Kaynağa Gözat

JSM: JSM: Added module and TS file for VRMLLoader.

Mugen87 6 yıl önce
ebeveyn
işleme
ec8e590448

+ 1 - 0
docs/manual/en/introduction/Import-via-modules.html

@@ -111,6 +111,7 @@
 						<li>PLYLoader</li>
 						<li>STLLoader</li>
 						<li>TGALoader</li>
+						<li>VRMLLoader</li>
 					</ul>
 				</li>
 				<li>pmrem

+ 19 - 0
examples/jsm/loaders/VRMLLoader.d.ts

@@ -0,0 +1,19 @@
+import {
+  Scene,
+  LoadingManager
+} from '../../../src/Three';
+
+export class VRMLLoader {
+  constructor(manager?: LoadingManager);
+  manager: LoadingManager;
+  path: string;
+  resourcePath: string;
+  crossOrigin: string;
+
+  load(url: string, onLoad: (scene: Scene) => void, onProgress?: (event: ProgressEvent) => void, onError?: (event: ErrorEvent) => void) : void;
+  setPath(path: string) : this;
+  setResourcePath(path: string) : this;
+  setCrossOrigin(path: string) : this;
+
+  parse(data: string, path: string) : Scene;
+}

+ 1360 - 0
examples/jsm/loaders/VRMLLoader.js

@@ -0,0 +1,1360 @@
+/**
+ * @author mrdoob / http://mrdoob.com/
+ */
+
+import {
+	AmbientLight,
+	BackSide,
+	BoxBufferGeometry,
+	BufferAttribute,
+	BufferGeometry,
+	Color,
+	CylinderBufferGeometry,
+	DefaultLoadingManager,
+	DoubleSide,
+	FileLoader,
+	Float32BufferAttribute,
+	LoaderUtils,
+	Mesh,
+	MeshBasicMaterial,
+	MeshPhongMaterial,
+	Object3D,
+	PointLight,
+	Scene,
+	SphereBufferGeometry,
+	SpotLight,
+	TextureLoader,
+	Vector3,
+	VertexColors
+} from "../../../build/three.module.js";
+
+var VRMLLoader = function ( manager ) {
+
+	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
+
+};
+
+VRMLLoader.prototype = {
+
+	constructor: VRMLLoader,
+
+	// for IndexedFaceSet support
+	isRecordingPoints: false,
+	isRecordingFaces: false,
+	points: [],
+	indexes: [],
+
+	// for Background support
+	isRecordingAngles: false,
+	isRecordingColors: false,
+	angles: [],
+	colors: [],
+
+	recordingFieldname: null,
+
+	crossOrigin: 'anonymous',
+
+	load: function ( url, onLoad, onProgress, onError ) {
+
+		var scope = this;
+
+		var path = ( scope.path === undefined ) ? LoaderUtils.extractUrlBase( url ) : scope.path;
+
+		var loader = new FileLoader( this.manager );
+		loader.setPath( scope.path );
+		loader.load( url, function ( text ) {
+
+			onLoad( scope.parse( text, path ) );
+
+		}, onProgress, onError );
+
+	},
+
+	setPath: function ( value ) {
+
+		this.path = value;
+		return this;
+
+	},
+
+	setResourcePath: function ( value ) {
+
+		this.resourcePath = value;
+		return this;
+
+	},
+
+	setCrossOrigin: function ( value ) {
+
+		this.crossOrigin = value;
+		return this;
+
+	},
+
+	parse: function ( data, path ) {
+
+		var scope = this;
+
+		var textureLoader = new TextureLoader( this.manager );
+		textureLoader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
+
+		function parseV2( lines, scene ) {
+
+			var defines = {};
+			var float_pattern = /(\b|\-|\+)([\d\.e]+)/;
+			var float2_pattern = /([\d\.\+\-e]+)\s+([\d\.\+\-e]+)/g;
+			var float3_pattern = /([\d\.\+\-e]+)\s+([\d\.\+\-e]+)\s+([\d\.\+\-e]+)/g;
+
+			/**
+			 * Vertically paints the faces interpolating between the
+			 * specified colors at the specified angels. This is used for the Background
+			 * node, but could be applied to other nodes with multiple faces as well.
+			 *
+			 * When used with the Background node, default is directionIsDown is true if
+			 * interpolating the skyColor down from the Zenith. When interpolationg up from
+			 * the Nadir i.e. interpolating the groundColor, the directionIsDown is false.
+			 *
+			 * The first angle is never specified, it is the Zenith (0 rad). Angles are specified
+			 * in radians. The geometry is thought a sphere, but could be anything. The color interpolation
+			 * is linear along the Y axis in any case.
+			 *
+			 * You must specify one more color than you have angles at the beginning of the colors array.
+			 * This is the color of the Zenith (the top of the shape).
+			 *
+			 * @param geometry
+			 * @param radius
+			 * @param angles
+			 * @param colors
+			 * @param boolean topDown Whether to work top down or bottom up.
+			 */
+			function paintFaces( geometry, radius, angles, colors, topDown ) {
+
+				var direction = ( topDown === true ) ? 1 : - 1;
+
+				var coord = [], A = {}, B = {}, applyColor = false;
+
+				for ( var k = 0; k < angles.length; k ++ ) {
+
+					// push the vector at which the color changes
+
+					var vec = {
+						x: direction * ( Math.cos( angles[ k ] ) * radius ),
+						y: direction * ( Math.sin( angles[ k ] ) * radius )
+					};
+
+					coord.push( vec );
+
+				}
+
+				var index = geometry.index;
+				var positionAttribute = geometry.attributes.position;
+				var colorAttribute = new BufferAttribute( new Float32Array( geometry.attributes.position.count * 3 ), 3 );
+
+				var position = new Vector3();
+				var color = new Color();
+
+				for ( var i = 0; i < index.count; i ++ ) {
+
+					var vertexIndex = index.getX( i );
+
+					position.fromBufferAttribute( positionAttribute, vertexIndex );
+
+					for ( var j = 0; j < colors.length; j ++ ) {
+
+						// linear interpolation between aColor and bColor, calculate proportion
+						// A is previous point (angle)
+
+						if ( j === 0 ) {
+
+							A.x = 0;
+							A.y = ( topDown === true ) ? radius : - 1 * radius;
+
+						} else {
+
+							A.x = coord[ j - 1 ].x;
+							A.y = coord[ j - 1 ].y;
+
+						}
+
+						// B is current point (angle)
+
+						B = coord[ j ];
+
+						if ( B !== undefined ) {
+
+							// p has to be between the points A and B which we interpolate
+
+							applyColor = ( topDown === true ) ? ( position.y <= A.y && position.y > B.y ) : ( position.y >= A.y && position.y < B.y );
+
+							if ( applyColor === true ) {
+
+								var aColor = colors[ j ];
+								var bColor = colors[ j + 1 ];
+
+								// below is simple linear interpolation
+
+								var t = Math.abs( position.y - A.y ) / ( A.y - B.y );
+
+								// to make it faster, you can only calculate this if the y coord changes, the color is the same for points with the same y
+
+								color.copy( aColor ).lerp( bColor, t );
+
+								colorAttribute.setXYZ( vertexIndex, color.r, color.g, color.b );
+
+							} else {
+
+								var colorIndex = ( topDown === true ) ? colors.length - 1 : 0;
+								var c = colors[ colorIndex ];
+								colorAttribute.setXYZ( vertexIndex, c.r, c.g, c.b );
+
+							}
+
+						}
+
+					}
+
+				}
+
+				geometry.addAttribute( 'color', colorAttribute );
+
+			}
+
+			var index = [];
+
+			function parseProperty( node, line ) {
+
+				var parts = [], part, property = {}, fieldName;
+
+				/**
+				 * Expression for matching relevant information, such as a name or value, but not the separators
+				 * @type {RegExp}
+				 */
+				var regex = /[^\s,\[\]]+/g;
+
+				var point;
+
+				while ( null !== ( part = regex.exec( line ) ) ) {
+
+					parts.push( part[ 0 ] );
+
+				}
+
+				fieldName = parts[ 0 ];
+
+
+				// trigger several recorders
+				switch ( fieldName ) {
+
+					case 'skyAngle':
+					case 'groundAngle':
+						scope.recordingFieldname = fieldName;
+						scope.isRecordingAngles = true;
+						scope.angles = [];
+						break;
+
+					case 'color':
+					case 'skyColor':
+					case 'groundColor':
+						scope.recordingFieldname = fieldName;
+						scope.isRecordingColors = true;
+						scope.colors = [];
+						break;
+
+					case 'point':
+					case 'vector':
+						scope.recordingFieldname = fieldName;
+						scope.isRecordingPoints = true;
+						scope.points = [];
+						break;
+
+					case 'colorIndex':
+					case 'coordIndex':
+					case 'normalIndex':
+					case 'texCoordIndex':
+						scope.recordingFieldname = fieldName;
+						scope.isRecordingFaces = true;
+						scope.indexes = [];
+						break;
+
+				}
+
+				if ( scope.isRecordingFaces ) {
+
+					// the parts hold the indexes as strings
+					if ( parts.length > 0 ) {
+
+						for ( var ind = 0; ind < parts.length; ind ++ ) {
+
+							// the part should either be positive integer or -1
+							if ( ! /(-?\d+)/.test( parts[ ind ] ) ) {
+
+								continue;
+
+							}
+
+							// end of current face
+							if ( parts[ ind ] === '-1' ) {
+
+								if ( index.length > 0 ) {
+
+									scope.indexes.push( index );
+
+								}
+
+								// start new one
+								index = [];
+
+							} else {
+
+								index.push( parseInt( parts[ ind ] ) );
+
+							}
+
+						}
+
+					}
+
+					// end
+					if ( /]/.exec( line ) ) {
+
+						if ( index.length > 0 ) {
+
+							scope.indexes.push( index );
+
+						}
+
+						// start new one
+						index = [];
+
+						scope.isRecordingFaces = false;
+						node[ scope.recordingFieldname ] = scope.indexes;
+
+					}
+
+				} else if ( scope.isRecordingPoints ) {
+
+					if ( node.nodeType == 'Coordinate' ) {
+
+						while ( null !== ( parts = float3_pattern.exec( line ) ) ) {
+
+							point = {
+								x: parseFloat( parts[ 1 ] ),
+								y: parseFloat( parts[ 2 ] ),
+								z: parseFloat( parts[ 3 ] )
+							};
+
+							scope.points.push( point );
+
+						}
+
+					}
+
+					if ( node.nodeType == 'Normal' ) {
+
+  						while ( null !== ( parts = float3_pattern.exec( line ) ) ) {
+
+							point = {
+								x: parseFloat( parts[ 1 ] ),
+								y: parseFloat( parts[ 2 ] ),
+								z: parseFloat( parts[ 3 ] )
+							};
+
+							scope.points.push( point );
+
+						}
+
+					}
+
+					if ( node.nodeType == 'TextureCoordinate' ) {
+
+						while ( null !== ( parts = float2_pattern.exec( line ) ) ) {
+
+							point = {
+								x: parseFloat( parts[ 1 ] ),
+								y: parseFloat( parts[ 2 ] )
+							};
+
+							scope.points.push( point );
+
+						}
+
+					}
+
+					// end
+					if ( /]/.exec( line ) ) {
+
+						scope.isRecordingPoints = false;
+						node.points = scope.points;
+
+					}
+
+				} else if ( scope.isRecordingAngles ) {
+
+					// the parts hold the angles as strings
+					if ( parts.length > 0 ) {
+
+						for ( var ind = 0; ind < parts.length; ind ++ ) {
+
+							// the part should be a float
+							if ( ! float_pattern.test( parts[ ind ] ) ) {
+
+								continue;
+
+							}
+
+							scope.angles.push( parseFloat( parts[ ind ] ) );
+
+						}
+
+					}
+
+					// end
+					if ( /]/.exec( line ) ) {
+
+						scope.isRecordingAngles = false;
+						node[ scope.recordingFieldname ] = scope.angles;
+
+					}
+
+				} else if ( scope.isRecordingColors ) {
+
+					while ( null !== ( parts = float3_pattern.exec( line ) ) ) {
+
+						var color = {
+							r: parseFloat( parts[ 1 ] ),
+							g: parseFloat( parts[ 2 ] ),
+							b: parseFloat( parts[ 3 ] )
+						};
+
+						scope.colors.push( color );
+
+					}
+
+					// end
+					if ( /]/.exec( line ) ) {
+
+						scope.isRecordingColors = false;
+						node[ scope.recordingFieldname ] = scope.colors;
+
+					}
+
+				} else if ( parts[ parts.length - 1 ] !== 'NULL' && fieldName !== 'children' ) {
+
+					switch ( fieldName ) {
+
+						case 'diffuseColor':
+						case 'emissiveColor':
+						case 'specularColor':
+						case 'color':
+
+							if ( parts.length !== 4 ) {
+
+								console.warn( 'THREE.VRMLLoader: Invalid color format detected for %s.', fieldName );
+								break;
+
+							}
+
+							property = {
+								r: parseFloat( parts[ 1 ] ),
+								g: parseFloat( parts[ 2 ] ),
+								b: parseFloat( parts[ 3 ] )
+							};
+
+							break;
+
+						case 'location':
+						case 'direction':
+						case 'translation':
+						case 'scale':
+						case 'size':
+							if ( parts.length !== 4 ) {
+
+								console.warn( 'THREE.VRMLLoader: Invalid vector format detected for %s.', fieldName );
+								break;
+
+							}
+
+							property = {
+								x: parseFloat( parts[ 1 ] ),
+								y: parseFloat( parts[ 2 ] ),
+								z: parseFloat( parts[ 3 ] )
+							};
+
+							break;
+
+						case 'intensity':
+						case 'cutOffAngle':
+						case 'radius':
+						case 'topRadius':
+						case 'bottomRadius':
+						case 'height':
+						case 'transparency':
+						case 'shininess':
+						case 'ambientIntensity':
+						case 'creaseAngle':
+							if ( parts.length !== 2 ) {
+
+								console.warn( 'THREE.VRMLLoader: Invalid single float value specification detected for %s.', fieldName );
+								break;
+
+							}
+
+							property = parseFloat( parts[ 1 ] );
+
+							break;
+
+						case 'rotation':
+							if ( parts.length !== 5 ) {
+
+								console.warn( 'THREE.VRMLLoader: Invalid quaternion format detected for %s.', fieldName );
+								break;
+
+							}
+
+							property = {
+								x: parseFloat( parts[ 1 ] ),
+								y: parseFloat( parts[ 2 ] ),
+								z: parseFloat( parts[ 3 ] ),
+								w: parseFloat( parts[ 4 ] )
+							};
+
+							break;
+
+						case 'on':
+						case 'ccw':
+						case 'solid':
+						case 'colorPerVertex':
+						case 'convex':
+							if ( parts.length !== 2 ) {
+
+								console.warn( 'THREE.VRMLLoader: Invalid format detected for %s.', fieldName );
+								break;
+
+							}
+
+							property = parts[ 1 ] === 'TRUE' ? true : false;
+
+							break;
+
+					}
+
+					// VRMLLoader does not support text so it can't process the "string" property yet
+
+					if ( fieldName !== 'string' ) node[ fieldName ] = property;
+
+				}
+
+				return property;
+
+			}
+
+			function getTree( lines ) {
+
+				var tree = { 'string': 'Scene', children: [] };
+				var current = tree;
+				var matches;
+				var specification;
+
+				for ( var i = 0; i < lines.length; i ++ ) {
+
+					var comment = '';
+
+					var line = lines[ i ];
+
+					// omit whitespace only lines
+					if ( null !== ( /^\s+?$/g.exec( line ) ) ) {
+
+						continue;
+
+					}
+
+					line = line.trim();
+
+					// skip empty lines
+					if ( line === '' ) {
+
+						continue;
+
+					}
+
+					if ( /#/.exec( line ) ) {
+
+						var parts = line.split( '#' );
+
+						// discard everything after the #, it is a comment
+						line = parts[ 0 ];
+
+						// well, let's also keep the comment
+						comment = parts[ 1 ];
+
+					}
+
+					if ( matches = /([^\s]*){1}(?:\s+)?{/.exec( line ) ) {
+
+						// first subpattern should match the Node name
+
+						var block = { 'nodeType': matches[ 1 ], 'string': line, 'parent': current, 'children': [], 'comment': comment };
+						current.children.push( block );
+						current = block;
+
+						if ( /}/.exec( line ) ) {
+
+							// example: geometry Box { size 1 1 1 } # all on the same line
+							specification = /{(.*)}/.exec( line )[ 1 ];
+
+							// todo: remove once new parsing is complete?
+							block.children.push( specification );
+
+							parseProperty( current, specification );
+
+							current = current.parent;
+
+						}
+
+					} else if ( /}/.exec( line ) ) {
+
+						current = current.parent;
+
+					} else if ( line !== '' ) {
+
+						parseProperty( current, line );
+						// todo: remove once new parsing is complete? we still do not parse geometry and appearance the new way
+						current.children.push( line );
+
+					}
+
+				}
+
+				return tree;
+
+			}
+
+			function parseNode( data, parent ) {
+
+				var object;
+
+				if ( typeof data === 'string' ) {
+
+					if ( /USE/.exec( data ) ) {
+
+						var defineKey = /USE\s+?([^\s]+)/.exec( data )[ 1 ];
+
+						if ( undefined == defines[ defineKey ] ) {
+
+							console.warn( 'THREE.VRMLLoader: %s is not defined.', defineKey );
+
+						} else {
+
+							if ( /appearance/.exec( data ) && defineKey ) {
+
+								parent.material = defines[ defineKey ].clone();
+
+							} else if ( /geometry/.exec( data ) && defineKey ) {
+
+								parent.geometry = defines[ defineKey ].clone();
+
+								// the solid property is not cloned with clone(), is only needed for VRML loading, so we need to transfer it
+								if ( defines[ defineKey ].solid !== undefined && defines[ defineKey ].solid === false ) {
+
+									parent.geometry.solid = false;
+									parent.material.side = DoubleSide;
+
+								}
+
+							} else if ( defineKey ) {
+
+								object = defines[ defineKey ].clone();
+								parent.add( object );
+
+							}
+
+						}
+
+					}
+
+					return;
+
+				}
+
+				object = parent;
+
+				if ( data.string.indexOf( 'AmbientLight' ) > - 1 && data.nodeType === 'PointLight' ) {
+
+					data.nodeType = 'AmbientLight';
+
+				}
+
+				var l_visible = data.on !== undefined ? data.on : true;
+				var l_intensity = data.intensity !== undefined ? data.intensity : 1;
+				var l_color = new Color();
+
+				if ( data.color ) {
+
+					l_color.copy( data.color );
+
+				}
+
+				if ( data.nodeType === 'AmbientLight' ) {
+
+					object = new AmbientLight( l_color, l_intensity );
+					object.visible = l_visible;
+
+					parent.add( object );
+
+				} else if ( data.nodeType === 'PointLight' ) {
+
+					var l_distance = 0;
+
+					if ( data.radius !== undefined && data.radius < 1000 ) {
+
+						l_distance = data.radius;
+
+					}
+
+					object = new PointLight( l_color, l_intensity, l_distance );
+					object.visible = l_visible;
+
+					parent.add( object );
+
+				} else if ( data.nodeType === 'SpotLight' ) {
+
+					var l_intensity = 1;
+					var l_distance = 0;
+					var l_angle = Math.PI / 3;
+					var l_penumbra = 0;
+					var l_visible = true;
+
+					if ( data.radius !== undefined && data.radius < 1000 ) {
+
+						l_distance = data.radius;
+
+					}
+
+					if ( data.cutOffAngle !== undefined ) {
+
+						l_angle = data.cutOffAngle;
+
+					}
+
+					object = new SpotLight( l_color, l_intensity, l_distance, l_angle, l_penumbra );
+					object.visible = l_visible;
+
+					parent.add( object );
+
+				} else if ( data.nodeType === 'Transform' || data.nodeType === 'Group' ) {
+
+					object = new Object3D();
+
+					if ( /DEF/.exec( data.string ) ) {
+
+						object.name = /DEF\s+([^\s]+)/.exec( data.string )[ 1 ];
+						defines[ object.name ] = object;
+
+					}
+
+					if ( data.translation !== undefined ) {
+
+						var t = data.translation;
+
+						object.position.set( t.x, t.y, t.z );
+
+					}
+
+					if ( data.rotation !== undefined ) {
+
+						var r = data.rotation;
+
+						object.quaternion.setFromAxisAngle( new Vector3( r.x, r.y, r.z ), r.w );
+
+					}
+
+					if ( data.scale !== undefined ) {
+
+						var s = data.scale;
+
+						object.scale.set( s.x, s.y, s.z );
+
+					}
+
+					parent.add( object );
+
+				} else if ( data.nodeType === 'Shape' ) {
+
+					object = new Mesh();
+
+					if ( /DEF/.exec( data.string ) ) {
+
+						object.name = /DEF\s+([^\s]+)/.exec( data.string )[ 1 ];
+
+						defines[ object.name ] = object;
+
+					}
+
+					parent.add( object );
+
+				} else if ( data.nodeType === 'Background' ) {
+
+					var segments = 20;
+
+					// sky (full sphere):
+
+					var radius = 2e4;
+
+					var skyGeometry = new SphereBufferGeometry( radius, segments, segments );
+					var skyMaterial = new MeshBasicMaterial( { fog: false, side: BackSide } );
+
+					if ( data.skyColor.length > 1 ) {
+
+						paintFaces( skyGeometry, radius, data.skyAngle, data.skyColor, true );
+
+						skyMaterial.vertexColors = VertexColors;
+
+					} else {
+
+						var color = data.skyColor[ 0 ];
+						skyMaterial.color.setRGB( color.r, color.b, color.g );
+
+					}
+
+					scene.add( new Mesh( skyGeometry, skyMaterial ) );
+
+					// ground (half sphere):
+
+					if ( data.groundColor !== undefined ) {
+
+						radius = 1.2e4;
+
+						var groundGeometry = new SphereBufferGeometry( radius, segments, segments, 0, 2 * Math.PI, 0.5 * Math.PI, 1.5 * Math.PI );
+						var groundMaterial = new MeshBasicMaterial( { fog: false, side: BackSide, vertexColors: VertexColors } );
+
+						paintFaces( groundGeometry, radius, data.groundAngle, data.groundColor, false );
+
+						scene.add( new Mesh( groundGeometry, groundMaterial ) );
+
+					}
+
+				} else if ( /geometry/.exec( data.string ) ) {
+
+					if ( data.nodeType === 'Box' ) {
+
+						var s = data.size;
+
+						parent.geometry = new BoxBufferGeometry( s.x, s.y, s.z );
+
+					} else if ( data.nodeType === 'Cylinder' ) {
+
+						parent.geometry = new CylinderBufferGeometry( data.radius, data.radius, data.height );
+
+					} else if ( data.nodeType === 'Cone' ) {
+
+						parent.geometry = new CylinderBufferGeometry( data.topRadius, data.bottomRadius, data.height );
+
+					} else if ( data.nodeType === 'Sphere' ) {
+
+						parent.geometry = new SphereBufferGeometry( data.radius );
+
+					} else if ( data.nodeType === 'IndexedLineSet' ) {
+
+						console.warn( 'THREE.VRMLLoader: IndexedLineSet not supported yet.' );
+						parent.parent.remove( parent ); // since the loader is not able to parse the geometry, remove the respective 3D object
+
+					} else if ( data.nodeType === 'Text' ) {
+
+						console.warn( 'THREE.VRMLLoader: Text not supported yet.' );
+						parent.parent.remove( parent );
+
+					} else if ( data.nodeType === 'IndexedFaceSet' ) {
+
+						var geometry = new BufferGeometry();
+
+						var positions = [];
+						var colors = [];
+						var normals = [];
+						var uvs = [];
+
+						var position, color, normal, uv;
+
+						var i, il, j, jl;
+
+						for ( i = 0, il = data.children.length; i < il; i ++ ) {
+
+							var child = data.children[ i ];
+
+							// uvs
+
+							if ( child.nodeType === 'TextureCoordinate' ) {
+
+								if ( child.points ) {
+
+									for ( j = 0, jl = child.points.length; j < jl; j ++ ) {
+
+										uv = child.points[ j ];
+										uvs.push( uv.x, uv.y );
+
+									}
+
+								}
+
+							}
+
+							// normals
+
+							if ( child.nodeType === 'Normal' ) {
+
+								if ( child.points ) {
+
+									for ( j = 0, jl = child.points.length; j < jl; j ++ ) {
+
+										normal = child.points[ j ];
+										normals.push( normal.x, normal.y, normal.z );
+
+									}
+
+								}
+
+							}
+
+							// colors
+
+							if ( child.nodeType === 'Color' ) {
+
+								if ( child.color ) {
+
+									for ( j = 0, jl = child.color.length; j < jl; j ++ ) {
+
+										color = child.color[ j ];
+										colors.push( color.r, color.g, color.b );
+
+									}
+
+								}
+
+							}
+
+							// positions
+
+							if ( child.nodeType === 'Coordinate' ) {
+
+								if ( child.points ) {
+
+									for ( j = 0, jl = child.points.length; j < jl; j ++ ) {
+
+										position = child.points[ j ];
+										positions.push( position.x, position.y, position.z );
+
+									}
+
+								}
+
+								if ( child.string.indexOf( 'DEF' ) > - 1 ) {
+
+									var name = /DEF\s+([^\s]+)/.exec( child.string )[ 1 ];
+
+									defines[ name ] = positions.slice( 0 );
+
+								}
+
+								if ( child.string.indexOf( 'USE' ) > - 1 ) {
+
+									var defineKey = /USE\s+([^\s]+)/.exec( child.string )[ 1 ];
+
+									positions = defines[ defineKey ];
+
+								}
+
+							}
+
+						}
+
+						// some shapes only have vertices for use in other shapes
+
+						if ( data.coordIndex ) {
+
+							function triangulateIndexArray( indexArray, ccw, colorPerVertex ) {
+
+								if ( ccw === undefined ) {
+
+									// ccw is true by default
+									ccw = true;
+
+								}
+
+								var triangulatedIndexArray = [];
+								var skip = 0;
+
+								for ( i = 0, il = indexArray.length; i < il; i ++ ) {
+
+									if ( colorPerVertex === false ) {
+
+										var colorIndices = indexArray[ i ];
+
+										for ( j = 0, jl = colorIndices.length; j < jl; j ++ ) {
+
+											var index = colorIndices[ j ];
+
+											triangulatedIndexArray.push( index, index, index );
+
+										}
+
+									} else {
+
+										var indexedFace = indexArray[ i ];
+
+										// VRML support multipoint indexed face sets (more then 3 vertices). You must calculate the composing triangles here
+
+										skip = 0;
+
+										while ( indexedFace.length >= 3 && skip < ( indexedFace.length - 2 ) ) {
+
+											var i1 = indexedFace[ 0 ];
+											var i2 = indexedFace[ skip + ( ccw ? 1 : 2 ) ];
+											var i3 = indexedFace[ skip + ( ccw ? 2 : 1 ) ];
+
+											triangulatedIndexArray.push( i1, i2, i3 );
+
+											skip ++;
+
+										}
+
+									}
+
+								}
+
+								return triangulatedIndexArray;
+
+							}
+
+							var positionIndexes = data.coordIndex ? triangulateIndexArray( data.coordIndex, data.ccw ) : [];
+							var normalIndexes = data.normalIndex ? triangulateIndexArray( data.normalIndex, data.ccw ) : positionIndexes;
+							var colorIndexes = data.colorIndex ? triangulateIndexArray( data.colorIndex, data.ccw, data.colorPerVertex ) : [];
+							var uvIndexes = data.texCoordIndex ? triangulateIndexArray( data.texCoordIndex, data.ccw ) : positionIndexes;
+
+							var newIndexes = [];
+							var newPositions = [];
+							var newNormals = [];
+							var newColors = [];
+							var newUvs = [];
+
+							// if any other index array does not match the coordinate indexes, split any points that differ
+
+							var pointMap = Object.create( null );
+
+							for ( i = 0; i < positionIndexes.length; i ++ ) {
+
+								var pointAttributes = [];
+
+								var positionIndex = positionIndexes[ i ];
+								var normalIndex = normalIndexes[ i ];
+								var colorIndex = colorIndexes[ i ];
+								var uvIndex = uvIndexes[ i ];
+
+								var base = 10; // which base to use to represent each value
+
+								pointAttributes.push( positionIndex.toString( base ) );
+
+								if ( normalIndex !== undefined ) {
+
+									pointAttributes.push( normalIndex.toString( base ) );
+
+								}
+
+								if ( colorIndex !== undefined ) {
+
+									pointAttributes.push( colorIndex.toString( base ) );
+
+								}
+
+								if ( uvIndex !== undefined ) {
+
+									pointAttributes.push( uvIndex.toString( base ) );
+
+								}
+
+								var pointId = pointAttributes.join( ',' );
+								var newIndex = pointMap[ pointId ];
+
+								if ( newIndex === undefined ) {
+
+									newIndex = newPositions.length / 3;
+									pointMap[ pointId ] = newIndex;
+
+									newPositions.push(
+										positions[ positionIndex * 3 ],
+										positions[ positionIndex * 3 + 1 ],
+										positions[ positionIndex * 3 + 2 ]
+									);
+
+									if ( normalIndex !== undefined && normals.length > 0 ) {
+
+										newNormals.push(
+											normals[ normalIndex * 3 ],
+											normals[ normalIndex * 3 + 1 ],
+											normals[ normalIndex * 3 + 2 ]
+										);
+
+									}
+
+									if ( colorIndex !== undefined && colors.length > 0 ) {
+
+										newColors.push(
+											colors[ colorIndex * 3 ],
+											colors[ colorIndex * 3 + 1 ],
+											colors[ colorIndex * 3 + 2 ]
+										);
+
+									}
+
+									if ( uvIndex !== undefined && uvs.length > 0 ) {
+
+										newUvs.push(
+											uvs[ uvIndex * 2 ],
+											uvs[ uvIndex * 2 + 1 ]
+										);
+
+									}
+
+								}
+
+								newIndexes.push( newIndex );
+
+							}
+
+							positions = newPositions;
+							normals = newNormals;
+							colors = newColors;
+							uvs = newUvs;
+
+							geometry.setIndex( newIndexes );
+
+						} else {
+
+							// do not add dummy mesh to the scene
+
+							parent.parent.remove( parent );
+
+						}
+
+						if ( false === data.solid ) {
+
+							parent.material.side = DoubleSide;
+
+						}
+
+						// we need to store it on the geometry for use with defines
+						geometry.solid = data.solid;
+
+						geometry.addAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
+
+						if ( colors.length > 0 ) {
+
+							geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
+
+							parent.material.vertexColors = VertexColors;
+
+						}
+
+						if ( uvs.length > 0 ) {
+
+							geometry.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
+
+						}
+
+						if ( normals.length > 0 ) {
+
+							geometry.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
+
+						} else {
+
+							// convert geometry to non-indexed to get sharp normals
+							geometry = geometry.toNonIndexed();
+							geometry.computeVertexNormals();
+
+						}
+
+						geometry.computeBoundingSphere();
+
+						// see if it's a define
+						if ( /DEF/.exec( data.string ) ) {
+
+							geometry.name = /DEF ([^\s]+)/.exec( data.string )[ 1 ];
+							defines[ geometry.name ] = geometry;
+
+						}
+
+						parent.geometry = geometry;
+
+					}
+
+					return;
+
+				} else if ( /appearance/.exec( data.string ) ) {
+
+					for ( var i = 0; i < data.children.length; i ++ ) {
+
+						var child = data.children[ i ];
+
+						if ( child.nodeType === 'Material' ) {
+
+							var material = new MeshPhongMaterial();
+
+							if ( child.diffuseColor !== undefined ) {
+
+								var d = child.diffuseColor;
+
+								material.color.setRGB( d.r, d.g, d.b );
+
+							}
+
+							if ( child.emissiveColor !== undefined ) {
+
+								var e = child.emissiveColor;
+
+								material.emissive.setRGB( e.r, e.g, e.b );
+
+							}
+
+							if ( child.specularColor !== undefined ) {
+
+								var s = child.specularColor;
+
+								material.specular.setRGB( s.r, s.g, s.b );
+
+							}
+
+							if ( child.transparency !== undefined ) {
+
+								var t = child.transparency;
+
+								// transparency is opposite of opacity
+								material.opacity = Math.abs( 1 - t );
+
+								material.transparent = true;
+
+							}
+
+							if ( /DEF/.exec( data.string ) ) {
+
+								material.name = /DEF ([^\s]+)/.exec( data.string )[ 1 ];
+
+								defines[ material.name ] = material;
+
+							}
+
+							parent.material = material;
+
+						}
+
+						if ( child.nodeType === 'ImageTexture' ) {
+
+							var textureName = /"([^"]+)"/.exec( child.children[ 0 ] );
+
+							if ( textureName ) {
+
+								parent.material.name = textureName[ 1 ];
+
+								parent.material.map = textureLoader.load( textureName[ 1 ] );
+
+							}
+
+						}
+
+					}
+
+					return;
+
+				}
+
+				for ( var i = 0, l = data.children.length; i < l; i ++ ) {
+
+					parseNode( data.children[ i ], object );
+
+				}
+
+			}
+
+			parseNode( getTree( lines ), scene );
+
+		}
+
+		var scene = new Scene();
+
+		var lines = data.split( '\n' );
+
+		// some lines do not have breaks
+
+		for ( var i = lines.length - 1; i > 0; i -- ) {
+
+			// The # symbol indicates that all subsequent text, until the end of the line is a comment,
+			// and should be ignored. (see http://gun.teipir.gr/VRML-amgem/spec/part1/grammar.html)
+			lines[ i ] = lines[ i ].replace( /(#.*)/, '' );
+
+			var line = lines[ i ];
+
+			// split lines with {..{ or {..[ - some have both
+			if ( /{.*[{\[]/.test( line ) ) {
+
+				var parts = line.split( '{' ).join( '{\n' ).split( '\n' );
+				parts.unshift( 1 );
+				parts.unshift( i );
+				lines.splice.apply( lines, parts );
+
+			} else if ( /\].*}/.test( line ) ) {
+
+				// split lines with ]..}
+				var parts = line.split( ']' ).join( ']\n' ).split( '\n' );
+				parts.unshift( 1 );
+				parts.unshift( i );
+				lines.splice.apply( lines, parts );
+
+			}
+
+			line = lines[ i ];
+
+			if ( /}.*}/.test( line ) ) {
+
+				// split lines with }..}
+				var parts = line.split( '}' ).join( '}\n' ).split( '\n' );
+				parts.unshift( 1 );
+				parts.unshift( i );
+				lines.splice.apply( lines, parts );
+
+			}
+
+			line = lines[ i ];
+
+			if ( /^\b[^\s]+\b$/.test( line.trim() ) ) {
+
+				// prevent lines with single words like "coord" or "geometry", see #12209
+				lines[ i + 1 ] = line + ' ' + lines[ i + 1 ].trim();
+				lines.splice( i, 1 );
+
+			} else if ( ( line.indexOf( 'coord' ) > - 1 ) && ( line.indexOf( '[' ) < 0 ) && ( line.indexOf( '{' ) < 0 ) ) {
+
+				// force the parser to create Coordinate node for empty coords
+				// coord USE something -> coord USE something Coordinate {}
+
+				lines[ i ] += ' Coordinate {}';
+
+			}
+
+		}
+
+		var header = lines.shift();
+
+		if ( /V1.0/.exec( header ) ) {
+
+			console.warn( 'THREE.VRMLLoader: V1.0 not supported yet.' );
+
+		} else if ( /V2.0/.exec( header ) ) {
+
+			parseV2( lines, scene );
+
+		}
+
+		return scene;
+
+	}
+
+};
+
+export { VRMLLoader };

+ 1 - 0
utils/modularize.js

@@ -35,6 +35,7 @@ var files = [
 	{ path: 'loaders/PLYLoader.js', ignoreList: [ 'Mesh' ] },
 	{ path: 'loaders/STLLoader.js', ignoreList: [ 'Mesh', 'MeshPhongMaterial', 'VertexColors' ] },
 	{ path: 'loaders/TGALoader.js', ignoreList: [] },
+	{ path: 'loaders/VRMLLoader.js', ignoreList: [] },
 
 	{ path: 'pmrem/PMREMCubeUVPacker.js', ignoreList: [] },
 	{ path: 'pmrem/PMREMGenerator.js', ignoreList: [] },