varying vec4 v_farpos;',
+		'		varying vec3 v_position;',
+		'		varying vec4 v_nearpos;',
+		'		varying vec4 v_farpos;',
 
 				// The maximum distance through our rendering volume is sqrt(3).
-				'const int MAX_STEPS = 887;	// 887 for 512^3, 1774 for 1024^3',
-				'const int REFINEMENT_STEPS = 4;',
-				'const float relative_step_size = 1.0;',
-				'const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);',
-				'const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);',
-				'const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);',
-				'const float shininess = 40.0;',
+		'		const int MAX_STEPS = 887;	// 887 for 512^3, 1774 for 1024^3',
+		'		const int REFINEMENT_STEPS = 4;',
+		'		const float relative_step_size = 1.0;',
+		'		const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);',
+		'		const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);',
+		'		const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);',
+		'		const float shininess = 40.0;',
 
-				'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
-				'void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
+		'		void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
+		'		void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);',
 
-				'float sample1(vec3 texcoords);',
-				'vec4 apply_colormap(float val);',
-				'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);',
+		'		float sample1(vec3 texcoords);',
+		'		vec4 apply_colormap(float val);',
+		'		vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);',
 
 
-				'void main() {',
+		'		void main() {',
 						// Normalize clipping plane info
-						'vec3 farpos = v_farpos.xyz / v_farpos.w;',
-						'vec3 nearpos = v_nearpos.xyz / v_nearpos.w;',
+		'				vec3 farpos = v_farpos.xyz / v_farpos.w;',
+		'				vec3 nearpos = v_nearpos.xyz / v_nearpos.w;',
 
 						// Calculate unit vector pointing in the view direction through this fragment.
-						'vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);',
+		'				vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);',
 
 						// Compute the (negative) distance to the front surface or near clipping plane.
 						// v_position is the back face of the cuboid, so the initial distance calculated in the dot
 						// product below is the distance from near clip plane to the back of the cuboid
-						'float distance = dot(nearpos - v_position, view_ray);',
-						'distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,',
-																				'(u_size.x - 0.5 - v_position.x) / view_ray.x));',
-						'distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,',
-																				'(u_size.y - 0.5 - v_position.y) / view_ray.y));',
-						'distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,',
-																				'(u_size.z - 0.5 - v_position.z) / view_ray.z));',
+		'				float distance = dot(nearpos - v_position, view_ray);',
+		'				distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,',
+		'																		(u_size.x - 0.5 - v_position.x) / view_ray.x));',
+		'				distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,',
+		'																		(u_size.y - 0.5 - v_position.y) / view_ray.y));',
+		'				distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,',
+		'																		(u_size.z - 0.5 - v_position.z) / view_ray.z));',
 
 																				// Now we have the starting position on the front surface
-						'vec3 front = v_position + view_ray * distance;',
+		'				vec3 front = v_position + view_ray * distance;',
 
 						// Decide how many steps to take
-						'int nsteps = int(-distance / relative_step_size + 0.5);',
-						'if ( nsteps < 1 )',
-								'discard;',
+		'				int nsteps = int(-distance / relative_step_size + 0.5);',
+		'				if ( nsteps < 1 )',
+		'						discard;',
 
 						// Get starting location and step vector in texture coordinates
-						'vec3 step = ((v_position - front) / u_size) / float(nsteps);',
-						'vec3 start_loc = front / u_size;',
+		'				vec3 step = ((v_position - front) / u_size) / float(nsteps);',
+		'				vec3 start_loc = front / u_size;',
 
 						// For testing: show the number of steps. This helps to establish
 						// whether the rays are correctly oriented
 						//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);',
 						//'return;',
 
-						'if (u_renderstyle == 0)',
-								'cast_mip(start_loc, step, nsteps, view_ray);',
-						'else if (u_renderstyle == 1)',
-								'cast_iso(start_loc, step, nsteps, view_ray);',
+		'				if (u_renderstyle == 0)',
+		'						cast_mip(start_loc, step, nsteps, view_ray);',
+		'				else if (u_renderstyle == 1)',
+		'						cast_iso(start_loc, step, nsteps, view_ray);',
 
-						'if (gl_FragColor.a < 0.05)',
-								'discard;',
-				'}',
+		'				if (gl_FragColor.a < 0.05)',
+		'						discard;',
+		'		}',
 
 
-				'float sample1(vec3 texcoords) {',
-						'/* Sample float value from a 3D texture. Assumes intensity data. */',
-						'return texture(u_data, texcoords.xyz).r;',
-				'}',
+		'		float sample1(vec3 texcoords) {',
+		'				/* Sample float value from a 3D texture. Assumes intensity data. */',
+		'				return texture(u_data, texcoords.xyz).r;',
+		'		}',
 
 
-				'vec4 apply_colormap(float val) {',
-						'val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);',
-						'return texture2D(u_cmdata, vec2(val, 0.5));',
-				'}',
+		'		vec4 apply_colormap(float val) {',
+		'				val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);',
+		'				return texture2D(u_cmdata, vec2(val, 0.5));',
+		'		}',
 
 
-				'void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
+		'		void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
 
-						'float max_val = -1e6;',
-						'int max_i = 100;',
-						'vec3 loc = start_loc;',
+		'				float max_val = -1e6;',
+		'				int max_i = 100;',
+		'				vec3 loc = start_loc;',
 
 						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
 						// non-constant expression. So we use a hard-coded max, and an additional condition
 						// inside the loop.
-						'for (int iter=0; iter<MAX_STEPS; iter++) {',
-								'if (iter >= nsteps)',
-										'break;',
+		'				for (int iter=0; iter<MAX_STEPS; iter++) {',
+		'						if (iter >= nsteps)',
+		'								break;',
 								// Sample from the 3D texture
-								'float val = sample1(loc);',
+		'						float val = sample1(loc);',
 								// Apply MIP operation
-								'if (val > max_val) {',
-										'max_val = val;',
-										'max_i = iter;',
-								'}',
+		'						if (val > max_val) {',
+		'								max_val = val;',
+		'								max_i = iter;',
+		'						}',
 								// Advance location deeper into the volume
-								'loc += step;',
-						'}',
+		'						loc += step;',
+		'				}',
 
 						// Refine location, gives crispier images
-						'vec3 iloc = start_loc + step * (float(max_i) - 0.5);',
-						'vec3 istep = step / float(REFINEMENT_STEPS);',
-						'for (int i=0; i<REFINEMENT_STEPS; i++) {',
-								'max_val = max(max_val, sample1(iloc));',
-								'iloc += istep;',
-						'}',
+		'				vec3 iloc = start_loc + step * (float(max_i) - 0.5);',
+		'				vec3 istep = step / float(REFINEMENT_STEPS);',
+		'				for (int i=0; i<REFINEMENT_STEPS; i++) {',
+		'						max_val = max(max_val, sample1(iloc));',
+		'						iloc += istep;',
+		'				}',
 
 						// Resolve final color
-						'gl_FragColor = apply_colormap(max_val);',
-				'}',
+		'				gl_FragColor = apply_colormap(max_val);',
+		'		}',
 
 
-				'void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
+		'		void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {',
 
-						'gl_FragColor = vec4(0.0);	// init transparent',
-						'vec4 color3 = vec4(0.0);	// final color',
-						'vec3 dstep = 1.5 / u_size;	// step to sample derivative',
-						'vec3 loc = start_loc;',
+		'				gl_FragColor = vec4(0.0);	// init transparent',
+		'				vec4 color3 = vec4(0.0);	// final color',
+		'				vec3 dstep = 1.5 / u_size;	// step to sample derivative',
+		'				vec3 loc = start_loc;',
 
-						'float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);',
+		'				float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);',
 
 						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
 						// non-constant expression. So we use a hard-coded max, and an additional condition
 						// inside the loop.
-						'for (int iter=0; iter<MAX_STEPS; iter++) {',
-								'if (iter >= nsteps)',
-										'break;',
+		'				for (int iter=0; iter<MAX_STEPS; iter++) {',
+		'						if (iter >= nsteps)',
+		'								break;',
 
 										// Sample from the 3D texture
-								'float val = sample1(loc);',
+		'						float val = sample1(loc);',
 
-								'if (val > low_threshold) {',
+		'						if (val > low_threshold) {',
 								// Take the last interval in smaller steps
-										'vec3 iloc = loc - 0.5 * step;',
-										'vec3 istep = step / float(REFINEMENT_STEPS);',
-										'for (int i=0; i<REFINEMENT_STEPS; i++) {',
-												'val = sample1(iloc);',
-												'if (val > u_renderthreshold) {',
-														'gl_FragColor = add_lighting(val, iloc, dstep, view_ray);',
-														'return;',
-												'}',
-												'iloc += istep;',
-										'}',
-								'}',
+		'								vec3 iloc = loc - 0.5 * step;',
+		'								vec3 istep = step / float(REFINEMENT_STEPS);',
+		'								for (int i=0; i<REFINEMENT_STEPS; i++) {',
+		'										val = sample1(iloc);',
+		'										if (val > u_renderthreshold) {',
+		'												gl_FragColor = add_lighting(val, iloc, dstep, view_ray);',
+		'												return;',
+		'										}',
+		'										iloc += istep;',
+		'								}',
+		'						}',
 
 								// Advance location deeper into the volume
-								'loc += step;',
-						'}',
-				'}',
+		'						loc += step;',
+		'				}',
+		'		}',
 
 
-				'vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)',
-				'{',
+		'		vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)',
+		'		{',
 						// Calculate color by incorporating lighting
 
 						// View direction
-						'vec3 V = normalize(view_ray);',
+		'				vec3 V = normalize(view_ray);',
 
 						// calculate normal vector from gradient
-						'vec3 N;',
-						'float val1, val2;',
-						'val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));',
-						'val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));',
-						'N[0] = val1 - val2;',
-						'val = max(max(val1, val2), val);',
-						'val1 = sample1(loc + vec3(0.0, -step[1], 0.0));',
-						'val2 = sample1(loc + vec3(0.0, +step[1], 0.0));',
-						'N[1] = val1 - val2;',
-						'val = max(max(val1, val2), val);',
-						'val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));',
-						'val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));',
-						'N[2] = val1 - val2;',
-						'val = max(max(val1, val2), val);',
-
-						'float gm = length(N); // gradient magnitude',
-						'N = normalize(N);',
+		'				vec3 N;',
+		'				float val1, val2;',
+		'				val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));',
+		'				val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));',
+		'				N[0] = val1 - val2;',
+		'				val = max(max(val1, val2), val);',
+		'				val1 = sample1(loc + vec3(0.0, -step[1], 0.0));',
+		'				val2 = sample1(loc + vec3(0.0, +step[1], 0.0));',
+		'				N[1] = val1 - val2;',
+		'				val = max(max(val1, val2), val);',
+		'				val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));',
+		'				val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));',
+		'				N[2] = val1 - val2;',
+		'				val = max(max(val1, val2), val);',
+
+		'				float gm = length(N); // gradient magnitude',
+		'				N = normalize(N);',
 
 						// Flip normal so it points towards viewer
-						'float Nselect = float(dot(N, V) > 0.0);',
-						'N = (2.0 * Nselect - 1.0) * N;	// ==	Nselect * N - (1.0-Nselect)*N;',
+		'				float Nselect = float(dot(N, V) > 0.0);',
+		'				N = (2.0 * Nselect - 1.0) * N;	// ==	Nselect * N - (1.0-Nselect)*N;',
 
 						// Init colors
-						'vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);',
-						'vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);',
-						'vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);',
+		'				vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);',
+		'				vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);',
+		'				vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);',
 
 						// note: could allow multiple lights
-						'for (int i=0; i<1; i++)',
-						'{',
+		'				for (int i=0; i<1; i++)',
+		'				{',
 								 // Get light direction (make sure to prevent zero devision)
-								'vec3 L = normalize(view_ray);	//lightDirs[i];',
-								'float lightEnabled = float( length(L) > 0.0 );',
-								'L = normalize(L + (1.0 - lightEnabled));',
+		'						vec3 L = normalize(view_ray);	//lightDirs[i];',
+		'						float lightEnabled = float( length(L) > 0.0 );',
+		'						L = normalize(L + (1.0 - lightEnabled));',
 
 								// Calculate lighting properties
-								'float lambertTerm = clamp(dot(N, L), 0.0, 1.0);',
-								'vec3 H = normalize(L+V); // Halfway vector',
-								'float specularTerm = pow(max(dot(H, N), 0.0), shininess);',
+		'						float lambertTerm = clamp(dot(N, L), 0.0, 1.0);',
+		'						vec3 H = normalize(L+V); // Halfway vector',
+		'						float specularTerm = pow(max(dot(H, N), 0.0), shininess);',
 
 								// Calculate mask
-								'float mask1 = lightEnabled;',
+		'						float mask1 = lightEnabled;',
 
 								// Calculate colors
-								'ambient_color +=	mask1 * ambient_color;	// * gl_LightSource[i].ambient;',
-								'diffuse_color +=	mask1 * lambertTerm;',
-								'specular_color += mask1 * specularTerm * specular_color;',
-						'}',
+		'						ambient_color +=	mask1 * ambient_color;	// * gl_LightSource[i].ambient;',
+		'						diffuse_color +=	mask1 * lambertTerm;',
+		'						specular_color += mask1 * specularTerm * specular_color;',
+		'				}',
 
 						// Calculate final color by componing different components
-						'vec4 final_color;',
-						'vec4 color = apply_colormap(val);',
-						'final_color = color * (ambient_color + diffuse_color) + specular_color;',
-						'final_color.a = color.a;',
-						'return final_color;',
-				'}',
+		'				vec4 final_color;',
+		'				vec4 color = apply_colormap(val);',
+		'				final_color = color * (ambient_color + diffuse_color) + specular_color;',
+		'				final_color.a = color.a;',
+		'				return final_color;',
+		'		}',
 	].join( '\n' )
 };