Browse Source

Moved PMREMGenerator to /src.

Mr.doob 5 năm trước cách đây
mục cha
commit
e94b0381d7

+ 0 - 814
examples/js/pmrem/PMREMGenerator.js

@@ -1,814 +0,0 @@
-/**
- * @author Emmett Lalish / elalish
- *
- * This class generates a Prefiltered, Mipmapped Radiance Environment Map
- * (PMREM) from a cubeMap environment texture. This allows different levels of
- * blur to be quickly accessed based on material roughness. It is packed into a
- * special CubeUV format that allows us to perform custom interpolation so that
- * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
- * chain, it only goes down to the LOD_MIN level (above), and then creates extra
- * even more filtered 'mips' at the same LOD_MIN resolution, associated with
- * higher roughness levels. In this way we maintain resolution to smoothly
- * interpolate diffuse lighting while limiting sampling computation.
- */
-
-THREE.PMREMGenerator = ( function () {
-
-	var LOD_MIN = 4;
-	var LOD_MAX = 8;
-	var SIZE_MAX = Math.pow( 2, LOD_MAX );
-	// The standard deviations (radians) associated with the extra mips. These are
-	// chosen to approximate a Trowbridge-Reitz distribution function times the
-	// geometric shadowing function. These sigma values squared must match the
-	// variance #defines in cube_uv_reflection_fragment.glsl.js.
-	var EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
-	var TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
-	// The maximum length of the blur for loop. Smaller sigmas will use fewer
-	// samples and exit early, but not recompile the shader.
-	var MAX_SAMPLES = 20;
-	var ENCODINGS = {
-		[ THREE.LinearEncoding ]: 0,
-		[ THREE.sRGBEncoding ]: 1,
-		[ THREE.RGBEEncoding ]: 2,
-		[ THREE.RGBM7Encoding ]: 3,
-		[ THREE.RGBM16Encoding ]: 4,
-		[ THREE.RGBDEncoding ]: 5,
-		[ THREE.GammaEncoding ]: 6
-	  };
-
-	var _flatCamera = new THREE.OrthographicCamera();
-	var _blurMaterial = _getBlurShader( MAX_SAMPLES );
-	var _equirectShader = null;
-	var _cubemapShader = null;
-
-	var { _lodPlanes, _sizeLods, _sigmas } = _createPlanes();
-	var _pingPongRenderTarget = null;
-	var _renderer = null;
-
-	// Golden Ratio
-	var PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
-	var INV_PHI = 1 / PHI;
-	// Vertices of a dodecahedron (except the opposites, which represent the
-	// same axis), used as axis directions evenly spread on a sphere.
-	var _axisDirections = [
-		new THREE.Vector3( 1, 1, 1 ),
-		new THREE.Vector3( - 1, 1, 1 ),
-		new THREE.Vector3( 1, 1, - 1 ),
-		new THREE.Vector3( - 1, 1, - 1 ),
-		new THREE.Vector3( 0, PHI, INV_PHI ),
-		new THREE.Vector3( 0, PHI, - INV_PHI ),
-		new THREE.Vector3( INV_PHI, 0, PHI ),
-		new THREE.Vector3( - INV_PHI, 0, PHI ),
-		new THREE.Vector3( PHI, INV_PHI, 0 ),
-		new THREE.Vector3( - PHI, INV_PHI, 0 ) ];
-
-	var PMREMGenerator = function ( renderer ) {
-
-		_renderer = renderer;
-		_compileMaterial( _blurMaterial );
-
-	};
-
-	PMREMGenerator.prototype = {
-
-		constructor: PMREMGenerator,
-
-		/**
-		 * Generates a PMREM from a supplied Scene, which can be faster than using an
-		 * image if networking bandwidth is low. Optional sigma specifies a blur radius
-		 * in radians to be applied to the scene before PMREM generation. Optional near
-		 * and far planes ensure the scene is rendered in its entirety (the cubeCamera
-		 * is placed at the origin).
-		 */
-		fromScene: function ( scene, sigma = 0, near = 0.1, far = 100 ) {
-
-			var cubeUVRenderTarget = _allocateTargets();
-			_sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
-			if ( sigma > 0 ) {
-
-				_blur( cubeUVRenderTarget, 0, 0, sigma );
-
-			}
-			_applyPMREM( cubeUVRenderTarget );
-			_cleanup();
-			cubeUVRenderTarget.scissorTest = false;
-
-			return cubeUVRenderTarget;
-
-		},
-
-		/**
-		 * Generates a PMREM from an equirectangular texture, which can be either LDR
-		 * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
-		 * as this matches best with the 256 x 256 cubemap output.
-		 */
-		fromEquirectangular: function ( equirectangular ) {
-
-			equirectangular.magFilter = THREE.NearestFilter;
-			equirectangular.minFilter = THREE.NearestFilter;
-			equirectangular.generateMipmaps = false;
-
-			return this.fromCubemap( equirectangular );
-
-		},
-
-		/**
-		 * Generates a PMREM from an cubemap texture, which can be either LDR
-		 * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
-		 * as this matches best with the 256 x 256 cubemap output.
-		 */
-		fromCubemap: function ( cubemap ) {
-
-			var cubeUVRenderTarget = _allocateTargets( cubemap );
-			_textureToCubeUV( cubemap, cubeUVRenderTarget );
-			_applyPMREM( cubeUVRenderTarget );
-			_cleanup();
-			cubeUVRenderTarget.scissorTest = false;
-
-			return cubeUVRenderTarget;
-
-		},
-
-		/**
-		 * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
-		 * your texture's network fetch for increased concurrency.
-		 */
-		compileCubemapShader: function () {
-
-			if ( _cubemapShader == null ) {
-
-				_cubemapShader = _getCubemapShader();
-				_compileMaterial( _cubemapShader );
-
-			}
-
-		},
-
-		/**
-		 * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
-		 * your texture's network fetch for increased concurrency.
-		 */
-		compileEquirectangularShader: function () {
-
-			if ( _equirectShader == null ) {
-
-				_equirectShader = _getEquirectShader();
-				_compileMaterial( _equirectShader );
-
-			}
-
-		},
-
-		/**
-		 * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
-		 * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
-		 * one of them will cause any others to also become unusable.
-		 */
-		dispose: function () {
-
-			_blurMaterial.dispose();
-			if ( _cubemapShader != null ) _cubemapShader.dispose();
-			if ( _equirectShader != null ) _equirectShader.dispose();
-			var plane;
-			for ( plane of _lodPlanes ) {
-
-				plane.dispose();
-
-			}
-
-		},
-
-	};
-
-	function _createPlanes() {
-
-		var _lodPlanes = [];
-		var _sizeLods = [];
-		var _sigmas = [];
-
-		var lod = LOD_MAX;
-		for ( var i = 0; i < TOTAL_LODS; i ++ ) {
-
-			var sizeLod = Math.pow( 2, lod );
-			_sizeLods.push( sizeLod );
-			var sigma = 1.0 / sizeLod;
-			if ( i > LOD_MAX - LOD_MIN ) {
-
-				sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ];
-
-			} else if ( i == 0 ) {
-
-				sigma = 0;
-
-			}
-			_sigmas.push( sigma );
-
-			var texelSize = 1.0 / ( sizeLod - 1 );
-			var min = - texelSize / 2;
-			var max = 1 + texelSize / 2;
-			var uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
-
-			var cubeFaces = 6;
-			var vertices = 6;
-			var positionSize = 3;
-			var uvSize = 2;
-			var faceIndexSize = 1;
-
-			var position = new Float32Array( positionSize * vertices * cubeFaces );
-			var uv = new Float32Array( uvSize * vertices * cubeFaces );
-			var faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
-
-			for ( var face = 0; face < cubeFaces; face ++ ) {
-
-				var x = ( face % 3 ) * 2 / 3 - 1;
-				var y = face > 2 ? 0 : - 1;
-				var coordinates = [
-					[ x, y, 0 ],
-					[ x + 2 / 3, y, 0 ],
-					[ x + 2 / 3, y + 1, 0 ],
-					[ x, y, 0 ],
-					[ x + 2 / 3, y + 1, 0 ],
-					[ x, y + 1, 0 ]
-				];
-				position.set( [].concat( ...coordinates ),
-					positionSize * vertices * face );
-				uv.set( uv1, uvSize * vertices * face );
-				var fill = [ face, face, face, face, face, face ];
-				faceIndex.set( fill, faceIndexSize * vertices * face );
-
-			}
-			var planes = new THREE.BufferGeometry();
-			planes.setAttribute(
-				'position', new THREE.BufferAttribute( position, positionSize ) );
-			planes.setAttribute( 'uv', new THREE.BufferAttribute( uv, uvSize ) );
-			planes.setAttribute(
-				'faceIndex', new THREE.BufferAttribute( faceIndex, faceIndexSize ) );
-			_lodPlanes.push( planes );
-
-			if ( lod > LOD_MIN ) {
-
-				lod --;
-
-			}
-
-		}
-		return { _lodPlanes, _sizeLods, _sigmas };
-
-	}
-
-	function _allocateTargets( equirectangular ) {
-
-		var params = {
-		  magFilter: THREE.NearestFilter,
-		  minFilter: THREE.NearestFilter,
-		  generateMipmaps: false,
-		  type: equirectangular ? equirectangular.type : THREE.UnsignedByteType,
-		  format: equirectangular ? equirectangular.format : THREE.RGBEFormat,
-		  encoding: equirectangular ? equirectangular.encoding : THREE.RGBEEncoding,
-		  depthBuffer: false,
-		  stencilBuffer: false
-		};
-		var cubeUVRenderTarget = _createRenderTarget(
-			{ ...params, depthBuffer: ( equirectangular ? false : true ) } );
-		_pingPongRenderTarget = _createRenderTarget( params );
-		return cubeUVRenderTarget;
-
-	}
-
-	function _cleanup() {
-
-		_pingPongRenderTarget.dispose();
-		_renderer.setRenderTarget( null );
-		var size = _renderer.getSize( new THREE.Vector2() );
-		_renderer.setViewport( 0, 0, size.x, size.y );
-
-	}
-
-	function _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
-
-		var fov = 90;
-		var aspect = 1;
-		var cubeCamera = new THREE.PerspectiveCamera( fov, aspect, near, far );
-		var upSign = [ 1, 1, 1, 1, - 1, 1 ];
-		var forwardSign = [ 1, 1, - 1, - 1, - 1, 1 ];
-
-		var outputEncoding = _renderer.outputEncoding;
-		var toneMapping = _renderer.toneMapping;
-		var toneMappingExposure = _renderer.toneMappingExposure;
-		var clearColor = _renderer.getClearColor();
-		var clearAlpha = _renderer.getClearAlpha();
-
-		_renderer.toneMapping = THREE.LinearToneMapping;
-		_renderer.toneMappingExposure = 1.0;
-		_renderer.outputEncoding = THREE.LinearEncoding;
-		scene.scale.z *= - 1;
-
-		var background = scene.background;
-		if ( background && background.isColor ) {
-
-			background.convertSRGBToLinear();
-			// Convert linear to RGBE
-			var maxComponent = Math.max( background.r, background.g, background.b );
-			var fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 );
-			background = background.multiplyScalar( Math.pow( 2.0, - fExp ) );
-			var alpha = ( fExp + 128.0 ) / 255.0;
-			_renderer.setClearColor( background, alpha );
-			scene.background = null;
-
-		}
-
-		_renderer.setRenderTarget( cubeUVRenderTarget );
-		for ( var i = 0; i < 6; i ++ ) {
-
-			var col = i % 3;
-			if ( col == 0 ) {
-
-				cubeCamera.up.set( 0, upSign[ i ], 0 );
-				cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
-
-			} else if ( col == 1 ) {
-
-				cubeCamera.up.set( 0, 0, upSign[ i ] );
-				cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
-
-			} else {
-
-				cubeCamera.up.set( 0, upSign[ i ], 0 );
-				cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
-
-			}
-			_setViewport(
-				col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX );
-			_renderer.render( scene, cubeCamera );
-
-		}
-
-		_renderer.toneMapping = toneMapping;
-		_renderer.toneMappingExposure = toneMappingExposure;
-		_renderer.outputEncoding = outputEncoding;
-		_renderer.setClearColor( clearColor, clearAlpha );
-		scene.scale.z *= - 1;
-
-	}
-
-	function _textureToCubeUV( texture, cubeUVRenderTarget ) {
-
-		var scene = new THREE.Scene();
-		if ( texture.isCubeTexture ) {
-
-			if ( _cubemapShader == null ) {
-
-				_cubemapShader = _getCubemapShader();
-
-			}
-
-		} else {
-
-			if ( _equirectShader == null ) {
-
-				_equirectShader = _getEquirectShader();
-
-			}
-
-		}
-		var material = texture.isCubeTexture ? _cubemapShader : _equirectShader;
-		scene.add( new THREE.Mesh( _lodPlanes[ 0 ], material ) );
-		var uniforms = material.uniforms;
-
-		uniforms[ 'envMap' ].value = texture;
-		if ( ! texture.isCubeTexture ) {
-
-			uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height );
-
-		}
-		uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ];
-		uniforms[ 'outputEncoding' ].value = ENCODINGS[ texture.encoding ];
-
-		_renderer.setRenderTarget( cubeUVRenderTarget );
-		_setViewport( 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX );
-		_renderer.render( scene, _flatCamera );
-
-	}
-
-	function _compileMaterial( material ) {
-
-		var tmpScene = new THREE.Scene();
-		tmpScene.add( new THREE.Mesh( _lodPlanes[ 0 ], material ) );
-		_renderer.compile( tmpScene, _flatCamera );
-
-	}
-
-	function _createRenderTarget( params ) {
-
-		var cubeUVRenderTarget =
-		new THREE.WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params );
-		cubeUVRenderTarget.texture.mapping = THREE.CubeUVReflectionMapping;
-		cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
-		cubeUVRenderTarget.scissorTest = true;
-		return cubeUVRenderTarget;
-
-	}
-
-	function _setViewport( x, y, width, height ) {
-
-		var invDpr = 1.0 / _renderer.getPixelRatio();
-		x *= invDpr;
-		y *= invDpr;
-		width *= invDpr;
-		height *= invDpr;
-		_renderer.setViewport( x, y, width, height );
-		_renderer.setScissor( x, y, width, height );
-
-	}
-
-	function _applyPMREM( cubeUVRenderTarget ) {
-
-		var autoClear = _renderer.autoClear;
-		_renderer.autoClear = false;
-
-	  	for ( var i = 1; i < TOTAL_LODS; i ++ ) {
-
-			var sigma = Math.sqrt(
-				_sigmas[ i ] * _sigmas[ i ] -
-			_sigmas[ i - 1 ] * _sigmas[ i - 1 ] );
-			var poleAxis =
-			_axisDirections[ ( i - 1 ) % _axisDirections.length ];
-			_blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
-
-		}
-
-		_renderer.autoClear = autoClear;
-
-	}
-
-	/**
-   * This is a two-pass Gaussian blur for a cubemap. Normally this is done
-   * vertically and horizontally, but this breaks down on a cube. Here we apply
-   * the blur latitudinally (around the poles), and then longitudinally (towards
-   * the poles) to approximate the orthogonally-separable blur. It is least
-   * accurate at the poles, but still does a decent job.
-   */
-	function _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
-
-		_halfBlur(
-			cubeUVRenderTarget,
-			_pingPongRenderTarget,
-			lodIn,
-			lodOut,
-			sigma,
-			'latitudinal',
-			poleAxis );
-
-		_halfBlur(
-			_pingPongRenderTarget,
-			cubeUVRenderTarget,
-			lodOut,
-			lodOut,
-			sigma,
-			'longitudinal',
-			poleAxis );
-
-	}
-
-	function _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
-
-		if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
-
-			console.error(
-				'blur direction must be either latitudinal or longitudinal!' );
-
-		}
-
-		// Number of standard deviations at which to cut off the discrete approximation.
-		var STANDARD_DEVIATIONS = 3;
-
-		var blurScene = new THREE.Scene();
-		blurScene.add( new THREE.Mesh( _lodPlanes[ lodOut ], _blurMaterial ) );
-		var blurUniforms = _blurMaterial.uniforms;
-
-		var pixels = _sizeLods[ lodIn ] - 1;
-		var radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
-		var sigmaPixels = sigmaRadians / radiansPerPixel;
-		var samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
-
-		if ( samples > MAX_SAMPLES ) {
-
-			console.warn( `sigmaRadians, ${
-				sigmaRadians}, is too large and will clip, as it requested ${
-				samples} samples when the maximum is set to ${MAX_SAMPLES}` );
-
-		}
-
-		var weights = [];
-		var sum = 0;
-		for ( var i = 0; i < MAX_SAMPLES; ++ i ) {
-
-			var x = i / sigmaPixels;
-			var weight = Math.exp( - x * x / 2 );
-			weights.push( weight );
-			if ( i == 0 ) {
-
-	  			 sum += weight;
-
-			} else if ( i < samples ) {
-
-	  			sum += 2 * weight;
-
-			}
-
-		}
-		weights = weights.map( w => w / sum );
-
-		blurUniforms[ 'envMap' ].value = targetIn.texture;
-		blurUniforms[ 'samples' ].value = samples;
-		blurUniforms[ 'weights' ].value = weights;
-		blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';
-		if ( poleAxis ) {
-
-			blurUniforms[ 'poleAxis' ].value = poleAxis;
-
-		}
-		blurUniforms[ 'dTheta' ].value = radiansPerPixel;
-		blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn;
-		blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
-		blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
-
-		var outputSize = _sizeLods[ lodOut ];
-		var x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize );
-		var y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) +
-	  2 * outputSize *
-		  ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 );
-
-		_renderer.setRenderTarget( targetOut );
-		_setViewport( x, y, 3 * outputSize, 2 * outputSize );
-		_renderer.render( blurScene, _flatCamera );
-
-	}
-
-	function _getBlurShader( maxSamples ) {
-
-		var weights = new Float32Array( maxSamples );
-		var poleAxis = new THREE.Vector3( 0, 1, 0 );
-		var shaderMaterial = new THREE.RawShaderMaterial( {
-
-			defines: { 'n': maxSamples },
-
-			uniforms: {
-				'envMap': { value: null },
-				'samples': { value: 1 },
-				'weights': { value: weights },
-				'latitudinal': { value: false },
-				'dTheta': { value: 0 },
-				'mipInt': { value: 0 },
-				'poleAxis': { value: poleAxis },
-				'inputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] },
-				'outputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] }
-			},
-
-			vertexShader: _getCommonVertexShader(),
-
-			fragmentShader: `
-precision mediump float;
-precision mediump int;
-varying vec3 vOutputDirection;
-uniform sampler2D envMap;
-uniform int samples;
-uniform float weights[n];
-uniform bool latitudinal;
-uniform float dTheta;
-uniform float mipInt;
-uniform vec3 poleAxis;
-
-${_getEncodings()}
-
-#define ENVMAP_TYPE_CUBE_UV
-#include <cube_uv_reflection_fragment>
-
-void main() {
-	gl_FragColor = vec4(0.0);
-    for (int i = 0; i < n; i++) {
-      if (i >= samples)
-        break;
-      for (int dir = -1; dir < 2; dir += 2) {
-        if (i == 0 && dir == 1)
-          continue;
-        vec3 axis = latitudinal ? poleAxis : cross(poleAxis, vOutputDirection);
-        if (all(equal(axis, vec3(0.0))))
-          axis = cross(vec3(0.0, 1.0, 0.0), vOutputDirection);
-        axis = normalize(axis);
-        float theta = dTheta * float(dir * i);
-        float cosTheta = cos(theta);
-        // Rodrigues' axis-angle rotation
-        vec3 sampleDirection = vOutputDirection * cosTheta
-            + cross(axis, vOutputDirection) * sin(theta)
-            + axis * dot(axis, vOutputDirection) * (1.0 - cosTheta);
-        gl_FragColor.rgb +=
-            weights[i] * bilinearCubeUV(envMap, sampleDirection, mipInt);
-      }
-    }
-  	gl_FragColor = linearToOutputTexel(gl_FragColor);
-}
-     		`,
-
-			blending: THREE.NoBlending,
-			depthTest: false,
-	   		depthWrite: false
-
-		} );
-
-		shaderMaterial.type = 'SphericalGaussianBlur';
-
-		return shaderMaterial;
-
-	}
-
-	function _getEquirectShader() {
-
-		var texelSize = new THREE.Vector2( 1, 1 );
-		var shaderMaterial = new THREE.RawShaderMaterial( {
-
-			uniforms: {
-				'envMap': { value: null },
-				'texelSize': { value: texelSize },
-				'inputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] },
-				'outputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] }
-			},
-
-			vertexShader: _getCommonVertexShader(),
-
-			fragmentShader: `
-precision mediump float;
-precision mediump int;
-varying vec3 vOutputDirection;
-uniform sampler2D envMap;
-uniform vec2 texelSize;
-
-${_getEncodings()}
-
-#define RECIPROCAL_PI 0.31830988618
-#define RECIPROCAL_PI2 0.15915494
-
-void main() {
-	gl_FragColor = vec4(0.0);
-	vec3 outputDirection = normalize(vOutputDirection);
-	vec2 uv;
-	uv.y = asin(clamp(outputDirection.y, -1.0, 1.0)) * RECIPROCAL_PI + 0.5;
-	uv.x = atan(outputDirection.z, outputDirection.x) * RECIPROCAL_PI2 + 0.5;
-	vec2 f = fract(uv / texelSize - 0.5);
-	uv -= f * texelSize;
-	vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
-	uv.x += texelSize.x;
-	vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
-	uv.y += texelSize.y;
-	vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
-	uv.x -= texelSize.x;
-	vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
-	vec3 tm = mix(tl, tr, f.x);
-	vec3 bm = mix(bl, br, f.x);
-	gl_FragColor.rgb = mix(tm, bm, f.y);
-  	gl_FragColor = linearToOutputTexel(gl_FragColor);
-}
-     		`,
-
-			blending: THREE.NoBlending,
-			depthTest: false,
-	   		depthWrite: false
-
-		} );
-
-		shaderMaterial.type = 'EquirectangularToCubeUV';
-
-		return shaderMaterial;
-
-	}
-
-	function _getCubemapShader() {
-
-		var shaderMaterial = new THREE.RawShaderMaterial( {
-
-			uniforms: {
-				'envMap': { value: null },
-				'inputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] },
-				'outputEncoding': { value: ENCODINGS[ THREE.LinearEncoding ] }
-			},
-
-			vertexShader: _getCommonVertexShader(),
-
-			fragmentShader: `
-precision mediump float;
-precision mediump int;
-varying vec3 vOutputDirection;
-uniform samplerCube envMap;
-
-${_getEncodings()}
-
-void main() {
-	gl_FragColor = vec4(0.0);
-	gl_FragColor.rgb = envMapTexelToLinear(textureCube(envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ))).rgb;
-  	gl_FragColor = linearToOutputTexel(gl_FragColor);
-}
-     		`,
-
-			blending: THREE.NoBlending,
-			depthTest: false,
-	   		depthWrite: false
-
-		} );
-
-		shaderMaterial.type = 'CubemapToCubeUV';
-
-		return shaderMaterial;
-
-	}
-
-	function _getCommonVertexShader() {
-
-		return `
-precision mediump float;
-precision mediump int;
-attribute vec3 position;
-attribute vec2 uv;
-attribute float faceIndex;
-varying vec3 vOutputDirection;
-vec3 getDirection(vec2 uv, float face) {
-	uv = 2.0 * uv - 1.0;
-	vec3 direction = vec3(uv, 1.0);
-	if (face == 0.0) {
-		direction = direction.zyx;
-		direction.z *= -1.0;
-	} else if (face == 1.0) {
-		direction = direction.xzy;
-		direction.z *= -1.0;
-	} else if (face == 3.0) {
-		direction = direction.zyx;
-		direction.x *= -1.0;
-	} else if (face == 4.0) {
-		direction = direction.xzy;
-		direction.y *= -1.0;
-	} else if (face == 5.0) {
-		direction.xz *= -1.0;
-	}
-	return direction;
-}
-void main() {
-	vOutputDirection = getDirection(uv, faceIndex);
-	gl_Position = vec4( position, 1.0 );
-}
-		`;
-
-	}
-
-	function _getEncodings() {
-
-		return `
-uniform int inputEncoding;
-uniform int outputEncoding;
-
-#include <encodings_pars_fragment>
-
-vec4 inputTexelToLinear(vec4 value){
-    if(inputEncoding == 0){
-        return value;
-    }else if(inputEncoding == 1){
-        return sRGBToLinear(value);
-    }else if(inputEncoding == 2){
-        return RGBEToLinear(value);
-    }else if(inputEncoding == 3){
-        return RGBMToLinear(value, 7.0);
-    }else if(inputEncoding == 4){
-        return RGBMToLinear(value, 16.0);
-    }else if(inputEncoding == 5){
-        return RGBDToLinear(value, 256.0);
-    }else{
-        return GammaToLinear(value, 2.2);
-    }
-}
-
-vec4 linearToOutputTexel(vec4 value){
-    if(outputEncoding == 0){
-        return value;
-    }else if(outputEncoding == 1){
-        return LinearTosRGB(value);
-    }else if(outputEncoding == 2){
-        return LinearToRGBE(value);
-    }else if(outputEncoding == 3){
-        return LinearToRGBM(value, 7.0);
-    }else if(outputEncoding == 4){
-        return LinearToRGBM(value, 16.0);
-    }else if(outputEncoding == 5){
-        return LinearToRGBD(value, 256.0);
-    }else{
-        return LinearToGamma(value, 2.2);
-    }
-}
-
-vec4 envMapTexelToLinear(vec4 color) {
-  return inputTexelToLinear(color);
-}
-		`;
-
-	}
-
-	return PMREMGenerator;
-
-} )();

+ 0 - 842
examples/jsm/pmrem/PMREMGenerator.js

@@ -1,842 +0,0 @@
-/**
- * @author Emmett Lalish / elalish
- *
- * This class generates a Prefiltered, Mipmapped Radiance Environment Map
- * (PMREM) from a cubeMap environment texture. This allows different levels of
- * blur to be quickly accessed based on material roughness. It is packed into a
- * special CubeUV format that allows us to perform custom interpolation so that
- * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
- * chain, it only goes down to the LOD_MIN level (above), and then creates extra
- * even more filtered 'mips' at the same LOD_MIN resolution, associated with
- * higher roughness levels. In this way we maintain resolution to smoothly
- * interpolate diffuse lighting while limiting sampling computation.
- */
-
-import {
-	BufferAttribute,
-	BufferGeometry,
-	CubeUVReflectionMapping,
-	GammaEncoding,
-	LinearEncoding,
-	LinearToneMapping,
-	Mesh,
-	NearestFilter,
-	NoBlending,
-	OrthographicCamera,
-	PerspectiveCamera,
-	RGBDEncoding,
-	RGBEEncoding,
-	RGBEFormat,
-	RGBM16Encoding,
-	RGBM7Encoding,
-	RawShaderMaterial,
-	Scene,
-	UnsignedByteType,
-	Vector2,
-	Vector3,
-	WebGLRenderTarget,
-	sRGBEncoding
-} from "../../../build/three.module.js";
-
-var PMREMGenerator = ( function () {
-
-	var LOD_MIN = 4;
-	var LOD_MAX = 8;
-	var SIZE_MAX = Math.pow( 2, LOD_MAX );
-	// The standard deviations (radians) associated with the extra mips. These are
-	// chosen to approximate a Trowbridge-Reitz distribution function times the
-	// geometric shadowing function. These sigma values squared must match the
-	// variance #defines in cube_uv_reflection_fragment.glsl.js.
-	var EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
-	var TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
-	// The maximum length of the blur for loop. Smaller sigmas will use fewer
-	// samples and exit early, but not recompile the shader.
-	var MAX_SAMPLES = 20;
-	var ENCODINGS = {
-		[ LinearEncoding ]: 0,
-		[ sRGBEncoding ]: 1,
-		[ RGBEEncoding ]: 2,
-		[ RGBM7Encoding ]: 3,
-		[ RGBM16Encoding ]: 4,
-		[ RGBDEncoding ]: 5,
-		[ GammaEncoding ]: 6
-	  };
-
-	var _flatCamera = new OrthographicCamera();
-	var _blurMaterial = _getBlurShader( MAX_SAMPLES );
-	var _equirectShader = null;
-	var _cubemapShader = null;
-
-	var { _lodPlanes, _sizeLods, _sigmas } = _createPlanes();
-	var _pingPongRenderTarget = null;
-	var _renderer = null;
-
-	// Golden Ratio
-	var PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
-	var INV_PHI = 1 / PHI;
-	// Vertices of a dodecahedron (except the opposites, which represent the
-	// same axis), used as axis directions evenly spread on a sphere.
-	var _axisDirections = [
-		new Vector3( 1, 1, 1 ),
-		new Vector3( - 1, 1, 1 ),
-		new Vector3( 1, 1, - 1 ),
-		new Vector3( - 1, 1, - 1 ),
-		new Vector3( 0, PHI, INV_PHI ),
-		new Vector3( 0, PHI, - INV_PHI ),
-		new Vector3( INV_PHI, 0, PHI ),
-		new Vector3( - INV_PHI, 0, PHI ),
-		new Vector3( PHI, INV_PHI, 0 ),
-		new Vector3( - PHI, INV_PHI, 0 ) ];
-
-	var PMREMGenerator = function ( renderer ) {
-
-		_renderer = renderer;
-		_compileMaterial( _blurMaterial );
-
-	};
-
-	PMREMGenerator.prototype = {
-
-		constructor: PMREMGenerator,
-
-		/**
-		 * Generates a PMREM from a supplied Scene, which can be faster than using an
-		 * image if networking bandwidth is low. Optional sigma specifies a blur radius
-		 * in radians to be applied to the scene before PMREM generation. Optional near
-		 * and far planes ensure the scene is rendered in its entirety (the cubeCamera
-		 * is placed at the origin).
-		 */
-		fromScene: function ( scene, sigma = 0, near = 0.1, far = 100 ) {
-
-			var cubeUVRenderTarget = _allocateTargets();
-			_sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
-			if ( sigma > 0 ) {
-
-				_blur( cubeUVRenderTarget, 0, 0, sigma );
-
-			}
-			_applyPMREM( cubeUVRenderTarget );
-			_cleanup();
-			cubeUVRenderTarget.scissorTest = false;
-
-			return cubeUVRenderTarget;
-
-		},
-
-		/**
-		 * Generates a PMREM from an equirectangular texture, which can be either LDR
-		 * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
-		 * as this matches best with the 256 x 256 cubemap output.
-		 */
-		fromEquirectangular: function ( equirectangular ) {
-
-			equirectangular.magFilter = NearestFilter;
-			equirectangular.minFilter = NearestFilter;
-			equirectangular.generateMipmaps = false;
-
-			return this.fromCubemap( equirectangular );
-
-		},
-
-		/**
-		 * Generates a PMREM from an cubemap texture, which can be either LDR
-		 * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
-		 * as this matches best with the 256 x 256 cubemap output.
-		 */
-		fromCubemap: function ( cubemap ) {
-
-			var cubeUVRenderTarget = _allocateTargets( cubemap );
-			_textureToCubeUV( cubemap, cubeUVRenderTarget );
-			_applyPMREM( cubeUVRenderTarget );
-			_cleanup();
-			cubeUVRenderTarget.scissorTest = false;
-
-			return cubeUVRenderTarget;
-
-		},
-
-		/**
-		 * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
-		 * your texture's network fetch for increased concurrency.
-		 */
-		compileCubemapShader: function () {
-
-			if ( _cubemapShader == null ) {
-
-				_cubemapShader = _getCubemapShader();
-				_compileMaterial( _cubemapShader );
-
-			}
-
-		},
-
-		/**
-		 * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
-		 * your texture's network fetch for increased concurrency.
-		 */
-		compileEquirectangularShader: function () {
-
-			if ( _equirectShader == null ) {
-
-				_equirectShader = _getEquirectShader();
-				_compileMaterial( _equirectShader );
-
-			}
-
-		},
-
-		/**
-		 * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
-		 * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
-		 * one of them will cause any others to also become unusable.
-		 */
-		dispose: function () {
-
-			_blurMaterial.dispose();
-			if ( _cubemapShader != null ) _cubemapShader.dispose();
-			if ( _equirectShader != null ) _equirectShader.dispose();
-			var plane;
-			for ( plane of _lodPlanes ) {
-
-				plane.dispose();
-
-			}
-
-		},
-
-	};
-
-	function _createPlanes() {
-
-		var _lodPlanes = [];
-		var _sizeLods = [];
-		var _sigmas = [];
-
-		var lod = LOD_MAX;
-		for ( var i = 0; i < TOTAL_LODS; i ++ ) {
-
-			var sizeLod = Math.pow( 2, lod );
-			_sizeLods.push( sizeLod );
-			var sigma = 1.0 / sizeLod;
-			if ( i > LOD_MAX - LOD_MIN ) {
-
-				sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ];
-
-			} else if ( i == 0 ) {
-
-				sigma = 0;
-
-			}
-			_sigmas.push( sigma );
-
-			var texelSize = 1.0 / ( sizeLod - 1 );
-			var min = - texelSize / 2;
-			var max = 1 + texelSize / 2;
-			var uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
-
-			var cubeFaces = 6;
-			var vertices = 6;
-			var positionSize = 3;
-			var uvSize = 2;
-			var faceIndexSize = 1;
-
-			var position = new Float32Array( positionSize * vertices * cubeFaces );
-			var uv = new Float32Array( uvSize * vertices * cubeFaces );
-			var faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
-
-			for ( var face = 0; face < cubeFaces; face ++ ) {
-
-				var x = ( face % 3 ) * 2 / 3 - 1;
-				var y = face > 2 ? 0 : - 1;
-				var coordinates = [
-					[ x, y, 0 ],
-					[ x + 2 / 3, y, 0 ],
-					[ x + 2 / 3, y + 1, 0 ],
-					[ x, y, 0 ],
-					[ x + 2 / 3, y + 1, 0 ],
-					[ x, y + 1, 0 ]
-				];
-				position.set( [].concat( ...coordinates ),
-					positionSize * vertices * face );
-				uv.set( uv1, uvSize * vertices * face );
-				var fill = [ face, face, face, face, face, face ];
-				faceIndex.set( fill, faceIndexSize * vertices * face );
-
-			}
-			var planes = new BufferGeometry();
-			planes.setAttribute(
-				'position', new BufferAttribute( position, positionSize ) );
-			planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
-			planes.setAttribute(
-				'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
-			_lodPlanes.push( planes );
-
-			if ( lod > LOD_MIN ) {
-
-				lod --;
-
-			}
-
-		}
-		return { _lodPlanes, _sizeLods, _sigmas };
-
-	}
-
-	function _allocateTargets( equirectangular ) {
-
-		var params = {
-		  magFilter: NearestFilter,
-		  minFilter: NearestFilter,
-		  generateMipmaps: false,
-		  type: equirectangular ? equirectangular.type : UnsignedByteType,
-		  format: equirectangular ? equirectangular.format : RGBEFormat,
-		  encoding: equirectangular ? equirectangular.encoding : RGBEEncoding,
-		  depthBuffer: false,
-		  stencilBuffer: false
-		};
-		var cubeUVRenderTarget = _createRenderTarget(
-			{ ...params, depthBuffer: ( equirectangular ? false : true ) } );
-		_pingPongRenderTarget = _createRenderTarget( params );
-		return cubeUVRenderTarget;
-
-	}
-
-	function _cleanup() {
-
-		_pingPongRenderTarget.dispose();
-		_renderer.setRenderTarget( null );
-		var size = _renderer.getSize( new Vector2() );
-		_renderer.setViewport( 0, 0, size.x, size.y );
-
-	}
-
-	function _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
-
-		var fov = 90;
-		var aspect = 1;
-		var cubeCamera = new PerspectiveCamera( fov, aspect, near, far );
-		var upSign = [ 1, 1, 1, 1, - 1, 1 ];
-		var forwardSign = [ 1, 1, - 1, - 1, - 1, 1 ];
-
-		var outputEncoding = _renderer.outputEncoding;
-		var toneMapping = _renderer.toneMapping;
-		var toneMappingExposure = _renderer.toneMappingExposure;
-		var clearColor = _renderer.getClearColor();
-		var clearAlpha = _renderer.getClearAlpha();
-
-		_renderer.toneMapping = LinearToneMapping;
-		_renderer.toneMappingExposure = 1.0;
-		_renderer.outputEncoding = LinearEncoding;
-		scene.scale.z *= - 1;
-
-		var background = scene.background;
-		if ( background && background.isColor ) {
-
-			background.convertSRGBToLinear();
-			// Convert linear to RGBE
-			var maxComponent = Math.max( background.r, background.g, background.b );
-			var fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 );
-			background = background.multiplyScalar( Math.pow( 2.0, - fExp ) );
-			var alpha = ( fExp + 128.0 ) / 255.0;
-			_renderer.setClearColor( background, alpha );
-			scene.background = null;
-
-		}
-
-		_renderer.setRenderTarget( cubeUVRenderTarget );
-		for ( var i = 0; i < 6; i ++ ) {
-
-			var col = i % 3;
-			if ( col == 0 ) {
-
-				cubeCamera.up.set( 0, upSign[ i ], 0 );
-				cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
-
-			} else if ( col == 1 ) {
-
-				cubeCamera.up.set( 0, 0, upSign[ i ] );
-				cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
-
-			} else {
-
-				cubeCamera.up.set( 0, upSign[ i ], 0 );
-				cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
-
-			}
-			_setViewport(
-				col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX );
-			_renderer.render( scene, cubeCamera );
-
-		}
-
-		_renderer.toneMapping = toneMapping;
-		_renderer.toneMappingExposure = toneMappingExposure;
-		_renderer.outputEncoding = outputEncoding;
-		_renderer.setClearColor( clearColor, clearAlpha );
-		scene.scale.z *= - 1;
-
-	}
-
-	function _textureToCubeUV( texture, cubeUVRenderTarget ) {
-
-		var scene = new Scene();
-		if ( texture.isCubeTexture ) {
-
-			if ( _cubemapShader == null ) {
-
-				_cubemapShader = _getCubemapShader();
-
-			}
-
-		} else {
-
-			if ( _equirectShader == null ) {
-
-				_equirectShader = _getEquirectShader();
-
-			}
-
-		}
-		var material = texture.isCubeTexture ? _cubemapShader : _equirectShader;
-		scene.add( new Mesh( _lodPlanes[ 0 ], material ) );
-		var uniforms = material.uniforms;
-
-		uniforms[ 'envMap' ].value = texture;
-		if ( ! texture.isCubeTexture ) {
-
-			uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height );
-
-		}
-		uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ];
-		uniforms[ 'outputEncoding' ].value = ENCODINGS[ texture.encoding ];
-
-		_renderer.setRenderTarget( cubeUVRenderTarget );
-		_setViewport( 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX );
-		_renderer.render( scene, _flatCamera );
-
-	}
-
-	function _compileMaterial( material ) {
-
-		var tmpScene = new Scene();
-		tmpScene.add( new Mesh( _lodPlanes[ 0 ], material ) );
-		_renderer.compile( tmpScene, _flatCamera );
-
-	}
-
-	function _createRenderTarget( params ) {
-
-		var cubeUVRenderTarget =
-		new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params );
-		cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
-		cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
-		cubeUVRenderTarget.scissorTest = true;
-		return cubeUVRenderTarget;
-
-	}
-
-	function _setViewport( x, y, width, height ) {
-
-		var invDpr = 1.0 / _renderer.getPixelRatio();
-		x *= invDpr;
-		y *= invDpr;
-		width *= invDpr;
-		height *= invDpr;
-		_renderer.setViewport( x, y, width, height );
-		_renderer.setScissor( x, y, width, height );
-
-	}
-
-	function _applyPMREM( cubeUVRenderTarget ) {
-
-		var autoClear = _renderer.autoClear;
-		_renderer.autoClear = false;
-
-	  	for ( var i = 1; i < TOTAL_LODS; i ++ ) {
-
-			var sigma = Math.sqrt(
-				_sigmas[ i ] * _sigmas[ i ] -
-			_sigmas[ i - 1 ] * _sigmas[ i - 1 ] );
-			var poleAxis =
-			_axisDirections[ ( i - 1 ) % _axisDirections.length ];
-			_blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
-
-		}
-
-		_renderer.autoClear = autoClear;
-
-	}
-
-	/**
-   * This is a two-pass Gaussian blur for a cubemap. Normally this is done
-   * vertically and horizontally, but this breaks down on a cube. Here we apply
-   * the blur latitudinally (around the poles), and then longitudinally (towards
-   * the poles) to approximate the orthogonally-separable blur. It is least
-   * accurate at the poles, but still does a decent job.
-   */
-	function _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
-
-		_halfBlur(
-			cubeUVRenderTarget,
-			_pingPongRenderTarget,
-			lodIn,
-			lodOut,
-			sigma,
-			'latitudinal',
-			poleAxis );
-
-		_halfBlur(
-			_pingPongRenderTarget,
-			cubeUVRenderTarget,
-			lodOut,
-			lodOut,
-			sigma,
-			'longitudinal',
-			poleAxis );
-
-	}
-
-	function _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
-
-		if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
-
-			console.error(
-				'blur direction must be either latitudinal or longitudinal!' );
-
-		}
-
-		// Number of standard deviations at which to cut off the discrete approximation.
-		var STANDARD_DEVIATIONS = 3;
-
-		var blurScene = new Scene();
-		blurScene.add( new Mesh( _lodPlanes[ lodOut ], _blurMaterial ) );
-		var blurUniforms = _blurMaterial.uniforms;
-
-		var pixels = _sizeLods[ lodIn ] - 1;
-		var radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
-		var sigmaPixels = sigmaRadians / radiansPerPixel;
-		var samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
-
-		if ( samples > MAX_SAMPLES ) {
-
-			console.warn( `sigmaRadians, ${
-				sigmaRadians}, is too large and will clip, as it requested ${
-				samples} samples when the maximum is set to ${MAX_SAMPLES}` );
-
-		}
-
-		var weights = [];
-		var sum = 0;
-		for ( var i = 0; i < MAX_SAMPLES; ++ i ) {
-
-			var x = i / sigmaPixels;
-			var weight = Math.exp( - x * x / 2 );
-			weights.push( weight );
-			if ( i == 0 ) {
-
-	  			 sum += weight;
-
-			} else if ( i < samples ) {
-
-	  			sum += 2 * weight;
-
-			}
-
-		}
-		weights = weights.map( w => w / sum );
-
-		blurUniforms[ 'envMap' ].value = targetIn.texture;
-		blurUniforms[ 'samples' ].value = samples;
-		blurUniforms[ 'weights' ].value = weights;
-		blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';
-		if ( poleAxis ) {
-
-			blurUniforms[ 'poleAxis' ].value = poleAxis;
-
-		}
-		blurUniforms[ 'dTheta' ].value = radiansPerPixel;
-		blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn;
-		blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
-		blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
-
-		var outputSize = _sizeLods[ lodOut ];
-		var x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize );
-		var y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) +
-	  2 * outputSize *
-		  ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 );
-
-		_renderer.setRenderTarget( targetOut );
-		_setViewport( x, y, 3 * outputSize, 2 * outputSize );
-		_renderer.render( blurScene, _flatCamera );
-
-	}
-
-	function _getBlurShader( maxSamples ) {
-
-		var weights = new Float32Array( maxSamples );
-		var poleAxis = new Vector3( 0, 1, 0 );
-		var shaderMaterial = new RawShaderMaterial( {
-
-			defines: { 'n': maxSamples },
-
-			uniforms: {
-				'envMap': { value: null },
-				'samples': { value: 1 },
-				'weights': { value: weights },
-				'latitudinal': { value: false },
-				'dTheta': { value: 0 },
-				'mipInt': { value: 0 },
-				'poleAxis': { value: poleAxis },
-				'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
-				'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
-			},
-
-			vertexShader: _getCommonVertexShader(),
-
-			fragmentShader: `
-precision mediump float;
-precision mediump int;
-varying vec3 vOutputDirection;
-uniform sampler2D envMap;
-uniform int samples;
-uniform float weights[n];
-uniform bool latitudinal;
-uniform float dTheta;
-uniform float mipInt;
-uniform vec3 poleAxis;
-
-${_getEncodings()}
-
-#define ENVMAP_TYPE_CUBE_UV
-#include <cube_uv_reflection_fragment>
-
-void main() {
-	gl_FragColor = vec4(0.0);
-    for (int i = 0; i < n; i++) {
-      if (i >= samples)
-        break;
-      for (int dir = -1; dir < 2; dir += 2) {
-        if (i == 0 && dir == 1)
-          continue;
-        vec3 axis = latitudinal ? poleAxis : cross(poleAxis, vOutputDirection);
-        if (all(equal(axis, vec3(0.0))))
-          axis = cross(vec3(0.0, 1.0, 0.0), vOutputDirection);
-        axis = normalize(axis);
-        float theta = dTheta * float(dir * i);
-        float cosTheta = cos(theta);
-        // Rodrigues' axis-angle rotation
-        vec3 sampleDirection = vOutputDirection * cosTheta
-            + cross(axis, vOutputDirection) * sin(theta)
-            + axis * dot(axis, vOutputDirection) * (1.0 - cosTheta);
-        gl_FragColor.rgb +=
-            weights[i] * bilinearCubeUV(envMap, sampleDirection, mipInt);
-      }
-    }
-  	gl_FragColor = linearToOutputTexel(gl_FragColor);
-}
-     		`,
-
-			blending: NoBlending,
-			depthTest: false,
-	   		depthWrite: false
-
-		} );
-
-		shaderMaterial.type = 'SphericalGaussianBlur';
-
-		return shaderMaterial;
-
-	}
-
-	function _getEquirectShader() {
-
-		var texelSize = new Vector2( 1, 1 );
-		var shaderMaterial = new RawShaderMaterial( {
-
-			uniforms: {
-				'envMap': { value: null },
-				'texelSize': { value: texelSize },
-				'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
-				'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
-			},
-
-			vertexShader: _getCommonVertexShader(),
-
-			fragmentShader: `
-precision mediump float;
-precision mediump int;
-varying vec3 vOutputDirection;
-uniform sampler2D envMap;
-uniform vec2 texelSize;
-
-${_getEncodings()}
-
-#define RECIPROCAL_PI 0.31830988618
-#define RECIPROCAL_PI2 0.15915494
-
-void main() {
-	gl_FragColor = vec4(0.0);
-	vec3 outputDirection = normalize(vOutputDirection);
-	vec2 uv;
-	uv.y = asin(clamp(outputDirection.y, -1.0, 1.0)) * RECIPROCAL_PI + 0.5;
-	uv.x = atan(outputDirection.z, outputDirection.x) * RECIPROCAL_PI2 + 0.5;
-	vec2 f = fract(uv / texelSize - 0.5);
-	uv -= f * texelSize;
-	vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
-	uv.x += texelSize.x;
-	vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
-	uv.y += texelSize.y;
-	vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
-	uv.x -= texelSize.x;
-	vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
-	vec3 tm = mix(tl, tr, f.x);
-	vec3 bm = mix(bl, br, f.x);
-	gl_FragColor.rgb = mix(tm, bm, f.y);
-  	gl_FragColor = linearToOutputTexel(gl_FragColor);
-}
-     		`,
-
-			blending: NoBlending,
-			depthTest: false,
-	   		depthWrite: false
-
-		} );
-
-		shaderMaterial.type = 'EquirectangularToCubeUV';
-
-		return shaderMaterial;
-
-	}
-
-	function _getCubemapShader() {
-
-		var shaderMaterial = new RawShaderMaterial( {
-
-			uniforms: {
-				'envMap': { value: null },
-				'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
-				'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
-			},
-
-			vertexShader: _getCommonVertexShader(),
-
-			fragmentShader: `
-precision mediump float;
-precision mediump int;
-varying vec3 vOutputDirection;
-uniform samplerCube envMap;
-
-${_getEncodings()}
-
-void main() {
-	gl_FragColor = vec4(0.0);
-	gl_FragColor.rgb = envMapTexelToLinear(textureCube(envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ))).rgb;
-  	gl_FragColor = linearToOutputTexel(gl_FragColor);
-}
-     		`,
-
-			blending: NoBlending,
-			depthTest: false,
-	   		depthWrite: false
-
-		} );
-
-		shaderMaterial.type = 'CubemapToCubeUV';
-
-		return shaderMaterial;
-
-	}
-
-	function _getCommonVertexShader() {
-
-		return `
-precision mediump float;
-precision mediump int;
-attribute vec3 position;
-attribute vec2 uv;
-attribute float faceIndex;
-varying vec3 vOutputDirection;
-vec3 getDirection(vec2 uv, float face) {
-	uv = 2.0 * uv - 1.0;
-	vec3 direction = vec3(uv, 1.0);
-	if (face == 0.0) {
-		direction = direction.zyx;
-		direction.z *= -1.0;
-	} else if (face == 1.0) {
-		direction = direction.xzy;
-		direction.z *= -1.0;
-	} else if (face == 3.0) {
-		direction = direction.zyx;
-		direction.x *= -1.0;
-	} else if (face == 4.0) {
-		direction = direction.xzy;
-		direction.y *= -1.0;
-	} else if (face == 5.0) {
-		direction.xz *= -1.0;
-	}
-	return direction;
-}
-void main() {
-	vOutputDirection = getDirection(uv, faceIndex);
-	gl_Position = vec4( position, 1.0 );
-}
-		`;
-
-	}
-
-	function _getEncodings() {
-
-		return `
-uniform int inputEncoding;
-uniform int outputEncoding;
-
-#include <encodings_pars_fragment>
-
-vec4 inputTexelToLinear(vec4 value){
-    if(inputEncoding == 0){
-        return value;
-    }else if(inputEncoding == 1){
-        return sRGBToLinear(value);
-    }else if(inputEncoding == 2){
-        return RGBEToLinear(value);
-    }else if(inputEncoding == 3){
-        return RGBMToLinear(value, 7.0);
-    }else if(inputEncoding == 4){
-        return RGBMToLinear(value, 16.0);
-    }else if(inputEncoding == 5){
-        return RGBDToLinear(value, 256.0);
-    }else{
-        return GammaToLinear(value, 2.2);
-    }
-}
-
-vec4 linearToOutputTexel(vec4 value){
-    if(outputEncoding == 0){
-        return value;
-    }else if(outputEncoding == 1){
-        return LinearTosRGB(value);
-    }else if(outputEncoding == 2){
-        return LinearToRGBE(value);
-    }else if(outputEncoding == 3){
-        return LinearToRGBM(value, 7.0);
-    }else if(outputEncoding == 4){
-        return LinearToRGBM(value, 16.0);
-    }else if(outputEncoding == 5){
-        return LinearToRGBD(value, 256.0);
-    }else{
-        return LinearToGamma(value, 2.2);
-    }
-}
-
-vec4 envMapTexelToLinear(vec4 color) {
-  return inputTexelToLinear(color);
-}
-		`;
-
-	}
-
-	return PMREMGenerator;
-
-} )();
-
-export { PMREMGenerator };

+ 1 - 0
src/Three.js

@@ -158,6 +158,7 @@ export { CurvePath } from './extras/core/CurvePath.js';
 export { Curve } from './extras/core/Curve.js';
 export { ImageUtils } from './extras/ImageUtils.js';
 export { ShapeUtils } from './extras/ShapeUtils.js';
+export { PMREMGenerator } from './extras/PMREMGenerator.js';
 export { WebGLUtils } from './renderers/webgl/WebGLUtils.js';
 export * from './constants.js';
 export * from './Three.Legacy.js';

+ 0 - 0
examples/jsm/pmrem/PMREMGenerator.d.ts → src/extras/PMREMGenerator.d.ts


+ 832 - 0
src/extras/PMREMGenerator.js

@@ -0,0 +1,832 @@
+/**
+ * @author Emmett Lalish / elalish
+ *
+ * This class generates a Prefiltered, Mipmapped Radiance Environment Map
+ * (PMREM) from a cubeMap environment texture. This allows different levels of
+ * blur to be quickly accessed based on material roughness. It is packed into a
+ * special CubeUV format that allows us to perform custom interpolation so that
+ * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
+ * chain, it only goes down to the LOD_MIN level (above), and then creates extra
+ * even more filtered 'mips' at the same LOD_MIN resolution, associated with
+ * higher roughness levels. In this way we maintain resolution to smoothly
+ * interpolate diffuse lighting while limiting sampling computation.
+ */
+
+import {
+	CubeUVReflectionMapping,
+	GammaEncoding,
+	LinearEncoding,
+	LinearToneMapping,
+	NearestFilter,
+	NoBlending,
+	RGBDEncoding,
+	RGBEEncoding,
+	RGBEFormat,
+	RGBM16Encoding,
+	RGBM7Encoding,
+	UnsignedByteType,
+	sRGBEncoding
+} from "../constants.js";
+
+import { BufferAttribute } from "../core/BufferAttribute.js";
+import { BufferGeometry } from "../core/BufferGeometry.js";
+import { Mesh } from "../objects/Mesh.js";
+import { OrthographicCamera } from "../cameras/OrthographicCamera.js";
+import { PerspectiveCamera } from "../cameras/PerspectiveCamera.js";
+import { RawShaderMaterial } from "../materials/RawShaderMaterial.js";
+import { Scene } from "../scenes/Scene.js";
+import { Vector2 } from "../math/Vector2.js";
+import { Vector3 } from "../math/Vector3.js";
+import { WebGLRenderTarget } from "../renderers/WebGLRenderTarget.js";
+
+var LOD_MIN = 4;
+var LOD_MAX = 8;
+var SIZE_MAX = Math.pow( 2, LOD_MAX );
+// The standard deviations (radians) associated with the extra mips. These are
+// chosen to approximate a Trowbridge-Reitz distribution function times the
+// geometric shadowing function. These sigma values squared must match the
+// variance #defines in cube_uv_reflection_fragment.glsl.js.
+var EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ];
+var TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
+// The maximum length of the blur for loop. Smaller sigmas will use fewer
+// samples and exit early, but not recompile the shader.
+var MAX_SAMPLES = 20;
+var ENCODINGS = {
+	[ LinearEncoding ]: 0,
+	[ sRGBEncoding ]: 1,
+	[ RGBEEncoding ]: 2,
+	[ RGBM7Encoding ]: 3,
+	[ RGBM16Encoding ]: 4,
+	[ RGBDEncoding ]: 5,
+	[ GammaEncoding ]: 6
+	};
+
+var _flatCamera = new OrthographicCamera();
+var _blurMaterial = _getBlurShader( MAX_SAMPLES );
+var _equirectShader = null;
+var _cubemapShader = null;
+
+var { _lodPlanes, _sizeLods, _sigmas } = _createPlanes();
+var _pingPongRenderTarget = null;
+var _renderer = null;
+
+// Golden Ratio
+var PHI = ( 1 + Math.sqrt( 5 ) ) / 2;
+var INV_PHI = 1 / PHI;
+// Vertices of a dodecahedron (except the opposites, which represent the
+// same axis), used as axis directions evenly spread on a sphere.
+var _axisDirections = [
+	new Vector3( 1, 1, 1 ),
+	new Vector3( - 1, 1, 1 ),
+	new Vector3( 1, 1, - 1 ),
+	new Vector3( - 1, 1, - 1 ),
+	new Vector3( 0, PHI, INV_PHI ),
+	new Vector3( 0, PHI, - INV_PHI ),
+	new Vector3( INV_PHI, 0, PHI ),
+	new Vector3( - INV_PHI, 0, PHI ),
+	new Vector3( PHI, INV_PHI, 0 ),
+	new Vector3( - PHI, INV_PHI, 0 ) ];
+
+function PMREMGenerator( renderer ) {
+
+	_renderer = renderer;
+	_compileMaterial( _blurMaterial );
+
+}
+
+PMREMGenerator.prototype = {
+
+	constructor: PMREMGenerator,
+
+	/**
+	 * Generates a PMREM from a supplied Scene, which can be faster than using an
+	 * image if networking bandwidth is low. Optional sigma specifies a blur radius
+	 * in radians to be applied to the scene before PMREM generation. Optional near
+	 * and far planes ensure the scene is rendered in its entirety (the cubeCamera
+	 * is placed at the origin).
+	 */
+	fromScene: function ( scene, sigma = 0, near = 0.1, far = 100 ) {
+
+		var cubeUVRenderTarget = _allocateTargets();
+		_sceneToCubeUV( scene, near, far, cubeUVRenderTarget );
+		if ( sigma > 0 ) {
+
+			_blur( cubeUVRenderTarget, 0, 0, sigma );
+
+		}
+		_applyPMREM( cubeUVRenderTarget );
+		_cleanup();
+		cubeUVRenderTarget.scissorTest = false;
+
+		return cubeUVRenderTarget;
+
+	},
+
+	/**
+	 * Generates a PMREM from an equirectangular texture, which can be either LDR
+	 * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
+	 * as this matches best with the 256 x 256 cubemap output.
+	 */
+	fromEquirectangular: function ( equirectangular ) {
+
+		equirectangular.magFilter = NearestFilter;
+		equirectangular.minFilter = NearestFilter;
+		equirectangular.generateMipmaps = false;
+
+		return this.fromCubemap( equirectangular );
+
+	},
+
+	/**
+	 * Generates a PMREM from an cubemap texture, which can be either LDR
+	 * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
+	 * as this matches best with the 256 x 256 cubemap output.
+	 */
+	fromCubemap: function ( cubemap ) {
+
+		var cubeUVRenderTarget = _allocateTargets( cubemap );
+		_textureToCubeUV( cubemap, cubeUVRenderTarget );
+		_applyPMREM( cubeUVRenderTarget );
+		_cleanup();
+		cubeUVRenderTarget.scissorTest = false;
+
+		return cubeUVRenderTarget;
+
+	},
+
+	/**
+	 * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
+	 * your texture's network fetch for increased concurrency.
+	 */
+	compileCubemapShader: function () {
+
+		if ( _cubemapShader == null ) {
+
+			_cubemapShader = _getCubemapShader();
+			_compileMaterial( _cubemapShader );
+
+		}
+
+	},
+
+	/**
+	 * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
+	 * your texture's network fetch for increased concurrency.
+	 */
+	compileEquirectangularShader: function () {
+
+		if ( _equirectShader == null ) {
+
+			_equirectShader = _getEquirectShader();
+			_compileMaterial( _equirectShader );
+
+		}
+
+	},
+
+	/**
+	 * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
+	 * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
+	 * one of them will cause any others to also become unusable.
+	 */
+	dispose: function () {
+
+		_blurMaterial.dispose();
+
+		if ( _cubemapShader != null ) _cubemapShader.dispose();
+		if ( _equirectShader != null ) _equirectShader.dispose();
+
+		for ( var i = 0; i < _lodPlanes.length; i ++ ) {
+			_lodPlanes[ i ].dispose();
+		}
+
+	},
+
+};
+
+function _createPlanes() {
+
+	var _lodPlanes = [];
+	var _sizeLods = [];
+	var _sigmas = [];
+
+	var lod = LOD_MAX;
+	for ( var i = 0; i < TOTAL_LODS; i ++ ) {
+
+		var sizeLod = Math.pow( 2, lod );
+		_sizeLods.push( sizeLod );
+		var sigma = 1.0 / sizeLod;
+		if ( i > LOD_MAX - LOD_MIN ) {
+
+			sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ];
+
+		} else if ( i == 0 ) {
+
+			sigma = 0;
+
+		}
+		_sigmas.push( sigma );
+
+		var texelSize = 1.0 / ( sizeLod - 1 );
+		var min = - texelSize / 2;
+		var max = 1 + texelSize / 2;
+		var uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ];
+
+		var cubeFaces = 6;
+		var vertices = 6;
+		var positionSize = 3;
+		var uvSize = 2;
+		var faceIndexSize = 1;
+
+		var position = new Float32Array( positionSize * vertices * cubeFaces );
+		var uv = new Float32Array( uvSize * vertices * cubeFaces );
+		var faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces );
+
+		for ( var face = 0; face < cubeFaces; face ++ ) {
+
+			var x = ( face % 3 ) * 2 / 3 - 1;
+			var y = face > 2 ? 0 : - 1;
+			var coordinates = [
+				x, y, 0,
+				x + 2 / 3, y, 0,
+				x + 2 / 3, y + 1, 0,
+				x, y, 0,
+				x + 2 / 3, y + 1, 0,
+				x, y + 1, 0
+			];
+			position.set( coordinates, positionSize * vertices * face );
+			uv.set( uv1, uvSize * vertices * face );
+			var fill = [ face, face, face, face, face, face ];
+			faceIndex.set( fill, faceIndexSize * vertices * face );
+
+		}
+		var planes = new BufferGeometry();
+		planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) );
+		planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) );
+		planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) );
+		_lodPlanes.push( planes );
+
+		if ( lod > LOD_MIN ) {
+
+			lod --;
+
+		}
+
+	}
+	return { _lodPlanes, _sizeLods, _sigmas };
+
+}
+
+function _allocateTargets( equirectangular ) {
+
+	var params = {
+		magFilter: NearestFilter,
+		minFilter: NearestFilter,
+		generateMipmaps: false,
+		type: equirectangular ? equirectangular.type : UnsignedByteType,
+		format: equirectangular ? equirectangular.format : RGBEFormat,
+		encoding: equirectangular ? equirectangular.encoding : RGBEEncoding,
+		depthBuffer: false,
+		stencilBuffer: false
+	};
+	var cubeUVRenderTarget = _createRenderTarget( params );
+	cubeUVRenderTarget.depthBuffer = equirectangular ? false : true;
+	_pingPongRenderTarget = _createRenderTarget( params );
+	return cubeUVRenderTarget;
+
+}
+
+function _cleanup() {
+
+	_pingPongRenderTarget.dispose();
+	_renderer.setRenderTarget( null );
+	var size = _renderer.getSize( new Vector2() );
+	_renderer.setViewport( 0, 0, size.x, size.y );
+
+}
+
+function _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) {
+
+	var fov = 90;
+	var aspect = 1;
+	var cubeCamera = new PerspectiveCamera( fov, aspect, near, far );
+	var upSign = [ 1, 1, 1, 1, - 1, 1 ];
+	var forwardSign = [ 1, 1, - 1, - 1, - 1, 1 ];
+
+	var outputEncoding = _renderer.outputEncoding;
+	var toneMapping = _renderer.toneMapping;
+	var toneMappingExposure = _renderer.toneMappingExposure;
+	var clearColor = _renderer.getClearColor();
+	var clearAlpha = _renderer.getClearAlpha();
+
+	_renderer.toneMapping = LinearToneMapping;
+	_renderer.toneMappingExposure = 1.0;
+	_renderer.outputEncoding = LinearEncoding;
+	scene.scale.z *= - 1;
+
+	var background = scene.background;
+	if ( background && background.isColor ) {
+
+		background.convertSRGBToLinear();
+		// Convert linear to RGBE
+		var maxComponent = Math.max( background.r, background.g, background.b );
+		var fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 );
+		background = background.multiplyScalar( Math.pow( 2.0, - fExp ) );
+		var alpha = ( fExp + 128.0 ) / 255.0;
+		_renderer.setClearColor( background, alpha );
+		scene.background = null;
+
+	}
+
+	_renderer.setRenderTarget( cubeUVRenderTarget );
+	for ( var i = 0; i < 6; i ++ ) {
+
+		var col = i % 3;
+		if ( col == 0 ) {
+
+			cubeCamera.up.set( 0, upSign[ i ], 0 );
+			cubeCamera.lookAt( forwardSign[ i ], 0, 0 );
+
+		} else if ( col == 1 ) {
+
+			cubeCamera.up.set( 0, 0, upSign[ i ] );
+			cubeCamera.lookAt( 0, forwardSign[ i ], 0 );
+
+		} else {
+
+			cubeCamera.up.set( 0, upSign[ i ], 0 );
+			cubeCamera.lookAt( 0, 0, forwardSign[ i ] );
+
+		}
+		_setViewport(
+			col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX );
+		_renderer.render( scene, cubeCamera );
+
+	}
+
+	_renderer.toneMapping = toneMapping;
+	_renderer.toneMappingExposure = toneMappingExposure;
+	_renderer.outputEncoding = outputEncoding;
+	_renderer.setClearColor( clearColor, clearAlpha );
+	scene.scale.z *= - 1;
+
+}
+
+function _textureToCubeUV( texture, cubeUVRenderTarget ) {
+
+	var scene = new Scene();
+	if ( texture.isCubeTexture ) {
+
+		if ( _cubemapShader == null ) {
+
+			_cubemapShader = _getCubemapShader();
+
+		}
+
+	} else {
+
+		if ( _equirectShader == null ) {
+
+			_equirectShader = _getEquirectShader();
+
+		}
+
+	}
+	var material = texture.isCubeTexture ? _cubemapShader : _equirectShader;
+	scene.add( new Mesh( _lodPlanes[ 0 ], material ) );
+	var uniforms = material.uniforms;
+
+	uniforms[ 'envMap' ].value = texture;
+	if ( ! texture.isCubeTexture ) {
+
+		uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height );
+
+	}
+	uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ];
+	uniforms[ 'outputEncoding' ].value = ENCODINGS[ texture.encoding ];
+
+	_renderer.setRenderTarget( cubeUVRenderTarget );
+	_setViewport( 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX );
+	_renderer.render( scene, _flatCamera );
+
+}
+
+function _compileMaterial( material ) {
+
+	var tmpScene = new Scene();
+	tmpScene.add( new Mesh( _lodPlanes[ 0 ], material ) );
+	_renderer.compile( tmpScene, _flatCamera );
+
+}
+
+function _createRenderTarget( params ) {
+
+	var cubeUVRenderTarget = new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params );
+	cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
+	cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
+	cubeUVRenderTarget.scissorTest = true;
+	return cubeUVRenderTarget;
+
+}
+
+function _setViewport( x, y, width, height ) {
+
+	var invDpr = 1.0 / _renderer.getPixelRatio();
+	x *= invDpr;
+	y *= invDpr;
+	width *= invDpr;
+	height *= invDpr;
+	_renderer.setViewport( x, y, width, height );
+	_renderer.setScissor( x, y, width, height );
+
+}
+
+function _applyPMREM( cubeUVRenderTarget ) {
+
+	var autoClear = _renderer.autoClear;
+	_renderer.autoClear = false;
+
+		for ( var i = 1; i < TOTAL_LODS; i ++ ) {
+
+		var sigma = Math.sqrt(
+			_sigmas[ i ] * _sigmas[ i ] -
+		_sigmas[ i - 1 ] * _sigmas[ i - 1 ] );
+		var poleAxis =
+		_axisDirections[ ( i - 1 ) % _axisDirections.length ];
+		_blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis );
+
+	}
+
+	_renderer.autoClear = autoClear;
+
+}
+
+/**
+ * This is a two-pass Gaussian blur for a cubemap. Normally this is done
+ * vertically and horizontally, but this breaks down on a cube. Here we apply
+ * the blur latitudinally (around the poles), and then longitudinally (towards
+ * the poles) to approximate the orthogonally-separable blur. It is least
+ * accurate at the poles, but still does a decent job.
+ */
+function _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) {
+
+	_halfBlur(
+		cubeUVRenderTarget,
+		_pingPongRenderTarget,
+		lodIn,
+		lodOut,
+		sigma,
+		'latitudinal',
+		poleAxis );
+
+	_halfBlur(
+		_pingPongRenderTarget,
+		cubeUVRenderTarget,
+		lodOut,
+		lodOut,
+		sigma,
+		'longitudinal',
+		poleAxis );
+
+}
+
+function _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) {
+
+	if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) {
+
+		console.error(
+			'blur direction must be either latitudinal or longitudinal!' );
+
+	}
+
+	// Number of standard deviations at which to cut off the discrete approximation.
+	var STANDARD_DEVIATIONS = 3;
+
+	var blurScene = new Scene();
+	blurScene.add( new Mesh( _lodPlanes[ lodOut ], _blurMaterial ) );
+	var blurUniforms = _blurMaterial.uniforms;
+
+	var pixels = _sizeLods[ lodIn ] - 1;
+	var radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 );
+	var sigmaPixels = sigmaRadians / radiansPerPixel;
+	var samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES;
+
+	if ( samples > MAX_SAMPLES ) {
+
+		console.warn( `sigmaRadians, ${
+			sigmaRadians}, is too large and will clip, as it requested ${
+			samples} samples when the maximum is set to ${MAX_SAMPLES}` );
+
+	}
+
+	var weights = [];
+	var sum = 0;
+	for ( var i = 0; i < MAX_SAMPLES; ++ i ) {
+
+		var x = i / sigmaPixels;
+		var weight = Math.exp( - x * x / 2 );
+		weights.push( weight );
+		if ( i == 0 ) {
+
+				 sum += weight;
+
+		} else if ( i < samples ) {
+
+				sum += 2 * weight;
+
+		}
+
+	}
+	weights = weights.map( function ( w ) { return w / sum } );
+
+	blurUniforms[ 'envMap' ].value = targetIn.texture;
+	blurUniforms[ 'samples' ].value = samples;
+	blurUniforms[ 'weights' ].value = weights;
+	blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal';
+	if ( poleAxis ) {
+
+		blurUniforms[ 'poleAxis' ].value = poleAxis;
+
+	}
+	blurUniforms[ 'dTheta' ].value = radiansPerPixel;
+	blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn;
+	blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
+	blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ];
+
+	var outputSize = _sizeLods[ lodOut ];
+	var x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize );
+	var y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) +
+	2 * outputSize *
+		( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 );
+
+	_renderer.setRenderTarget( targetOut );
+	_setViewport( x, y, 3 * outputSize, 2 * outputSize );
+	_renderer.render( blurScene, _flatCamera );
+
+}
+
+function _getBlurShader( maxSamples ) {
+
+	var weights = new Float32Array( maxSamples );
+	var poleAxis = new Vector3( 0, 1, 0 );
+	var shaderMaterial = new RawShaderMaterial( {
+
+		defines: { 'n': maxSamples },
+
+		uniforms: {
+			'envMap': { value: null },
+			'samples': { value: 1 },
+			'weights': { value: weights },
+			'latitudinal': { value: false },
+			'dTheta': { value: 0 },
+			'mipInt': { value: 0 },
+			'poleAxis': { value: poleAxis },
+			'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
+			'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
+		},
+
+		vertexShader: _getCommonVertexShader(),
+
+		fragmentShader: `
+precision mediump float;
+precision mediump int;
+varying vec3 vOutputDirection;
+uniform sampler2D envMap;
+uniform int samples;
+uniform float weights[n];
+uniform bool latitudinal;
+uniform float dTheta;
+uniform float mipInt;
+uniform vec3 poleAxis;
+
+${_getEncodings()}
+
+#define ENVMAP_TYPE_CUBE_UV
+#include <cube_uv_reflection_fragment>
+
+void main() {
+	gl_FragColor = vec4(0.0);
+		for (int i = 0; i < n; i++) {
+			if (i >= samples)
+				break;
+			for (int dir = -1; dir < 2; dir += 2) {
+				if (i == 0 && dir == 1)
+					continue;
+				vec3 axis = latitudinal ? poleAxis : cross(poleAxis, vOutputDirection);
+				if (all(equal(axis, vec3(0.0))))
+					axis = cross(vec3(0.0, 1.0, 0.0), vOutputDirection);
+				axis = normalize(axis);
+				float theta = dTheta * float(dir * i);
+				float cosTheta = cos(theta);
+				// Rodrigues' axis-angle rotation
+				vec3 sampleDirection = vOutputDirection * cosTheta
+						+ cross(axis, vOutputDirection) * sin(theta)
+						+ axis * dot(axis, vOutputDirection) * (1.0 - cosTheta);
+				gl_FragColor.rgb +=
+						weights[i] * bilinearCubeUV(envMap, sampleDirection, mipInt);
+			}
+		}
+		gl_FragColor = linearToOutputTexel(gl_FragColor);
+}
+		`,
+
+		blending: NoBlending,
+		depthTest: false,
+		depthWrite: false
+
+	} );
+
+	shaderMaterial.type = 'SphericalGaussianBlur';
+
+	return shaderMaterial;
+
+}
+
+function _getEquirectShader() {
+
+	var texelSize = new Vector2( 1, 1 );
+	var shaderMaterial = new RawShaderMaterial( {
+
+		uniforms: {
+			'envMap': { value: null },
+			'texelSize': { value: texelSize },
+			'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
+			'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
+		},
+
+		vertexShader: _getCommonVertexShader(),
+
+		fragmentShader: `
+precision mediump float;
+precision mediump int;
+varying vec3 vOutputDirection;
+uniform sampler2D envMap;
+uniform vec2 texelSize;
+
+${_getEncodings()}
+
+#define RECIPROCAL_PI 0.31830988618
+#define RECIPROCAL_PI2 0.15915494
+
+void main() {
+	gl_FragColor = vec4(0.0);
+	vec3 outputDirection = normalize(vOutputDirection);
+	vec2 uv;
+	uv.y = asin(clamp(outputDirection.y, -1.0, 1.0)) * RECIPROCAL_PI + 0.5;
+	uv.x = atan(outputDirection.z, outputDirection.x) * RECIPROCAL_PI2 + 0.5;
+	vec2 f = fract(uv / texelSize - 0.5);
+	uv -= f * texelSize;
+	vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
+	uv.x += texelSize.x;
+	vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
+	uv.y += texelSize.y;
+	vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
+	uv.x -= texelSize.x;
+	vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;
+	vec3 tm = mix(tl, tr, f.x);
+	vec3 bm = mix(bl, br, f.x);
+	gl_FragColor.rgb = mix(tm, bm, f.y);
+	gl_FragColor = linearToOutputTexel(gl_FragColor);
+}
+		`,
+
+		blending: NoBlending,
+		depthTest: false,
+		depthWrite: false
+
+	} );
+
+	shaderMaterial.type = 'EquirectangularToCubeUV';
+
+	return shaderMaterial;
+
+}
+
+function _getCubemapShader() {
+
+	var shaderMaterial = new RawShaderMaterial( {
+
+		uniforms: {
+			'envMap': { value: null },
+			'inputEncoding': { value: ENCODINGS[ LinearEncoding ] },
+			'outputEncoding': { value: ENCODINGS[ LinearEncoding ] }
+		},
+
+		vertexShader: _getCommonVertexShader(),
+
+		fragmentShader: `
+precision mediump float;
+precision mediump int;
+varying vec3 vOutputDirection;
+uniform samplerCube envMap;
+
+${_getEncodings()}
+
+void main() {
+	gl_FragColor = vec4(0.0);
+	gl_FragColor.rgb = envMapTexelToLinear(textureCube(envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ))).rgb;
+	gl_FragColor = linearToOutputTexel(gl_FragColor);
+}
+		`,
+
+		blending: NoBlending,
+		depthTest: false,
+		depthWrite: false
+
+	} );
+
+	shaderMaterial.type = 'CubemapToCubeUV';
+
+	return shaderMaterial;
+
+}
+
+function _getCommonVertexShader() {
+
+	return `
+precision mediump float;
+precision mediump int;
+attribute vec3 position;
+attribute vec2 uv;
+attribute float faceIndex;
+varying vec3 vOutputDirection;
+vec3 getDirection(vec2 uv, float face) {
+	uv = 2.0 * uv - 1.0;
+	vec3 direction = vec3(uv, 1.0);
+	if (face == 0.0) {
+		direction = direction.zyx;
+		direction.z *= -1.0;
+	} else if (face == 1.0) {
+		direction = direction.xzy;
+		direction.z *= -1.0;
+	} else if (face == 3.0) {
+		direction = direction.zyx;
+		direction.x *= -1.0;
+	} else if (face == 4.0) {
+		direction = direction.xzy;
+		direction.y *= -1.0;
+	} else if (face == 5.0) {
+		direction.xz *= -1.0;
+	}
+	return direction;
+}
+void main() {
+	vOutputDirection = getDirection(uv, faceIndex);
+	gl_Position = vec4( position, 1.0 );
+}
+	`;
+
+}
+
+function _getEncodings() {
+
+	return `
+uniform int inputEncoding;
+uniform int outputEncoding;
+
+#include <encodings_pars_fragment>
+
+vec4 inputTexelToLinear(vec4 value){
+		if(inputEncoding == 0){
+				return value;
+		}else if(inputEncoding == 1){
+				return sRGBToLinear(value);
+		}else if(inputEncoding == 2){
+				return RGBEToLinear(value);
+		}else if(inputEncoding == 3){
+				return RGBMToLinear(value, 7.0);
+		}else if(inputEncoding == 4){
+				return RGBMToLinear(value, 16.0);
+		}else if(inputEncoding == 5){
+				return RGBDToLinear(value, 256.0);
+		}else{
+				return GammaToLinear(value, 2.2);
+		}
+}
+
+vec4 linearToOutputTexel(vec4 value){
+		if(outputEncoding == 0){
+				return value;
+		}else if(outputEncoding == 1){
+				return LinearTosRGB(value);
+		}else if(outputEncoding == 2){
+				return LinearToRGBE(value);
+		}else if(outputEncoding == 3){
+				return LinearToRGBM(value, 7.0);
+		}else if(outputEncoding == 4){
+				return LinearToRGBM(value, 16.0);
+		}else if(outputEncoding == 5){
+				return LinearToRGBD(value, 256.0);
+		}else{
+				return LinearToGamma(value, 2.2);
+		}
+}
+
+vec4 envMapTexelToLinear(vec4 color) {
+	return inputTexelToLinear(color);
+}
+	`;
+
+}
+
+export { PMREMGenerator };

+ 0 - 2
utils/modularize.js

@@ -141,8 +141,6 @@ var files = [
 	{ path: 'objects/Water.js', dependencies: [], ignoreList: [] },
 	{ path: 'objects/Water2.js', dependencies: [ { name: 'Reflector', path: 'objects/Reflector.js' }, { name: 'Refractor', path: 'objects/Refractor.js' } ], ignoreList: [] },
 
-	{ path: 'pmrem/PMREMGenerator.js', dependencies: [], ignoreList: [] },
-
 	{ path: 'postprocessing/AdaptiveToneMappingPass.js', dependencies: [ { name: 'Pass', path: 'postprocessing/Pass.js' }, { name: 'CopyShader', path: 'shaders/CopyShader.js' }, { name: 'LuminosityShader', path: 'shaders/LuminosityShader.js' }, { name: 'ToneMapShader', path: 'shaders/ToneMapShader.js' } ], ignoreList: [] },
 	{ path: 'postprocessing/AfterimagePass.js', dependencies: [ { name: 'Pass', path: 'postprocessing/Pass.js' }, { name: 'AfterimageShader', path: 'shaders/AfterimageShader.js' } ], ignoreList: [] },
 	{ path: 'postprocessing/BloomPass.js', dependencies: [ { name: 'Pass', path: 'postprocessing/Pass.js' }, { name: 'CopyShader', path: 'shaders/CopyShader.js' }, { name: 'ConvolutionShader', path: 'shaders/ConvolutionShader.js' } ], ignoreList: [] },