|
@@ -1,814 +0,0 @@
|
|
|
-/**
|
|
|
- * @author Emmett Lalish / elalish
|
|
|
- *
|
|
|
- * This class generates a Prefiltered, Mipmapped Radiance Environment Map
|
|
|
- * (PMREM) from a cubeMap environment texture. This allows different levels of
|
|
|
- * blur to be quickly accessed based on material roughness. It is packed into a
|
|
|
- * special CubeUV format that allows us to perform custom interpolation so that
|
|
|
- * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
|
|
|
- * chain, it only goes down to the LOD_MIN level (above), and then creates extra
|
|
|
- * even more filtered 'mips' at the same LOD_MIN resolution, associated with
|
|
|
- * higher roughness levels. In this way we maintain resolution to smoothly
|
|
|
- * interpolate diffuse lighting while limiting sampling computation.
|
|
|
- */
|
|
|
-
|
|
|
-THREE.PMREMGenerator = ( function () {
|
|
|
-
|
|
|
- var LOD_MIN = 4;
|
|
|
- var LOD_MAX = 8;
|
|
|
- var SIZE_MAX = Math.pow( 2, LOD_MAX );
|
|
|
- // The standard deviations (radians) associated with the extra mips. These are
|
|
|
- // chosen to approximate a Trowbridge-Reitz distribution function times the
|
|
|
- // geometric shadowing function. These sigma values squared must match the
|
|
|
- // variance #defines in cube_uv_reflection_fragment.glsl.js.
|
|
|
- var EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
|
|
|
- var TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
|
|
|
- // The maximum length of the blur for loop. Smaller sigmas will use fewer
|
|
|
- // samples and exit early, but not recompile the shader.
|
|
|
- var MAX_SAMPLES = 20;
|
|
|
- var ENCODINGS = {
|
|
|
- [ THREE.LinearEncoding ]: 0,
|
|
|
- [ THREE.sRGBEncoding ]: 1,
|
|
|
- [ THREE.RGBEEncoding ]: 2,
|
|
|
- [ THREE.RGBM7Encoding ]: 3,
|
|
|
- [ THREE.RGBM16Encoding ]: 4,
|
|
|
- [ THREE.RGBDEncoding ]: 5,
|
|
|
- [ THREE.GammaEncoding ]: 6
|
|
|
- };
|
|
|
-
|
|
|
- var _flatCamera = new THREE.OrthographicCamera();
|
|
|
- var _blurMaterial = _getBlurShader( MAX_SAMPLES );
|
|
|
- var _equirectShader = null;
|
|
|
- var _cubemapShader = null;
|
|
|
-
|
|
|
- var { _lodPlanes, _sizeLods, _sigmas } = _createPlanes();
|
|
|
- var _pingPongRenderTarget = null;
|
|
|
- var _renderer = null;
|
|
|
-
|
|
|
- // Golden Ratio
|
|
|
- var PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
|
|
|
- var INV_PHI = 1 / PHI;
|
|
|
- // Vertices of a dodecahedron (except the opposites, which represent the
|
|
|
- // same axis), used as axis directions evenly spread on a sphere.
|
|
|
- var _axisDirections = [
|
|
|
- new THREE.Vector3( 1, 1, 1 ),
|
|
|
- new THREE.Vector3( - 1, 1, 1 ),
|
|
|
- new THREE.Vector3( 1, 1, - 1 ),
|
|
|
- new THREE.Vector3( - 1, 1, - 1 ),
|
|
|
- new THREE.Vector3( 0, PHI, INV_PHI ),
|
|
|
- new THREE.Vector3( 0, PHI, - INV_PHI ),
|
|
|
- new THREE.Vector3( INV_PHI, 0, PHI ),
|
|
|
- new THREE.Vector3( - INV_PHI, 0, PHI ),
|
|
|
- new THREE.Vector3( PHI, INV_PHI, 0 ),
|
|
|
- new THREE.Vector3( - PHI, INV_PHI, 0 ) ];
|
|
|
-
|
|
|
- var PMREMGenerator = function ( renderer ) {
|
|
|
-
|
|
|
- _renderer = renderer;
|
|
|
- _compileMaterial( _blurMaterial );
|
|
|
-
|
|
|
- };
|
|
|
-
|
|
|
- PMREMGenerator.prototype = {
|
|
|
-
|
|
|
- constructor: PMREMGenerator,
|
|
|
-
|
|
|
- /**
|
|
|
- * Generates a PMREM from a supplied Scene, which can be faster than using an
|
|
|
- * image if networking bandwidth is low. Optional sigma specifies a blur radius
|
|
|
- * in radians to be applied to the scene before PMREM generation. Optional near
|
|
|
- * and far planes ensure the scene is rendered in its entirety (the cubeCamera
|
|
|
- * is placed at the origin).
|
|
|
- */
|
|
|
- fromScene: function ( scene, sigma = 0, near = 0.1, far = 100 ) {
|
|
|
-
|
|
|
- var cubeUVRenderTarget = _allocateTargets();
|
|
|
- _sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
|
|
|
- if ( sigma > 0 ) {
|
|
|
-
|
|
|
- _blur( cubeUVRenderTarget, 0, 0, sigma );
|
|
|
-
|
|
|
- }
|
|
|
- _applyPMREM( cubeUVRenderTarget );
|
|
|
- _cleanup();
|
|
|
- cubeUVRenderTarget.scissorTest = false;
|
|
|
-
|
|
|
- return cubeUVRenderTarget;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- /**
|
|
|
- * Generates a PMREM from an equirectangular texture, which can be either LDR
|
|
|
- * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
|
|
|
- * as this matches best with the 256 x 256 cubemap output.
|
|
|
- */
|
|
|
- fromEquirectangular: function ( equirectangular ) {
|
|
|
-
|
|
|
- equirectangular.magFilter = THREE.NearestFilter;
|
|
|
- equirectangular.minFilter = THREE.NearestFilter;
|
|
|
- equirectangular.generateMipmaps = false;
|
|
|
-
|
|
|
- return this.fromCubemap( equirectangular );
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- /**
|
|
|
- * Generates a PMREM from an cubemap texture, which can be either LDR
|
|
|
- * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
|
|
|
- * as this matches best with the 256 x 256 cubemap output.
|
|
|
- */
|
|
|
- fromCubemap: function ( cubemap ) {
|
|
|
-
|
|
|
- var cubeUVRenderTarget = _allocateTargets( cubemap );
|
|
|
- _textureToCubeUV( cubemap, cubeUVRenderTarget );
|
|
|
- _applyPMREM( cubeUVRenderTarget );
|
|
|
- _cleanup();
|
|
|
- cubeUVRenderTarget.scissorTest = false;
|
|
|
-
|
|
|
- return cubeUVRenderTarget;
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- /**
|
|
|
- * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
|
|
|
- * your texture's network fetch for increased concurrency.
|
|
|
- */
|
|
|
- compileCubemapShader: function () {
|
|
|
-
|
|
|
- if ( _cubemapShader == null ) {
|
|
|
-
|
|
|
- _cubemapShader = _getCubemapShader();
|
|
|
- _compileMaterial( _cubemapShader );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- /**
|
|
|
- * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
|
|
|
- * your texture's network fetch for increased concurrency.
|
|
|
- */
|
|
|
- compileEquirectangularShader: function () {
|
|
|
-
|
|
|
- if ( _equirectShader == null ) {
|
|
|
-
|
|
|
- _equirectShader = _getEquirectShader();
|
|
|
- _compileMaterial( _equirectShader );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- /**
|
|
|
- * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
|
|
|
- * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
|
|
|
- * one of them will cause any others to also become unusable.
|
|
|
- */
|
|
|
- dispose: function () {
|
|
|
-
|
|
|
- _blurMaterial.dispose();
|
|
|
- if ( _cubemapShader != null ) _cubemapShader.dispose();
|
|
|
- if ( _equirectShader != null ) _equirectShader.dispose();
|
|
|
- var plane;
|
|
|
- for ( plane of _lodPlanes ) {
|
|
|
-
|
|
|
- plane.dispose();
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- },
|
|
|
-
|
|
|
- };
|
|
|
-
|
|
|
- function _createPlanes() {
|
|
|
-
|
|
|
- var _lodPlanes = [];
|
|
|
- var _sizeLods = [];
|
|
|
- var _sigmas = [];
|
|
|
-
|
|
|
- var lod = LOD_MAX;
|
|
|
- for ( var i = 0; i < TOTAL_LODS; i ++ ) {
|
|
|
-
|
|
|
- var sizeLod = Math.pow( 2, lod );
|
|
|
- _sizeLods.push( sizeLod );
|
|
|
- var sigma = 1.0 / sizeLod;
|
|
|
- if ( i > LOD_MAX - LOD_MIN ) {
|
|
|
-
|
|
|
- sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ];
|
|
|
-
|
|
|
- } else if ( i == 0 ) {
|
|
|
-
|
|
|
- sigma = 0;
|
|
|
-
|
|
|
- }
|
|
|
- _sigmas.push( sigma );
|
|
|
-
|
|
|
- var texelSize = 1.0 / ( sizeLod - 1 );
|
|
|
- var min = - texelSize / 2;
|
|
|
- var max = 1 + texelSize / 2;
|
|
|
- var uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
|
|
|
-
|
|
|
- var cubeFaces = 6;
|
|
|
- var vertices = 6;
|
|
|
- var positionSize = 3;
|
|
|
- var uvSize = 2;
|
|
|
- var faceIndexSize = 1;
|
|
|
-
|
|
|
- var position = new Float32Array( positionSize * vertices * cubeFaces );
|
|
|
- var uv = new Float32Array( uvSize * vertices * cubeFaces );
|
|
|
- var faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
|
|
|
-
|
|
|
- for ( var face = 0; face < cubeFaces; face ++ ) {
|
|
|
-
|
|
|
- var x = ( face % 3 ) * 2 / 3 - 1;
|
|
|
- var y = face > 2 ? 0 : - 1;
|
|
|
- var coordinates = [
|
|
|
- [ x, y, 0 ],
|
|
|
- [ x + 2 / 3, y, 0 ],
|
|
|
- [ x + 2 / 3, y + 1, 0 ],
|
|
|
- [ x, y, 0 ],
|
|
|
- [ x + 2 / 3, y + 1, 0 ],
|
|
|
- [ x, y + 1, 0 ]
|
|
|
- ];
|
|
|
- position.set( [].concat( ...coordinates ),
|
|
|
- positionSize * vertices * face );
|
|
|
- uv.set( uv1, uvSize * vertices * face );
|
|
|
- var fill = [ face, face, face, face, face, face ];
|
|
|
- faceIndex.set( fill, faceIndexSize * vertices * face );
|
|
|
-
|
|
|
- }
|
|
|
- var planes = new THREE.BufferGeometry();
|
|
|
- planes.setAttribute(
|
|
|
- 'position', new THREE.BufferAttribute( position, positionSize ) );
|
|
|
- planes.setAttribute( 'uv', new THREE.BufferAttribute( uv, uvSize ) );
|
|
|
- planes.setAttribute(
|
|
|
- 'faceIndex', new THREE.BufferAttribute( faceIndex, faceIndexSize ) );
|
|
|
- _lodPlanes.push( planes );
|
|
|
-
|
|
|
- if ( lod > LOD_MIN ) {
|
|
|
-
|
|
|
- lod --;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
- return { _lodPlanes, _sizeLods, _sigmas };
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _allocateTargets( equirectangular ) {
|
|
|
-
|
|
|
- var params = {
|
|
|
- magFilter: THREE.NearestFilter,
|
|
|
- minFilter: THREE.NearestFilter,
|
|
|
- generateMipmaps: false,
|
|
|
- type: equirectangular ? equirectangular.type : THREE.UnsignedByteType,
|
|
|
- format: equirectangular ? equirectangular.format : THREE.RGBEFormat,
|
|
|
- encoding: equirectangular ? equirectangular.encoding : THREE.RGBEEncoding,
|
|
|
- depthBuffer: false,
|
|
|
- stencilBuffer: false
|
|
|
- };
|
|
|
- var cubeUVRenderTarget = _createRenderTarget(
|
|
|
- { ...params, depthBuffer: ( equirectangular ? false : true ) } );
|
|
|
- _pingPongRenderTarget = _createRenderTarget( params );
|
|
|
- return cubeUVRenderTarget;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _cleanup() {
|
|
|
-
|
|
|
- _pingPongRenderTarget.dispose();
|
|
|
- _renderer.setRenderTarget( null );
|
|
|
- var size = _renderer.getSize( new THREE.Vector2() );
|
|
|
- _renderer.setViewport( 0, 0, size.x, size.y );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
|
|
|
-
|
|
|
- var fov = 90;
|
|
|
- var aspect = 1;
|
|
|
- var cubeCamera = new THREE.PerspectiveCamera( fov, aspect, near, far );
|
|
|
- var upSign = [ 1, 1, 1, 1, - 1, 1 ];
|
|
|
- var forwardSign = [ 1, 1, - 1, - 1, - 1, 1 ];
|
|
|
-
|
|
|
- var outputEncoding = _renderer.outputEncoding;
|
|
|
- var toneMapping = _renderer.toneMapping;
|
|
|
- var toneMappingExposure = _renderer.toneMappingExposure;
|
|
|
- var clearColor = _renderer.getClearColor();
|
|
|
- var clearAlpha = _renderer.getClearAlpha();
|
|
|
-
|
|
|
- _renderer.toneMapping = THREE.LinearToneMapping;
|
|
|
- _renderer.toneMappingExposure = 1.0;
|
|
|
- _renderer.outputEncoding = THREE.LinearEncoding;
|
|
|
- scene.scale.z *= - 1;
|
|
|
-
|
|
|
- var background = scene.background;
|
|
|
- if ( background && background.isColor ) {
|
|
|
-
|
|
|
- background.convertSRGBToLinear();
|
|
|
- // Convert linear to RGBE
|
|
|
- var maxComponent = Math.max( background.r, background.g, background.b );
|
|
|
- var fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 );
|
|
|
- background = background.multiplyScalar( Math.pow( 2.0, - fExp ) );
|
|
|
- var alpha = ( fExp + 128.0 ) / 255.0;
|
|
|
- _renderer.setClearColor( background, alpha );
|
|
|
- scene.background = null;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- _renderer.setRenderTarget( cubeUVRenderTarget );
|
|
|
- for ( var i = 0; i < 6; i ++ ) {
|
|
|
-
|
|
|
- var col = i % 3;
|
|
|
- if ( col == 0 ) {
|
|
|
-
|
|
|
- cubeCamera.up.set( 0, upSign[ i ], 0 );
|
|
|
- cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
|
|
|
-
|
|
|
- } else if ( col == 1 ) {
|
|
|
-
|
|
|
- cubeCamera.up.set( 0, 0, upSign[ i ] );
|
|
|
- cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- cubeCamera.up.set( 0, upSign[ i ], 0 );
|
|
|
- cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
|
|
|
-
|
|
|
- }
|
|
|
- _setViewport(
|
|
|
- col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX );
|
|
|
- _renderer.render( scene, cubeCamera );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- _renderer.toneMapping = toneMapping;
|
|
|
- _renderer.toneMappingExposure = toneMappingExposure;
|
|
|
- _renderer.outputEncoding = outputEncoding;
|
|
|
- _renderer.setClearColor( clearColor, clearAlpha );
|
|
|
- scene.scale.z *= - 1;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _textureToCubeUV( texture, cubeUVRenderTarget ) {
|
|
|
-
|
|
|
- var scene = new THREE.Scene();
|
|
|
- if ( texture.isCubeTexture ) {
|
|
|
-
|
|
|
- if ( _cubemapShader == null ) {
|
|
|
-
|
|
|
- _cubemapShader = _getCubemapShader();
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- } else {
|
|
|
-
|
|
|
- if ( _equirectShader == null ) {
|
|
|
-
|
|
|
- _equirectShader = _getEquirectShader();
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
- var material = texture.isCubeTexture ? _cubemapShader : _equirectShader;
|
|
|
- scene.add( new THREE.Mesh( _lodPlanes[ 0 ], material ) );
|
|
|
- var uniforms = material.uniforms;
|
|
|
-
|
|
|
- uniforms[ 'envMap' ].value = texture;
|
|
|
- if ( ! texture.isCubeTexture ) {
|
|
|
-
|
|
|
- uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height );
|
|
|
-
|
|
|
- }
|
|
|
- uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ];
|
|
|
- uniforms[ 'outputEncoding' ].value = ENCODINGS[ texture.encoding ];
|
|
|
-
|
|
|
- _renderer.setRenderTarget( cubeUVRenderTarget );
|
|
|
- _setViewport( 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX );
|
|
|
- _renderer.render( scene, _flatCamera );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _compileMaterial( material ) {
|
|
|
-
|
|
|
- var tmpScene = new THREE.Scene();
|
|
|
- tmpScene.add( new THREE.Mesh( _lodPlanes[ 0 ], material ) );
|
|
|
- _renderer.compile( tmpScene, _flatCamera );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _createRenderTarget( params ) {
|
|
|
-
|
|
|
- var cubeUVRenderTarget =
|
|
|
- new THREE.WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params );
|
|
|
- cubeUVRenderTarget.texture.mapping = THREE.CubeUVReflectionMapping;
|
|
|
- cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
|
|
|
- cubeUVRenderTarget.scissorTest = true;
|
|
|
- return cubeUVRenderTarget;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _setViewport( x, y, width, height ) {
|
|
|
-
|
|
|
- var invDpr = 1.0 / _renderer.getPixelRatio();
|
|
|
- x *= invDpr;
|
|
|
- y *= invDpr;
|
|
|
- width *= invDpr;
|
|
|
- height *= invDpr;
|
|
|
- _renderer.setViewport( x, y, width, height );
|
|
|
- _renderer.setScissor( x, y, width, height );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _applyPMREM( cubeUVRenderTarget ) {
|
|
|
-
|
|
|
- var autoClear = _renderer.autoClear;
|
|
|
- _renderer.autoClear = false;
|
|
|
-
|
|
|
- for ( var i = 1; i < TOTAL_LODS; i ++ ) {
|
|
|
-
|
|
|
- var sigma = Math.sqrt(
|
|
|
- _sigmas[ i ] * _sigmas[ i ] -
|
|
|
- _sigmas[ i - 1 ] * _sigmas[ i - 1 ] );
|
|
|
- var poleAxis =
|
|
|
- _axisDirections[ ( i - 1 ) % _axisDirections.length ];
|
|
|
- _blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- _renderer.autoClear = autoClear;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * This is a two-pass Gaussian blur for a cubemap. Normally this is done
|
|
|
- * vertically and horizontally, but this breaks down on a cube. Here we apply
|
|
|
- * the blur latitudinally (around the poles), and then longitudinally (towards
|
|
|
- * the poles) to approximate the orthogonally-separable blur. It is least
|
|
|
- * accurate at the poles, but still does a decent job.
|
|
|
- */
|
|
|
- function _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
|
|
|
-
|
|
|
- _halfBlur(
|
|
|
- cubeUVRenderTarget,
|
|
|
- _pingPongRenderTarget,
|
|
|
- lodIn,
|
|
|
- lodOut,
|
|
|
- sigma,
|
|
|
- 'latitudinal',
|
|
|
- poleAxis );
|
|
|
-
|
|
|
- _halfBlur(
|
|
|
- _pingPongRenderTarget,
|
|
|
- cubeUVRenderTarget,
|
|
|
- lodOut,
|
|
|
- lodOut,
|
|
|
- sigma,
|
|
|
- 'longitudinal',
|
|
|
- poleAxis );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
|
|
|
-
|
|
|
- if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
|
|
|
-
|
|
|
- console.error(
|
|
|
- 'blur direction must be either latitudinal or longitudinal!' );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- // Number of standard deviations at which to cut off the discrete approximation.
|
|
|
- var STANDARD_DEVIATIONS = 3;
|
|
|
-
|
|
|
- var blurScene = new THREE.Scene();
|
|
|
- blurScene.add( new THREE.Mesh( _lodPlanes[ lodOut ], _blurMaterial ) );
|
|
|
- var blurUniforms = _blurMaterial.uniforms;
|
|
|
-
|
|
|
- var pixels = _sizeLods[ lodIn ] - 1;
|
|
|
- var radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
|
|
|
- var sigmaPixels = sigmaRadians / radiansPerPixel;
|
|
|
- var samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
|
|
|
-
|
|
|
- if ( samples > MAX_SAMPLES ) {
|
|
|
-
|
|
|
- console.warn( `sigmaRadians, ${
|
|
|
- sigmaRadians}, is too large and will clip, as it requested ${
|
|
|
- samples} samples when the maximum is set to ${MAX_SAMPLES}` );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- var weights = [];
|
|
|
- var sum = 0;
|
|
|
- for ( var i = 0; i < MAX_SAMPLES; ++ i ) {
|
|
|
-
|
|
|
- var x = i / sigmaPixels;
|
|
|
- var weight = Math.exp( - x * x / 2 );
|
|
|
- weights.push( weight );
|
|
|
- if ( i == 0 ) {
|
|
|
-
|
|
|
- sum += weight;
|
|
|
-
|
|
|
- } else if ( i < samples ) {
|
|
|
-
|
|
|
- sum += 2 * weight;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
- weights = weights.map( w => w / sum );
|
|
|
-
|
|
|
- blurUniforms[ 'envMap' ].value = targetIn.texture;
|
|
|
- blurUniforms[ 'samples' ].value = samples;
|
|
|
- blurUniforms[ 'weights' ].value = weights;
|
|
|
- blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';
|
|
|
- if ( poleAxis ) {
|
|
|
-
|
|
|
- blurUniforms[ 'poleAxis' ].value = poleAxis;
|
|
|
-
|
|
|
- }
|
|
|
- blurUniforms[ 'dTheta' ].value = radiansPerPixel;
|
|
|
- blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn;
|
|
|
- blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
|
|
|
- blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
|
|
|
-
|
|
|
- var outputSize = _sizeLods[ lodOut ];
|
|
|
- var x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize );
|
|
|
- var y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) +
|
|
|
- 2 * outputSize *
|
|
|
- ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 );
|
|
|
-
|
|
|
- _renderer.setRenderTarget( targetOut );
|
|
|
- _setViewport( x, y, 3 * outputSize, 2 * outputSize );
|
|
|
- _renderer.render( blurScene, _flatCamera );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _getBlurShader( maxSamples ) {
|
|
|
-
|
|
|
- var weights = new Float32Array( maxSamples );
|
|
|
- var poleAxis = new THREE.Vector3( 0, 1, 0 );
|
|
|
- var shaderMaterial = new THREE.RawShaderMaterial( {
|
|
|
-
|
|
|
- defines: { 'n': maxSamples },
|
|
|
-
|
|
|
- uniforms: {
|
|
|
- 'envMap': { value: null },
|
|
|
- 'samples': { value: 1 },
|
|
|
- 'weights': { value: weights },
|
|
|
- 'latitudinal': { value: false },
|
|
|
- 'dTheta': { value: 0 },
|
|
|
- 'mipInt': { value: 0 },
|
|
|
- 'poleAxis': { value: poleAxis },
|
|
|
- 'inputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] },
|
|
|
- 'outputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] }
|
|
|
- },
|
|
|
-
|
|
|
- vertexShader: _getCommonVertexShader(),
|
|
|
-
|
|
|
- fragmentShader: `
|
|
|
-precision mediump float;
|
|
|
-precision mediump int;
|
|
|
-varying vec3 vOutputDirection;
|
|
|
-uniform sampler2D envMap;
|
|
|
-uniform int samples;
|
|
|
-uniform float weights[n];
|
|
|
-uniform bool latitudinal;
|
|
|
-uniform float dTheta;
|
|
|
-uniform float mipInt;
|
|
|
-uniform vec3 poleAxis;
|
|
|
-
|
|
|
-${_getEncodings()}
|
|
|
-
|
|
|
-#define ENVMAP_TYPE_CUBE_UV
|
|
|
-#include <cube_uv_reflection_fragment>
|
|
|
-
|
|
|
-void main() {
|
|
|
- gl_FragColor = vec4(0.0);
|
|
|
- for (int i = 0; i < n; i++) {
|
|
|
- if (i >= samples)
|
|
|
- break;
|
|
|
- for (int dir = -1; dir < 2; dir += 2) {
|
|
|
- if (i == 0 && dir == 1)
|
|
|
- continue;
|
|
|
- vec3 axis = latitudinal ? poleAxis : cross(poleAxis, vOutputDirection);
|
|
|
- if (all(equal(axis, vec3(0.0))))
|
|
|
- axis = cross(vec3(0.0, 1.0, 0.0), vOutputDirection);
|
|
|
- axis = normalize(axis);
|
|
|
- float theta = dTheta * float(dir * i);
|
|
|
- float cosTheta = cos(theta);
|
|
|
- // Rodrigues' axis-angle rotation
|
|
|
- vec3 sampleDirection = vOutputDirection * cosTheta
|
|
|
- + cross(axis, vOutputDirection) * sin(theta)
|
|
|
- + axis * dot(axis, vOutputDirection) * (1.0 - cosTheta);
|
|
|
- gl_FragColor.rgb +=
|
|
|
- weights[i] * bilinearCubeUV(envMap, sampleDirection, mipInt);
|
|
|
- }
|
|
|
- }
|
|
|
- gl_FragColor = linearToOutputTexel(gl_FragColor);
|
|
|
-}
|
|
|
- `,
|
|
|
-
|
|
|
- blending: THREE.NoBlending,
|
|
|
- depthTest: false,
|
|
|
- depthWrite: false
|
|
|
-
|
|
|
- } );
|
|
|
-
|
|
|
- shaderMaterial.type = 'SphericalGaussianBlur';
|
|
|
-
|
|
|
- return shaderMaterial;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _getEquirectShader() {
|
|
|
-
|
|
|
- var texelSize = new THREE.Vector2( 1, 1 );
|
|
|
- var shaderMaterial = new THREE.RawShaderMaterial( {
|
|
|
-
|
|
|
- uniforms: {
|
|
|
- 'envMap': { value: null },
|
|
|
- 'texelSize': { value: texelSize },
|
|
|
- 'inputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] },
|
|
|
- 'outputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] }
|
|
|
- },
|
|
|
-
|
|
|
- vertexShader: _getCommonVertexShader(),
|
|
|
-
|
|
|
- fragmentShader: `
|
|
|
-precision mediump float;
|
|
|
-precision mediump int;
|
|
|
-varying vec3 vOutputDirection;
|
|
|
-uniform sampler2D envMap;
|
|
|
-uniform vec2 texelSize;
|
|
|
-
|
|
|
-${_getEncodings()}
|
|
|
-
|
|
|
-#define RECIPROCAL_PI 0.31830988618
|
|
|
-#define RECIPROCAL_PI2 0.15915494
|
|
|
-
|
|
|
-void main() {
|
|
|
- gl_FragColor = vec4(0.0);
|
|
|
- vec3 outputDirection = normalize(vOutputDirection);
|
|
|
- vec2 uv;
|
|
|
- uv.y = asin(clamp(outputDirection.y, -1.0, 1.0)) * RECIPROCAL_PI + 0.5;
|
|
|
- uv.x = atan(outputDirection.z, outputDirection.x) * RECIPROCAL_PI2 + 0.5;
|
|
|
- vec2 f = fract(uv / texelSize - 0.5);
|
|
|
- uv -= f * texelSize;
|
|
|
- vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
|
|
|
- uv.x += texelSize.x;
|
|
|
- vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
|
|
|
- uv.y += texelSize.y;
|
|
|
- vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
|
|
|
- uv.x -= texelSize.x;
|
|
|
- vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
|
|
|
- vec3 tm = mix(tl, tr, f.x);
|
|
|
- vec3 bm = mix(bl, br, f.x);
|
|
|
- gl_FragColor.rgb = mix(tm, bm, f.y);
|
|
|
- gl_FragColor = linearToOutputTexel(gl_FragColor);
|
|
|
-}
|
|
|
- `,
|
|
|
-
|
|
|
- blending: THREE.NoBlending,
|
|
|
- depthTest: false,
|
|
|
- depthWrite: false
|
|
|
-
|
|
|
- } );
|
|
|
-
|
|
|
- shaderMaterial.type = 'EquirectangularToCubeUV';
|
|
|
-
|
|
|
- return shaderMaterial;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _getCubemapShader() {
|
|
|
-
|
|
|
- var shaderMaterial = new THREE.RawShaderMaterial( {
|
|
|
-
|
|
|
- uniforms: {
|
|
|
- 'envMap': { value: null },
|
|
|
- 'inputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] },
|
|
|
- 'outputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] }
|
|
|
- },
|
|
|
-
|
|
|
- vertexShader: _getCommonVertexShader(),
|
|
|
-
|
|
|
- fragmentShader: `
|
|
|
-precision mediump float;
|
|
|
-precision mediump int;
|
|
|
-varying vec3 vOutputDirection;
|
|
|
-uniform samplerCube envMap;
|
|
|
-
|
|
|
-${_getEncodings()}
|
|
|
-
|
|
|
-void main() {
|
|
|
- gl_FragColor = vec4(0.0);
|
|
|
- gl_FragColor.rgb = envMapTexelToLinear(textureCube(envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ))).rgb;
|
|
|
- gl_FragColor = linearToOutputTexel(gl_FragColor);
|
|
|
-}
|
|
|
- `,
|
|
|
-
|
|
|
- blending: THREE.NoBlending,
|
|
|
- depthTest: false,
|
|
|
- depthWrite: false
|
|
|
-
|
|
|
- } );
|
|
|
-
|
|
|
- shaderMaterial.type = 'CubemapToCubeUV';
|
|
|
-
|
|
|
- return shaderMaterial;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _getCommonVertexShader() {
|
|
|
-
|
|
|
- return `
|
|
|
-precision mediump float;
|
|
|
-precision mediump int;
|
|
|
-attribute vec3 position;
|
|
|
-attribute vec2 uv;
|
|
|
-attribute float faceIndex;
|
|
|
-varying vec3 vOutputDirection;
|
|
|
-vec3 getDirection(vec2 uv, float face) {
|
|
|
- uv = 2.0 * uv - 1.0;
|
|
|
- vec3 direction = vec3(uv, 1.0);
|
|
|
- if (face == 0.0) {
|
|
|
- direction = direction.zyx;
|
|
|
- direction.z *= -1.0;
|
|
|
- } else if (face == 1.0) {
|
|
|
- direction = direction.xzy;
|
|
|
- direction.z *= -1.0;
|
|
|
- } else if (face == 3.0) {
|
|
|
- direction = direction.zyx;
|
|
|
- direction.x *= -1.0;
|
|
|
- } else if (face == 4.0) {
|
|
|
- direction = direction.xzy;
|
|
|
- direction.y *= -1.0;
|
|
|
- } else if (face == 5.0) {
|
|
|
- direction.xz *= -1.0;
|
|
|
- }
|
|
|
- return direction;
|
|
|
-}
|
|
|
-void main() {
|
|
|
- vOutputDirection = getDirection(uv, faceIndex);
|
|
|
- gl_Position = vec4( position, 1.0 );
|
|
|
-}
|
|
|
- `;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- function _getEncodings() {
|
|
|
-
|
|
|
- return `
|
|
|
-uniform int inputEncoding;
|
|
|
-uniform int outputEncoding;
|
|
|
-
|
|
|
-#include <encodings_pars_fragment>
|
|
|
-
|
|
|
-vec4 inputTexelToLinear(vec4 value){
|
|
|
- if(inputEncoding == 0){
|
|
|
- return value;
|
|
|
- }else if(inputEncoding == 1){
|
|
|
- return sRGBToLinear(value);
|
|
|
- }else if(inputEncoding == 2){
|
|
|
- return RGBEToLinear(value);
|
|
|
- }else if(inputEncoding == 3){
|
|
|
- return RGBMToLinear(value, 7.0);
|
|
|
- }else if(inputEncoding == 4){
|
|
|
- return RGBMToLinear(value, 16.0);
|
|
|
- }else if(inputEncoding == 5){
|
|
|
- return RGBDToLinear(value, 256.0);
|
|
|
- }else{
|
|
|
- return GammaToLinear(value, 2.2);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-vec4 linearToOutputTexel(vec4 value){
|
|
|
- if(outputEncoding == 0){
|
|
|
- return value;
|
|
|
- }else if(outputEncoding == 1){
|
|
|
- return LinearTosRGB(value);
|
|
|
- }else if(outputEncoding == 2){
|
|
|
- return LinearToRGBE(value);
|
|
|
- }else if(outputEncoding == 3){
|
|
|
- return LinearToRGBM(value, 7.0);
|
|
|
- }else if(outputEncoding == 4){
|
|
|
- return LinearToRGBM(value, 16.0);
|
|
|
- }else if(outputEncoding == 5){
|
|
|
- return LinearToRGBD(value, 256.0);
|
|
|
- }else{
|
|
|
- return LinearToGamma(value, 2.2);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-vec4 envMapTexelToLinear(vec4 color) {
|
|
|
- return inputTexelToLinear(color);
|
|
|
-}
|
|
|
- `;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- return PMREMGenerator;
|
|
|
-
|
|
|
-} )();
|