|
@@ -21,670 +21,878 @@ var ShapeUtils = {
|
|
|
|
|
|
},
|
|
|
|
|
|
- triangulate: ( function () {
|
|
|
+ isClockWise: function ( pts ) {
|
|
|
|
|
|
- /**
|
|
|
- * This code is a quick port of code written in C++ which was submitted to
|
|
|
- * flipcode.com by John W. Ratcliff // July 22, 2000
|
|
|
- * See original code and more information here:
|
|
|
- * http://www.flipcode.com/archives/Efficient_Polygon_Triangulation.shtml
|
|
|
- *
|
|
|
- * ported to actionscript by Zevan Rosser
|
|
|
- * www.actionsnippet.com
|
|
|
- *
|
|
|
- * ported to javascript by Joshua Koo
|
|
|
- * http://www.lab4games.net/zz85/blog
|
|
|
- *
|
|
|
- */
|
|
|
+ return ShapeUtils.area( pts ) < 0;
|
|
|
|
|
|
- function snip( contour, u, v, w, n, verts ) {
|
|
|
+ },
|
|
|
|
|
|
- var p;
|
|
|
- var ax, ay, bx, by;
|
|
|
- var cx, cy, px, py;
|
|
|
+ triangulate: function ( vertices, holeIndices ) {
|
|
|
|
|
|
- ax = contour[ verts[ u ] ].x;
|
|
|
- ay = contour[ verts[ u ] ].y;
|
|
|
+ // Port from: https://github.com/mapbox/earcut (v2.1.2)
|
|
|
|
|
|
- bx = contour[ verts[ v ] ].x;
|
|
|
- by = contour[ verts[ v ] ].y;
|
|
|
+ function earcut( data, holeIndices, dim ) {
|
|
|
|
|
|
- cx = contour[ verts[ w ] ].x;
|
|
|
- cy = contour[ verts[ w ] ].y;
|
|
|
+ dim = dim || 2;
|
|
|
|
|
|
- if ( ( bx - ax ) * ( cy - ay ) - ( by - ay ) * ( cx - ax ) <= 0 ) return false;
|
|
|
+ var hasHoles = holeIndices && holeIndices.length,
|
|
|
+ outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length,
|
|
|
+ outerNode = linkedList( data, 0, outerLen, dim, true ),
|
|
|
+ triangles = [];
|
|
|
|
|
|
- var aX, aY, bX, bY, cX, cY;
|
|
|
- var apx, apy, bpx, bpy, cpx, cpy;
|
|
|
- var cCROSSap, bCROSScp, aCROSSbp;
|
|
|
+ if ( ! outerNode ) return triangles;
|
|
|
|
|
|
- aX = cx - bx; aY = cy - by;
|
|
|
- bX = ax - cx; bY = ay - cy;
|
|
|
- cX = bx - ax; cY = by - ay;
|
|
|
+ var minX, minY, maxX, maxY, x, y, invSize;
|
|
|
|
|
|
- for ( p = 0; p < n; p ++ ) {
|
|
|
+ if ( hasHoles ) outerNode = eliminateHoles( data, holeIndices, outerNode, dim );
|
|
|
|
|
|
- px = contour[ verts[ p ] ].x;
|
|
|
- py = contour[ verts[ p ] ].y;
|
|
|
+ // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
|
|
|
|
|
|
- if ( ( ( px === ax ) && ( py === ay ) ) ||
|
|
|
- ( ( px === bx ) && ( py === by ) ) ||
|
|
|
- ( ( px === cx ) && ( py === cy ) ) ) continue;
|
|
|
+ if ( data.length > 80 * dim ) {
|
|
|
|
|
|
- apx = px - ax; apy = py - ay;
|
|
|
- bpx = px - bx; bpy = py - by;
|
|
|
- cpx = px - cx; cpy = py - cy;
|
|
|
+ minX = maxX = data[ 0 ];
|
|
|
+ minY = maxY = data[ 1 ];
|
|
|
|
|
|
- // see if p is inside triangle abc
|
|
|
+ for ( var i = dim; i < outerLen; i += dim ) {
|
|
|
|
|
|
- aCROSSbp = aX * bpy - aY * bpx;
|
|
|
- cCROSSap = cX * apy - cY * apx;
|
|
|
- bCROSScp = bX * cpy - bY * cpx;
|
|
|
+ x = data[ i ];
|
|
|
+ y = data[ i + 1 ];
|
|
|
+ if ( x < minX ) minX = x;
|
|
|
+ if ( y < minY ) minY = y;
|
|
|
+ if ( x > maxX ) maxX = x;
|
|
|
+ if ( y > maxY ) maxY = y;
|
|
|
|
|
|
- if ( ( aCROSSbp >= - Number.EPSILON ) && ( bCROSScp >= - Number.EPSILON ) && ( cCROSSap >= - Number.EPSILON ) ) return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // minX, minY and invSize are later used to transform coords into integers for z-order calculation
|
|
|
+
|
|
|
+ invSize = Math.max( maxX - minX, maxY - minY );
|
|
|
+ invSize = invSize !== 0 ? 1 / invSize : 0;
|
|
|
|
|
|
}
|
|
|
|
|
|
- return true;
|
|
|
+ earcutLinked( outerNode, triangles, dim, minX, minY, invSize );
|
|
|
+
|
|
|
+ return triangles;
|
|
|
|
|
|
}
|
|
|
|
|
|
- // takes in an contour array and returns
|
|
|
+ // create a circular doubly linked list from polygon points in the specified winding order
|
|
|
|
|
|
- return function triangulate( contour, indices ) {
|
|
|
+ function linkedList( data, start, end, dim, clockwise ) {
|
|
|
|
|
|
- var n = contour.length;
|
|
|
+ var i, last;
|
|
|
|
|
|
- if ( n < 3 ) return null;
|
|
|
+ if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) {
|
|
|
|
|
|
- var result = [],
|
|
|
- verts = [],
|
|
|
- vertIndices = [];
|
|
|
+ for ( i = start; i < end; i += dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );
|
|
|
|
|
|
- /* we want a counter-clockwise polygon in verts */
|
|
|
+ } else {
|
|
|
|
|
|
- var u, v, w;
|
|
|
+ for ( i = end - dim; i >= start; i -= dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );
|
|
|
|
|
|
- if ( ShapeUtils.area( contour ) > 0.0 ) {
|
|
|
+ }
|
|
|
|
|
|
- for ( v = 0; v < n; v ++ ) verts[ v ] = v;
|
|
|
+ if ( last && equals( last, last.next ) ) {
|
|
|
|
|
|
- } else {
|
|
|
-
|
|
|
- for ( v = 0; v < n; v ++ ) verts[ v ] = ( n - 1 ) - v;
|
|
|
+ removeNode( last );
|
|
|
+ last = last.next;
|
|
|
|
|
|
}
|
|
|
|
|
|
- var nv = n;
|
|
|
+ return last;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // eliminate colinear or duplicate points
|
|
|
+
|
|
|
+ function filterPoints( start, end ) {
|
|
|
|
|
|
- /* remove nv - 2 vertices, creating 1 triangle every time */
|
|
|
+ if ( ! start ) return start;
|
|
|
+ if ( ! end ) end = start;
|
|
|
|
|
|
- var count = 2 * nv; /* error detection */
|
|
|
+ var p = start, again;
|
|
|
|
|
|
- for ( v = nv - 1; nv > 2; ) {
|
|
|
+ do {
|
|
|
|
|
|
- /* if we loop, it is probably a non-simple polygon */
|
|
|
+ again = false;
|
|
|
|
|
|
- if ( ( count -- ) <= 0 ) {
|
|
|
+ if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) {
|
|
|
|
|
|
- //** Triangulate: ERROR - probable bad polygon!
|
|
|
+ removeNode( p );
|
|
|
+ p = end = p.prev;
|
|
|
+ if ( p === p.next ) break;
|
|
|
+ again = true;
|
|
|
|
|
|
- //throw ( "Warning, unable to triangulate polygon!" );
|
|
|
- //return null;
|
|
|
- // Sometimes warning is fine, especially polygons are triangulated in reverse.
|
|
|
- console.warn( 'THREE.ShapeUtils: Unable to triangulate polygon! in triangulate()' );
|
|
|
+ } else {
|
|
|
|
|
|
- if ( indices ) return vertIndices;
|
|
|
- return result;
|
|
|
+ p = p.next;
|
|
|
|
|
|
}
|
|
|
|
|
|
- /* three consecutive vertices in current polygon, <u,v,w> */
|
|
|
+ } while ( again || p !== end );
|
|
|
|
|
|
- u = v; if ( nv <= u ) u = 0; /* previous */
|
|
|
- v = u + 1; if ( nv <= v ) v = 0; /* new v */
|
|
|
- w = v + 1; if ( nv <= w ) w = 0; /* next */
|
|
|
+ return end;
|
|
|
|
|
|
- if ( snip( contour, u, v, w, nv, verts ) ) {
|
|
|
+ }
|
|
|
|
|
|
- var a, b, c, s, t;
|
|
|
+ // main ear slicing loop which triangulates a polygon (given as a linked list)
|
|
|
|
|
|
- /* true names of the vertices */
|
|
|
+ function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) {
|
|
|
|
|
|
- a = verts[ u ];
|
|
|
- b = verts[ v ];
|
|
|
- c = verts[ w ];
|
|
|
+ if ( ! ear ) return;
|
|
|
|
|
|
- /* output Triangle */
|
|
|
+ // interlink polygon nodes in z-order
|
|
|
|
|
|
- result.push( [ contour[ a ],
|
|
|
- contour[ b ],
|
|
|
- contour[ c ] ] );
|
|
|
+ if ( ! pass && invSize ) indexCurve( ear, minX, minY, invSize );
|
|
|
|
|
|
+ var stop = ear, prev, next;
|
|
|
|
|
|
- vertIndices.push( [ verts[ u ], verts[ v ], verts[ w ] ] );
|
|
|
+ // iterate through ears, slicing them one by one
|
|
|
|
|
|
- /* remove v from the remaining polygon */
|
|
|
+ while ( ear.prev !== ear.next ) {
|
|
|
|
|
|
- for ( s = v, t = v + 1; t < nv; s ++, t ++ ) {
|
|
|
+ prev = ear.prev;
|
|
|
+ next = ear.next;
|
|
|
|
|
|
- verts[ s ] = verts[ t ];
|
|
|
+ if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) {
|
|
|
|
|
|
- }
|
|
|
+ // cut off the triangle
|
|
|
+ triangles.push( prev.i / dim );
|
|
|
+ triangles.push( ear.i / dim );
|
|
|
+ triangles.push( next.i / dim );
|
|
|
|
|
|
- nv --;
|
|
|
+ removeNode( ear );
|
|
|
|
|
|
- /* reset error detection counter */
|
|
|
+ // skipping the next vertice leads to less sliver triangles
|
|
|
+ ear = next.next;
|
|
|
+ stop = next.next;
|
|
|
|
|
|
- count = 2 * nv;
|
|
|
+ continue;
|
|
|
|
|
|
}
|
|
|
|
|
|
- }
|
|
|
+ ear = next;
|
|
|
|
|
|
- if ( indices ) return vertIndices;
|
|
|
- return result;
|
|
|
+ // if we looped through the whole remaining polygon and can't find any more ears
|
|
|
|
|
|
- };
|
|
|
+ if ( ear === stop ) {
|
|
|
|
|
|
- } )(),
|
|
|
+ // try filtering points and slicing again
|
|
|
|
|
|
- triangulateShape: function ( contour, holes ) {
|
|
|
+ if ( ! pass ) {
|
|
|
|
|
|
- function removeDupEndPts( points ) {
|
|
|
+ earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 );
|
|
|
|
|
|
- var l = points.length;
|
|
|
+ // if this didn't work, try curing all small self-intersections locally
|
|
|
|
|
|
- if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {
|
|
|
+ } else if ( pass === 1 ) {
|
|
|
|
|
|
- points.pop();
|
|
|
+ ear = cureLocalIntersections( ear, triangles, dim );
|
|
|
+ earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 );
|
|
|
+
|
|
|
+ // as a last resort, try splitting the remaining polygon into two
|
|
|
+
|
|
|
+ } else if ( pass === 2 ) {
|
|
|
+
|
|
|
+ splitEarcut( ear, triangles, dim, minX, minY, invSize );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ break;
|
|
|
+
|
|
|
+ }
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
- removeDupEndPts( contour );
|
|
|
- holes.forEach( removeDupEndPts );
|
|
|
+ // check whether a polygon node forms a valid ear with adjacent nodes
|
|
|
|
|
|
- function point_in_segment_2D_colin( inSegPt1, inSegPt2, inOtherPt ) {
|
|
|
+ function isEar( ear ) {
|
|
|
|
|
|
- // inOtherPt needs to be collinear to the inSegment
|
|
|
- if ( inSegPt1.x !== inSegPt2.x ) {
|
|
|
+ var a = ear.prev,
|
|
|
+ b = ear,
|
|
|
+ c = ear.next;
|
|
|
|
|
|
- if ( inSegPt1.x < inSegPt2.x ) {
|
|
|
+ if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear
|
|
|
|
|
|
- return ( ( inSegPt1.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt2.x ) );
|
|
|
+ // now make sure we don't have other points inside the potential ear
|
|
|
+ var p = ear.next.next;
|
|
|
|
|
|
- } else {
|
|
|
+ while ( p !== ear.prev ) {
|
|
|
|
|
|
- return ( ( inSegPt2.x <= inOtherPt.x ) && ( inOtherPt.x <= inSegPt1.x ) );
|
|
|
+ if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) {
|
|
|
+
|
|
|
+ return false;
|
|
|
|
|
|
}
|
|
|
|
|
|
- } else {
|
|
|
+ p = p.next;
|
|
|
|
|
|
- if ( inSegPt1.y < inSegPt2.y ) {
|
|
|
+ }
|
|
|
|
|
|
- return ( ( inSegPt1.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt2.y ) );
|
|
|
+ return true;
|
|
|
|
|
|
- } else {
|
|
|
+ }
|
|
|
|
|
|
- return ( ( inSegPt2.y <= inOtherPt.y ) && ( inOtherPt.y <= inSegPt1.y ) );
|
|
|
+ function isEarHashed( ear, minX, minY, invSize ) {
|
|
|
|
|
|
- }
|
|
|
+ var a = ear.prev,
|
|
|
+ b = ear,
|
|
|
+ c = ear.next;
|
|
|
+
|
|
|
+ if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear
|
|
|
+
|
|
|
+ // triangle bbox; min & max are calculated like this for speed
|
|
|
+
|
|
|
+ var minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ),
|
|
|
+ minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ),
|
|
|
+ maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ),
|
|
|
+ maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y );
|
|
|
+
|
|
|
+ // z-order range for the current triangle bbox;
|
|
|
+
|
|
|
+ var minZ = zOrder( minTX, minTY, minX, minY, invSize ),
|
|
|
+ maxZ = zOrder( maxTX, maxTY, minX, minY, invSize );
|
|
|
+
|
|
|
+ // first look for points inside the triangle in increasing z-order
|
|
|
+
|
|
|
+ var p = ear.nextZ;
|
|
|
+
|
|
|
+ while ( p && p.z <= maxZ ) {
|
|
|
+
|
|
|
+ if ( p !== ear.prev && p !== ear.next &&
|
|
|
+ pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
|
|
|
+ area( p.prev, p, p.next ) >= 0 ) return false;
|
|
|
+ p = p.nextZ;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // then look for points in decreasing z-order
|
|
|
+
|
|
|
+ p = ear.prevZ;
|
|
|
+
|
|
|
+ while ( p && p.z >= minZ ) {
|
|
|
+
|
|
|
+ if ( p !== ear.prev && p !== ear.next &&
|
|
|
+ pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
|
|
|
+ area( p.prev, p, p.next ) >= 0 ) return false;
|
|
|
+
|
|
|
+ p = p.prevZ;
|
|
|
|
|
|
}
|
|
|
|
|
|
+ return true;
|
|
|
+
|
|
|
}
|
|
|
|
|
|
- function intersect_segments_2D( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1, inSeg2Pt2, inExcludeAdjacentSegs ) {
|
|
|
+ // go through all polygon nodes and cure small local self-intersections
|
|
|
|
|
|
- var seg1dx = inSeg1Pt2.x - inSeg1Pt1.x, seg1dy = inSeg1Pt2.y - inSeg1Pt1.y;
|
|
|
- var seg2dx = inSeg2Pt2.x - inSeg2Pt1.x, seg2dy = inSeg2Pt2.y - inSeg2Pt1.y;
|
|
|
+ function cureLocalIntersections( start, triangles, dim ) {
|
|
|
|
|
|
- var seg1seg2dx = inSeg1Pt1.x - inSeg2Pt1.x;
|
|
|
- var seg1seg2dy = inSeg1Pt1.y - inSeg2Pt1.y;
|
|
|
+ var p = start;
|
|
|
|
|
|
- var limit = seg1dy * seg2dx - seg1dx * seg2dy;
|
|
|
- var perpSeg1 = seg1dy * seg1seg2dx - seg1dx * seg1seg2dy;
|
|
|
+ do {
|
|
|
|
|
|
- if ( Math.abs( limit ) > Number.EPSILON ) {
|
|
|
+ var a = p.prev, b = p.next.next;
|
|
|
|
|
|
- // not parallel
|
|
|
+ if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) {
|
|
|
|
|
|
- var perpSeg2;
|
|
|
- if ( limit > 0 ) {
|
|
|
+ triangles.push( a.i / dim );
|
|
|
+ triangles.push( p.i / dim );
|
|
|
+ triangles.push( b.i / dim );
|
|
|
|
|
|
- if ( ( perpSeg1 < 0 ) || ( perpSeg1 > limit ) ) return [];
|
|
|
- perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
|
|
|
- if ( ( perpSeg2 < 0 ) || ( perpSeg2 > limit ) ) return [];
|
|
|
+ // remove two nodes involved
|
|
|
|
|
|
- } else {
|
|
|
+ removeNode( p );
|
|
|
+ removeNode( p.next );
|
|
|
|
|
|
- if ( ( perpSeg1 > 0 ) || ( perpSeg1 < limit ) ) return [];
|
|
|
- perpSeg2 = seg2dy * seg1seg2dx - seg2dx * seg1seg2dy;
|
|
|
- if ( ( perpSeg2 > 0 ) || ( perpSeg2 < limit ) ) return [];
|
|
|
+ p = start = b;
|
|
|
|
|
|
}
|
|
|
|
|
|
- // i.e. to reduce rounding errors
|
|
|
- // intersection at endpoint of segment#1?
|
|
|
- if ( perpSeg2 === 0 ) {
|
|
|
+ p = p.next;
|
|
|
|
|
|
- if ( ( inExcludeAdjacentSegs ) &&
|
|
|
- ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
|
|
|
- return [ inSeg1Pt1 ];
|
|
|
+ } while ( p !== start );
|
|
|
|
|
|
- }
|
|
|
- if ( perpSeg2 === limit ) {
|
|
|
+ return p;
|
|
|
|
|
|
- if ( ( inExcludeAdjacentSegs ) &&
|
|
|
- ( ( perpSeg1 === 0 ) || ( perpSeg1 === limit ) ) ) return [];
|
|
|
- return [ inSeg1Pt2 ];
|
|
|
+ }
|
|
|
|
|
|
- }
|
|
|
- // intersection at endpoint of segment#2?
|
|
|
- if ( perpSeg1 === 0 ) return [ inSeg2Pt1 ];
|
|
|
- if ( perpSeg1 === limit ) return [ inSeg2Pt2 ];
|
|
|
+ // try splitting polygon into two and triangulate them independently
|
|
|
|
|
|
- // return real intersection point
|
|
|
- var factorSeg1 = perpSeg2 / limit;
|
|
|
- return [ { x: inSeg1Pt1.x + factorSeg1 * seg1dx, y: inSeg1Pt1.y + factorSeg1 * seg1dy } ];
|
|
|
+ function splitEarcut( start, triangles, dim, minX, minY, invSize ) {
|
|
|
|
|
|
- } else {
|
|
|
+ // look for a valid diagonal that divides the polygon into two
|
|
|
|
|
|
- // parallel or collinear
|
|
|
- if ( ( perpSeg1 !== 0 ) ||
|
|
|
- ( seg2dy * seg1seg2dx !== seg2dx * seg1seg2dy ) ) return [];
|
|
|
+ var a = start;
|
|
|
|
|
|
- // they are collinear or degenerate
|
|
|
- var seg1Pt = ( ( seg1dx === 0 ) && ( seg1dy === 0 ) ); // segment1 is just a point?
|
|
|
- var seg2Pt = ( ( seg2dx === 0 ) && ( seg2dy === 0 ) ); // segment2 is just a point?
|
|
|
- // both segments are points
|
|
|
- if ( seg1Pt && seg2Pt ) {
|
|
|
+ do {
|
|
|
|
|
|
- if ( ( inSeg1Pt1.x !== inSeg2Pt1.x ) ||
|
|
|
- ( inSeg1Pt1.y !== inSeg2Pt1.y ) ) return []; // they are distinct points
|
|
|
- return [ inSeg1Pt1 ]; // they are the same point
|
|
|
+ var b = a.next.next;
|
|
|
|
|
|
- }
|
|
|
- // segment#1 is a single point
|
|
|
- if ( seg1Pt ) {
|
|
|
+ while ( b !== a.prev ) {
|
|
|
|
|
|
- if ( ! point_in_segment_2D_colin( inSeg2Pt1, inSeg2Pt2, inSeg1Pt1 ) ) return []; // but not in segment#2
|
|
|
- return [ inSeg1Pt1 ];
|
|
|
+ if ( a.i !== b.i && isValidDiagonal( a, b ) ) {
|
|
|
|
|
|
- }
|
|
|
- // segment#2 is a single point
|
|
|
- if ( seg2Pt ) {
|
|
|
+ // split the polygon in two by the diagonal
|
|
|
+
|
|
|
+ var c = splitPolygon( a, b );
|
|
|
|
|
|
- if ( ! point_in_segment_2D_colin( inSeg1Pt1, inSeg1Pt2, inSeg2Pt1 ) ) return []; // but not in segment#1
|
|
|
- return [ inSeg2Pt1 ];
|
|
|
+ // filter colinear points around the cuts
|
|
|
+
|
|
|
+ a = filterPoints( a, a.next );
|
|
|
+ c = filterPoints( c, c.next );
|
|
|
+
|
|
|
+ // run earcut on each half
|
|
|
+
|
|
|
+ earcutLinked( a, triangles, dim, minX, minY, invSize );
|
|
|
+ earcutLinked( c, triangles, dim, minX, minY, invSize );
|
|
|
+ return;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ b = b.next;
|
|
|
|
|
|
}
|
|
|
|
|
|
- // they are collinear segments, which might overlap
|
|
|
- var seg1min, seg1max, seg1minVal, seg1maxVal;
|
|
|
- var seg2min, seg2max, seg2minVal, seg2maxVal;
|
|
|
- if ( seg1dx !== 0 ) {
|
|
|
+ a = a.next;
|
|
|
|
|
|
- // the segments are NOT on a vertical line
|
|
|
- if ( inSeg1Pt1.x < inSeg1Pt2.x ) {
|
|
|
+ } while ( a !== start );
|
|
|
|
|
|
- seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.x;
|
|
|
- seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.x;
|
|
|
+ }
|
|
|
|
|
|
- } else {
|
|
|
+ // link every hole into the outer loop, producing a single-ring polygon without holes
|
|
|
|
|
|
- seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.x;
|
|
|
- seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.x;
|
|
|
+ function eliminateHoles( data, holeIndices, outerNode, dim ) {
|
|
|
|
|
|
- }
|
|
|
- if ( inSeg2Pt1.x < inSeg2Pt2.x ) {
|
|
|
+ var queue = [], i, len, start, end, list;
|
|
|
|
|
|
- seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.x;
|
|
|
- seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.x;
|
|
|
+ for ( i = 0, len = holeIndices.length; i < len; i ++ ) {
|
|
|
|
|
|
- } else {
|
|
|
+ start = holeIndices[ i ] * dim;
|
|
|
+ end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length;
|
|
|
+ list = linkedList( data, start, end, dim, false );
|
|
|
+ if ( list === list.next ) list.steiner = true;
|
|
|
+ queue.push( getLeftmost( list ) );
|
|
|
|
|
|
- seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.x;
|
|
|
- seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.x;
|
|
|
+ }
|
|
|
|
|
|
- }
|
|
|
+ queue.sort( compareX );
|
|
|
|
|
|
- } else {
|
|
|
+ // process holes from left to right
|
|
|
|
|
|
- // the segments are on a vertical line
|
|
|
- if ( inSeg1Pt1.y < inSeg1Pt2.y ) {
|
|
|
+ for ( i = 0; i < queue.length; i ++ ) {
|
|
|
|
|
|
- seg1min = inSeg1Pt1; seg1minVal = inSeg1Pt1.y;
|
|
|
- seg1max = inSeg1Pt2; seg1maxVal = inSeg1Pt2.y;
|
|
|
+ eliminateHole( queue[ i ], outerNode );
|
|
|
+ outerNode = filterPoints( outerNode, outerNode.next );
|
|
|
|
|
|
- } else {
|
|
|
+ }
|
|
|
|
|
|
- seg1min = inSeg1Pt2; seg1minVal = inSeg1Pt2.y;
|
|
|
- seg1max = inSeg1Pt1; seg1maxVal = inSeg1Pt1.y;
|
|
|
+ return outerNode;
|
|
|
|
|
|
- }
|
|
|
- if ( inSeg2Pt1.y < inSeg2Pt2.y ) {
|
|
|
+ }
|
|
|
|
|
|
- seg2min = inSeg2Pt1; seg2minVal = inSeg2Pt1.y;
|
|
|
- seg2max = inSeg2Pt2; seg2maxVal = inSeg2Pt2.y;
|
|
|
+ function compareX( a, b ) {
|
|
|
|
|
|
- } else {
|
|
|
+ return a.x - b.x;
|
|
|
|
|
|
- seg2min = inSeg2Pt2; seg2minVal = inSeg2Pt2.y;
|
|
|
- seg2max = inSeg2Pt1; seg2maxVal = inSeg2Pt1.y;
|
|
|
+ }
|
|
|
+
|
|
|
+ // find a bridge between vertices that connects hole with an outer ring and and link it
|
|
|
+
|
|
|
+ function eliminateHole( hole, outerNode ) {
|
|
|
+
|
|
|
+ outerNode = findHoleBridge( hole, outerNode );
|
|
|
+
|
|
|
+ if ( outerNode ) {
|
|
|
+
|
|
|
+ var b = splitPolygon( outerNode, hole );
|
|
|
+
|
|
|
+ filterPoints( b, b.next );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // David Eberly's algorithm for finding a bridge between hole and outer polygon
|
|
|
+
|
|
|
+ function findHoleBridge( hole, outerNode ) {
|
|
|
+
|
|
|
+ var p = outerNode,
|
|
|
+ hx = hole.x,
|
|
|
+ hy = hole.y,
|
|
|
+ qx = - Infinity,
|
|
|
+ m;
|
|
|
+
|
|
|
+ // find a segment intersected by a ray from the hole's leftmost point to the left;
|
|
|
+ // segment's endpoint with lesser x will be potential connection point
|
|
|
+
|
|
|
+ do {
|
|
|
+
|
|
|
+ if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) {
|
|
|
+
|
|
|
+ var x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y );
|
|
|
+
|
|
|
+ if ( x <= hx && x > qx ) {
|
|
|
+
|
|
|
+ qx = x;
|
|
|
+
|
|
|
+ if ( x === hx ) {
|
|
|
+
|
|
|
+ if ( hy === p.y ) return p;
|
|
|
+ if ( hy === p.next.y ) return p.next;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ m = p.x < p.next.x ? p : p.next;
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
- if ( seg1minVal <= seg2minVal ) {
|
|
|
|
|
|
- if ( seg1maxVal < seg2minVal ) return [];
|
|
|
- if ( seg1maxVal === seg2minVal ) {
|
|
|
+ p = p.next;
|
|
|
|
|
|
- if ( inExcludeAdjacentSegs ) return [];
|
|
|
- return [ seg2min ];
|
|
|
+ } while ( p !== outerNode );
|
|
|
|
|
|
- }
|
|
|
- if ( seg1maxVal <= seg2maxVal ) return [ seg2min, seg1max ];
|
|
|
- return [ seg2min, seg2max ];
|
|
|
+ if ( ! m ) return null;
|
|
|
|
|
|
- } else {
|
|
|
+ if ( hx === qx ) return m.prev; // hole touches outer segment; pick lower endpoint
|
|
|
+
|
|
|
+ // look for points inside the triangle of hole point, segment intersection and endpoint;
|
|
|
+ // if there are no points found, we have a valid connection;
|
|
|
+ // otherwise choose the point of the minimum angle with the ray as connection point
|
|
|
|
|
|
- if ( seg1minVal > seg2maxVal ) return [];
|
|
|
- if ( seg1minVal === seg2maxVal ) {
|
|
|
+ var stop = m,
|
|
|
+ mx = m.x,
|
|
|
+ my = m.y,
|
|
|
+ tanMin = Infinity,
|
|
|
+ tan;
|
|
|
|
|
|
- if ( inExcludeAdjacentSegs ) return [];
|
|
|
- return [ seg1min ];
|
|
|
+ p = m.next;
|
|
|
+
|
|
|
+ while ( p !== stop ) {
|
|
|
+
|
|
|
+ if ( hx >= p.x && p.x >= mx && hx !== p.x &&
|
|
|
+ pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) {
|
|
|
+
|
|
|
+ tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential
|
|
|
+
|
|
|
+ if ( ( tan < tanMin || ( tan === tanMin && p.x > m.x ) ) && locallyInside( p, hole ) ) {
|
|
|
+
|
|
|
+ m = p;
|
|
|
+ tanMin = tan;
|
|
|
|
|
|
}
|
|
|
- if ( seg1maxVal <= seg2maxVal ) return [ seg1min, seg1max ];
|
|
|
- return [ seg1min, seg2max ];
|
|
|
|
|
|
}
|
|
|
|
|
|
+ p = p.next;
|
|
|
+
|
|
|
}
|
|
|
|
|
|
+ return m;
|
|
|
+
|
|
|
}
|
|
|
|
|
|
- function isPointInsideAngle( inVertex, inLegFromPt, inLegToPt, inOtherPt ) {
|
|
|
+ // interlink polygon nodes in z-order
|
|
|
|
|
|
- // The order of legs is important
|
|
|
+ function indexCurve( start, minX, minY, invSize ) {
|
|
|
|
|
|
- // translation of all points, so that Vertex is at (0,0)
|
|
|
- var legFromPtX = inLegFromPt.x - inVertex.x, legFromPtY = inLegFromPt.y - inVertex.y;
|
|
|
- var legToPtX = inLegToPt.x - inVertex.x, legToPtY = inLegToPt.y - inVertex.y;
|
|
|
- var otherPtX = inOtherPt.x - inVertex.x, otherPtY = inOtherPt.y - inVertex.y;
|
|
|
+ var p = start;
|
|
|
|
|
|
- // main angle >0: < 180 deg.; 0: 180 deg.; <0: > 180 deg.
|
|
|
- var from2toAngle = legFromPtX * legToPtY - legFromPtY * legToPtX;
|
|
|
- var from2otherAngle = legFromPtX * otherPtY - legFromPtY * otherPtX;
|
|
|
+ do {
|
|
|
|
|
|
- if ( Math.abs( from2toAngle ) > Number.EPSILON ) {
|
|
|
+ if ( p.z === null ) p.z = zOrder( p.x, p.y, minX, minY, invSize );
|
|
|
+ p.prevZ = p.prev;
|
|
|
+ p.nextZ = p.next;
|
|
|
+ p = p.next;
|
|
|
|
|
|
- // angle != 180 deg.
|
|
|
+ } while ( p !== start );
|
|
|
|
|
|
- var other2toAngle = otherPtX * legToPtY - otherPtY * legToPtX;
|
|
|
- // console.log( "from2to: " + from2toAngle + ", from2other: " + from2otherAngle + ", other2to: " + other2toAngle );
|
|
|
+ p.prevZ.nextZ = null;
|
|
|
+ p.prevZ = null;
|
|
|
|
|
|
- if ( from2toAngle > 0 ) {
|
|
|
+ sortLinked( p );
|
|
|
|
|
|
- // main angle < 180 deg.
|
|
|
- return ( ( from2otherAngle >= 0 ) && ( other2toAngle >= 0 ) );
|
|
|
+ }
|
|
|
|
|
|
- } else {
|
|
|
+ // Simon Tatham's linked list merge sort algorithm
|
|
|
+ // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
|
|
|
+
|
|
|
+ function sortLinked( list ) {
|
|
|
+
|
|
|
+ var i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1;
|
|
|
+
|
|
|
+ do {
|
|
|
+
|
|
|
+ p = list;
|
|
|
+ list = null;
|
|
|
+ tail = null;
|
|
|
+ numMerges = 0;
|
|
|
+
|
|
|
+ while ( p ) {
|
|
|
+
|
|
|
+ numMerges ++;
|
|
|
+ q = p;
|
|
|
+ pSize = 0;
|
|
|
+
|
|
|
+ for ( i = 0; i < inSize; i ++ ) {
|
|
|
+
|
|
|
+ pSize ++;
|
|
|
+ q = q.nextZ;
|
|
|
+ if ( ! q ) break;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ qSize = inSize;
|
|
|
+
|
|
|
+ while ( pSize > 0 || ( qSize > 0 && q ) ) {
|
|
|
+
|
|
|
+ if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) {
|
|
|
+
|
|
|
+ e = p;
|
|
|
+ p = p.nextZ;
|
|
|
+ pSize --;
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ e = q;
|
|
|
+ q = q.nextZ;
|
|
|
+ qSize --;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( tail ) tail.nextZ = e;
|
|
|
+ else list = e;
|
|
|
|
|
|
- // main angle > 180 deg.
|
|
|
- return ( ( from2otherAngle >= 0 ) || ( other2toAngle >= 0 ) );
|
|
|
+ e.prevZ = tail;
|
|
|
+ tail = e;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ p = q;
|
|
|
|
|
|
}
|
|
|
|
|
|
- } else {
|
|
|
+ tail.nextZ = null;
|
|
|
+ inSize *= 2;
|
|
|
|
|
|
- // angle == 180 deg.
|
|
|
- // console.log( "from2to: 180 deg., from2other: " + from2otherAngle );
|
|
|
- return ( from2otherAngle > 0 );
|
|
|
+ } while ( numMerges > 1 );
|
|
|
|
|
|
- }
|
|
|
+ return list;
|
|
|
|
|
|
}
|
|
|
|
|
|
+ // z-order of a point given coords and inverse of the longer side of data bbox
|
|
|
|
|
|
- function removeHoles( contour, holes ) {
|
|
|
+ function zOrder( x, y, minX, minY, invSize ) {
|
|
|
|
|
|
- var shape = contour.concat(); // work on this shape
|
|
|
- var hole;
|
|
|
+ // coords are transformed into non-negative 15-bit integer range
|
|
|
|
|
|
- function isCutLineInsideAngles( inShapeIdx, inHoleIdx ) {
|
|
|
+ x = 32767 * ( x - minX ) * invSize;
|
|
|
+ y = 32767 * ( y - minY ) * invSize;
|
|
|
|
|
|
- // Check if hole point lies within angle around shape point
|
|
|
- var lastShapeIdx = shape.length - 1;
|
|
|
+ x = ( x | ( x << 8 ) ) & 0x00FF00FF;
|
|
|
+ x = ( x | ( x << 4 ) ) & 0x0F0F0F0F;
|
|
|
+ x = ( x | ( x << 2 ) ) & 0x33333333;
|
|
|
+ x = ( x | ( x << 1 ) ) & 0x55555555;
|
|
|
|
|
|
- var prevShapeIdx = inShapeIdx - 1;
|
|
|
- if ( prevShapeIdx < 0 ) prevShapeIdx = lastShapeIdx;
|
|
|
+ y = ( y | ( y << 8 ) ) & 0x00FF00FF;
|
|
|
+ y = ( y | ( y << 4 ) ) & 0x0F0F0F0F;
|
|
|
+ y = ( y | ( y << 2 ) ) & 0x33333333;
|
|
|
+ y = ( y | ( y << 1 ) ) & 0x55555555;
|
|
|
|
|
|
- var nextShapeIdx = inShapeIdx + 1;
|
|
|
- if ( nextShapeIdx > lastShapeIdx ) nextShapeIdx = 0;
|
|
|
+ return x | ( y << 1 );
|
|
|
|
|
|
- var insideAngle = isPointInsideAngle( shape[ inShapeIdx ], shape[ prevShapeIdx ], shape[ nextShapeIdx ], hole[ inHoleIdx ] );
|
|
|
- if ( ! insideAngle ) {
|
|
|
+ }
|
|
|
|
|
|
- // console.log( "Vertex (Shape): " + inShapeIdx + ", Point: " + hole[inHoleIdx].x + "/" + hole[inHoleIdx].y );
|
|
|
- return false;
|
|
|
+ // find the leftmost node of a polygon ring
|
|
|
|
|
|
- }
|
|
|
+ function getLeftmost( start ) {
|
|
|
|
|
|
- // Check if shape point lies within angle around hole point
|
|
|
- var lastHoleIdx = hole.length - 1;
|
|
|
+ var p = start, leftmost = start;
|
|
|
|
|
|
- var prevHoleIdx = inHoleIdx - 1;
|
|
|
- if ( prevHoleIdx < 0 ) prevHoleIdx = lastHoleIdx;
|
|
|
+ do {
|
|
|
|
|
|
- var nextHoleIdx = inHoleIdx + 1;
|
|
|
- if ( nextHoleIdx > lastHoleIdx ) nextHoleIdx = 0;
|
|
|
+ if ( p.x < leftmost.x ) leftmost = p;
|
|
|
+ p = p.next;
|
|
|
|
|
|
- insideAngle = isPointInsideAngle( hole[ inHoleIdx ], hole[ prevHoleIdx ], hole[ nextHoleIdx ], shape[ inShapeIdx ] );
|
|
|
- if ( ! insideAngle ) {
|
|
|
+ } while ( p !== start );
|
|
|
|
|
|
- // console.log( "Vertex (Hole): " + inHoleIdx + ", Point: " + shape[inShapeIdx].x + "/" + shape[inShapeIdx].y );
|
|
|
- return false;
|
|
|
+ return leftmost;
|
|
|
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
- return true;
|
|
|
+ // check if a point lies within a convex triangle
|
|
|
|
|
|
- }
|
|
|
+ function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) {
|
|
|
|
|
|
- function intersectsShapeEdge( inShapePt, inHolePt ) {
|
|
|
+ return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 &&
|
|
|
+ ( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 &&
|
|
|
+ ( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0;
|
|
|
|
|
|
- // checks for intersections with shape edges
|
|
|
- var sIdx, nextIdx, intersection;
|
|
|
- for ( sIdx = 0; sIdx < shape.length; sIdx ++ ) {
|
|
|
+ }
|
|
|
|
|
|
- nextIdx = sIdx + 1; nextIdx %= shape.length;
|
|
|
- intersection = intersect_segments_2D( inShapePt, inHolePt, shape[ sIdx ], shape[ nextIdx ], true );
|
|
|
- if ( intersection.length > 0 ) return true;
|
|
|
+ // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
|
|
|
|
|
|
- }
|
|
|
+ function isValidDiagonal( a, b ) {
|
|
|
|
|
|
- return false;
|
|
|
+ return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) &&
|
|
|
+ locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b );
|
|
|
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
- var indepHoles = [];
|
|
|
+ // signed area of a triangle
|
|
|
|
|
|
- function intersectsHoleEdge( inShapePt, inHolePt ) {
|
|
|
+ function area( p, q, r ) {
|
|
|
|
|
|
- // checks for intersections with hole edges
|
|
|
- var ihIdx, chkHole,
|
|
|
- hIdx, nextIdx, intersection;
|
|
|
- for ( ihIdx = 0; ihIdx < indepHoles.length; ihIdx ++ ) {
|
|
|
+ return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y );
|
|
|
|
|
|
- chkHole = holes[ indepHoles[ ihIdx ] ];
|
|
|
- for ( hIdx = 0; hIdx < chkHole.length; hIdx ++ ) {
|
|
|
+ }
|
|
|
|
|
|
- nextIdx = hIdx + 1; nextIdx %= chkHole.length;
|
|
|
- intersection = intersect_segments_2D( inShapePt, inHolePt, chkHole[ hIdx ], chkHole[ nextIdx ], true );
|
|
|
- if ( intersection.length > 0 ) return true;
|
|
|
+ // check if two points are equal
|
|
|
|
|
|
- }
|
|
|
+ function equals( p1, p2 ) {
|
|
|
|
|
|
- }
|
|
|
- return false;
|
|
|
+ return p1.x === p2.x && p1.y === p2.y;
|
|
|
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
- var holeIndex, shapeIndex,
|
|
|
- shapePt, holePt,
|
|
|
- holeIdx, cutKey, failedCuts = [],
|
|
|
- tmpShape1, tmpShape2,
|
|
|
- tmpHole1, tmpHole2;
|
|
|
+ // check if two segments intersect
|
|
|
|
|
|
- for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
|
|
|
+ function intersects( p1, q1, p2, q2 ) {
|
|
|
|
|
|
- indepHoles.push( h );
|
|
|
+ if ( ( equals( p1, q1 ) && equals( p2, q2 ) ) ||
|
|
|
+ ( equals( p1, q2 ) && equals( p2, q1 ) ) ) return true;
|
|
|
|
|
|
- }
|
|
|
+ return area( p1, q1, p2 ) > 0 !== area( p1, q1, q2 ) > 0 &&
|
|
|
+ area( p2, q2, p1 ) > 0 !== area( p2, q2, q1 ) > 0;
|
|
|
|
|
|
- var minShapeIndex = 0;
|
|
|
- var counter = indepHoles.length * 2;
|
|
|
- while ( indepHoles.length > 0 ) {
|
|
|
+ }
|
|
|
|
|
|
- counter --;
|
|
|
- if ( counter < 0 ) {
|
|
|
+ // check if a polygon diagonal intersects any polygon segments
|
|
|
|
|
|
- console.log( 'THREE.ShapeUtils: Infinite Loop! Holes left:" + indepHoles.length + ", Probably Hole outside Shape!' );
|
|
|
- break;
|
|
|
+ function intersectsPolygon( a, b ) {
|
|
|
|
|
|
- }
|
|
|
+ var p = a;
|
|
|
|
|
|
- // search for shape-vertex and hole-vertex,
|
|
|
- // which can be connected without intersections
|
|
|
- for ( shapeIndex = minShapeIndex; shapeIndex < shape.length; shapeIndex ++ ) {
|
|
|
+ do {
|
|
|
|
|
|
- shapePt = shape[ shapeIndex ];
|
|
|
- holeIndex = - 1;
|
|
|
+ if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
|
|
|
+ intersects( p, p.next, a, b ) ) {
|
|
|
|
|
|
- // search for hole which can be reached without intersections
|
|
|
- for ( var h = 0; h < indepHoles.length; h ++ ) {
|
|
|
+ return true;
|
|
|
|
|
|
- holeIdx = indepHoles[ h ];
|
|
|
+ }
|
|
|
|
|
|
- // prevent multiple checks
|
|
|
- cutKey = shapePt.x + ':' + shapePt.y + ':' + holeIdx;
|
|
|
- if ( failedCuts[ cutKey ] !== undefined ) continue;
|
|
|
+ p = p.next;
|
|
|
|
|
|
- hole = holes[ holeIdx ];
|
|
|
- for ( var h2 = 0; h2 < hole.length; h2 ++ ) {
|
|
|
+ } while ( p !== a );
|
|
|
|
|
|
- holePt = hole[ h2 ];
|
|
|
- if ( ! isCutLineInsideAngles( shapeIndex, h2 ) ) continue;
|
|
|
- if ( intersectsShapeEdge( shapePt, holePt ) ) continue;
|
|
|
- if ( intersectsHoleEdge( shapePt, holePt ) ) continue;
|
|
|
+ return false;
|
|
|
|
|
|
- holeIndex = h2;
|
|
|
- indepHoles.splice( h, 1 );
|
|
|
+ }
|
|
|
|
|
|
- tmpShape1 = shape.slice( 0, shapeIndex + 1 );
|
|
|
- tmpShape2 = shape.slice( shapeIndex );
|
|
|
- tmpHole1 = hole.slice( holeIndex );
|
|
|
- tmpHole2 = hole.slice( 0, holeIndex + 1 );
|
|
|
+ // check if a polygon diagonal is locally inside the polygon
|
|
|
|
|
|
- shape = tmpShape1.concat( tmpHole1 ).concat( tmpHole2 ).concat( tmpShape2 );
|
|
|
+ function locallyInside( a, b ) {
|
|
|
|
|
|
- minShapeIndex = shapeIndex;
|
|
|
+ return area( a.prev, a, a.next ) < 0 ?
|
|
|
+ area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 :
|
|
|
+ area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0;
|
|
|
|
|
|
- // Debug only, to show the selected cuts
|
|
|
- // glob_CutLines.push( [ shapePt, holePt ] );
|
|
|
+ }
|
|
|
|
|
|
- break;
|
|
|
+ // check if the middle point of a polygon diagonal is inside the polygon
|
|
|
|
|
|
- }
|
|
|
- if ( holeIndex >= 0 ) break; // hole-vertex found
|
|
|
+ function middleInside( a, b ) {
|
|
|
|
|
|
- failedCuts[ cutKey ] = true; // remember failure
|
|
|
+ var p = a,
|
|
|
+ inside = false,
|
|
|
+ px = ( a.x + b.x ) / 2,
|
|
|
+ py = ( a.y + b.y ) / 2;
|
|
|
|
|
|
- }
|
|
|
- if ( holeIndex >= 0 ) break; // hole-vertex found
|
|
|
+ do {
|
|
|
+
|
|
|
+ if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y &&
|
|
|
+ ( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) ) {
|
|
|
+
|
|
|
+ inside = ! inside;
|
|
|
|
|
|
}
|
|
|
|
|
|
- }
|
|
|
+ p = p.next;
|
|
|
+
|
|
|
+ } while ( p !== a );
|
|
|
|
|
|
- return shape; /* shape with no holes */
|
|
|
+ return inside;
|
|
|
|
|
|
}
|
|
|
|
|
|
+ // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
|
|
|
+ // if one belongs to the outer ring and another to a hole, it merges it into a single ring
|
|
|
|
|
|
- var i, il, f, face,
|
|
|
- key, index,
|
|
|
- allPointsMap = {};
|
|
|
+ function splitPolygon( a, b ) {
|
|
|
|
|
|
- // To maintain reference to old shape, one must match coordinates, or offset the indices from original arrays. It's probably easier to do the first.
|
|
|
+ var a2 = new Node( a.i, a.x, a.y ),
|
|
|
+ b2 = new Node( b.i, b.x, b.y ),
|
|
|
+ an = a.next,
|
|
|
+ bp = b.prev;
|
|
|
|
|
|
- var allpoints = contour.concat();
|
|
|
+ a.next = b;
|
|
|
+ b.prev = a;
|
|
|
|
|
|
- for ( var h = 0, hl = holes.length; h < hl; h ++ ) {
|
|
|
+ a2.next = an;
|
|
|
+ an.prev = a2;
|
|
|
|
|
|
- Array.prototype.push.apply( allpoints, holes[ h ] );
|
|
|
+ b2.next = a2;
|
|
|
+ a2.prev = b2;
|
|
|
+
|
|
|
+ bp.next = b2;
|
|
|
+ b2.prev = bp;
|
|
|
+
|
|
|
+ return b2;
|
|
|
|
|
|
}
|
|
|
|
|
|
- //console.log( "allpoints",allpoints, allpoints.length );
|
|
|
+ // create a node and optionally link it with previous one (in a circular doubly linked list)
|
|
|
+
|
|
|
+ function insertNode( i, x, y, last ) {
|
|
|
|
|
|
- // prepare all points map
|
|
|
+ var p = new Node( i, x, y );
|
|
|
|
|
|
- for ( i = 0, il = allpoints.length; i < il; i ++ ) {
|
|
|
+ if ( ! last ) {
|
|
|
|
|
|
- key = allpoints[ i ].x + ':' + allpoints[ i ].y;
|
|
|
+ p.prev = p;
|
|
|
+ p.next = p;
|
|
|
|
|
|
- if ( allPointsMap[ key ] !== undefined ) {
|
|
|
+ } else {
|
|
|
|
|
|
- console.warn( 'THREE.ShapeUtils: Duplicate point', key, i );
|
|
|
+ p.next = last.next;
|
|
|
+ p.prev = last;
|
|
|
+ last.next.prev = p;
|
|
|
+ last.next = p;
|
|
|
|
|
|
}
|
|
|
|
|
|
- allPointsMap[ key ] = i;
|
|
|
+ return p;
|
|
|
|
|
|
}
|
|
|
|
|
|
- // remove holes by cutting paths to holes and adding them to the shape
|
|
|
- var shapeWithoutHoles = removeHoles( contour, holes );
|
|
|
+ function removeNode( p ) {
|
|
|
+
|
|
|
+ p.next.prev = p.prev;
|
|
|
+ p.prev.next = p.next;
|
|
|
|
|
|
- var triangles = ShapeUtils.triangulate( shapeWithoutHoles, false ); // True returns indices for points of spooled shape
|
|
|
- //console.log( "triangles",triangles, triangles.length );
|
|
|
+ if ( p.prevZ ) p.prevZ.nextZ = p.nextZ;
|
|
|
+ if ( p.nextZ ) p.nextZ.prevZ = p.prevZ;
|
|
|
|
|
|
- // check all face vertices against all points map
|
|
|
+ }
|
|
|
|
|
|
- for ( i = 0, il = triangles.length; i < il; i ++ ) {
|
|
|
+ function Node( i, x, y ) {
|
|
|
|
|
|
- face = triangles[ i ];
|
|
|
+ // vertice index in coordinates array
|
|
|
+ this.i = i;
|
|
|
|
|
|
- for ( f = 0; f < 3; f ++ ) {
|
|
|
+ // vertex coordinates
|
|
|
+ this.x = x;
|
|
|
+ this.y = y;
|
|
|
|
|
|
- key = face[ f ].x + ':' + face[ f ].y;
|
|
|
+ // previous and next vertice nodes in a polygon ring
|
|
|
+ this.prev = null;
|
|
|
+ this.next = null;
|
|
|
|
|
|
- index = allPointsMap[ key ];
|
|
|
+ // z-order curve value
|
|
|
+ this.z = null;
|
|
|
|
|
|
- if ( index !== undefined ) {
|
|
|
+ // previous and next nodes in z-order
|
|
|
+ this.prevZ = null;
|
|
|
+ this.nextZ = null;
|
|
|
|
|
|
- face[ f ] = index;
|
|
|
+ // indicates whether this is a steiner point
|
|
|
+ this.steiner = false;
|
|
|
|
|
|
- }
|
|
|
+ }
|
|
|
+
|
|
|
+ function signedArea( data, start, end, dim ) {
|
|
|
+
|
|
|
+ var sum = 0;
|
|
|
+
|
|
|
+ for ( var i = start, j = end - dim; i < end; i += dim ) {
|
|
|
+
|
|
|
+ sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] );
|
|
|
+ j = i;
|
|
|
|
|
|
}
|
|
|
|
|
|
+ return sum;
|
|
|
+
|
|
|
}
|
|
|
|
|
|
- return triangles.concat();
|
|
|
+ return earcut( vertices, holeIndices );
|
|
|
|
|
|
},
|
|
|
|
|
|
- isClockWise: function ( pts ) {
|
|
|
+ triangulateShape: function ( contour, holes ) {
|
|
|
|
|
|
- return ShapeUtils.area( pts ) < 0;
|
|
|
+ function removeDupEndPts( points ) {
|
|
|
+
|
|
|
+ var l = points.length;
|
|
|
+
|
|
|
+ if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {
|
|
|
+
|
|
|
+ points.pop();
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ function addContour( vertices, contour ) {
|
|
|
+
|
|
|
+ for ( var i = 0; i < contour.length; i ++ ) {
|
|
|
+
|
|
|
+ vertices.push( contour[ i ].x );
|
|
|
+ vertices.push( contour[ i ].y );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ var vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
|
|
|
+ var holeIndices = []; // array of hole indices
|
|
|
+ var faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
|
|
|
+
|
|
|
+ removeDupEndPts( contour );
|
|
|
+ addContour( vertices, contour );
|
|
|
+
|
|
|
+ //
|
|
|
+
|
|
|
+ var holeIndex = contour.length;
|
|
|
+ holes.forEach( removeDupEndPts );
|
|
|
+
|
|
|
+ for ( i = 0; i < holes.length; i ++ ) {
|
|
|
+
|
|
|
+ holeIndices.push( holeIndex );
|
|
|
+ holeIndex += holes[ i ].length;
|
|
|
+ addContour( vertices, holes[ i ] );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ //
|
|
|
+
|
|
|
+ var triangles = ShapeUtils.triangulate( vertices, holeIndices );
|
|
|
+
|
|
|
+ //
|
|
|
+
|
|
|
+ for ( var i = 0; i < triangles.length; i += 3 ) {
|
|
|
+
|
|
|
+ faces.push( triangles.slice( i, i + 3 ) );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ return faces;
|
|
|
|
|
|
}
|
|
|
|