Przeglądaj źródła

SVGLoader: Improved port of arc command code. See #13919

Mr.doob 7 lat temu
rodzic
commit
f580da280b
1 zmienionych plików z 29 dodań i 21 usunięć
  1. 29 21
      examples/js/loaders/SVGLoader.js

+ 29 - 21
examples/js/loaders/SVGLoader.js

@@ -387,56 +387,64 @@ THREE.SVGLoader.prototype = {
 		 * aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation
 		 */
 
-		var vector = new THREE.Vector2();
-
 		function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) {
 
 			x_axis_rotation = x_axis_rotation * Math.PI / 180;
 
 			// Ensure radii are positive
-			var rX = Math.abs( rx );
-			var rY = Math.abs( ry );
+			rx = Math.abs( rx );
+			ry = Math.abs( ry );
 
 			// Compute (x1′, y1′)
-			var midDist = vector.subVectors( start, end ).multiplyScalar( 0.5 );
-			var x1p = Math.cos( x_axis_rotation ) * midDist.x + Math.sin( x_axis_rotation ) * midDist.y;
-			var y1p = - Math.sin( x_axis_rotation ) * midDist.x + Math.cos( x_axis_rotation ) * midDist.y;
+			var dx2 = ( start.x - end.x ) / 2.0;
+			var dy2 = ( start.y - end.y ) / 2.0;
+			var x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2;
+			var y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2;
 
 			// Compute (cx′, cy′)
-			var rxs = rX * rX;
-			var rys = rY * rY;
+			var rxs = rx * rx;
+			var rys = ry * ry;
 			var x1ps = x1p * x1p;
 			var y1ps = y1p * y1p;
 
 			// Ensure radii are large enough
 			var cr = x1ps / rxs + y1ps / rys;
 			if ( cr > 1 ) {
-				// scale up rX,rY equally so cr == 1
+				// scale up rx,ry equally so cr == 1
 				var s = Math.sqrt( cr );
-				rX = s * rX;
-				rY = s * rY;
-				rxs = rX * rX;
-				rys = rY * rY;
+				rx = s * rx;
+				ry = s * ry;
+				rxs = rx * rx;
+				rys = ry * ry;
 			}
 
 			var dq = ( rxs * y1ps + rys * x1ps );
 			var pq = ( rxs * rys - dq ) / dq;
-			var q = Math.sqrt( pq );
+			var q = Math.sqrt( Math.max( 0, pq ) );
 			if ( large_arc_flag === sweep_flag ) q = - q;
-			var cxp = q * rX * y1p / rY;
-			var cyp = - q * rY * x1p / rX;
+			var cxp = q * rx * y1p / ry;
+			var cyp = - q * ry * x1p / rx;
 
 			// Step 3: Compute (cx, cy) from (cx′, cy′)
 			var cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2;
 			var cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2;
 
 			// Step 4: Compute θ1 and Δθ
-			var startAngle = vector.set( ( x1p - cxp ) / rX, ( y1p - cyp ) / rY ).angle();
-			var endAngle = vector.set( ( - x1p - cxp ) / rX, ( - y1p - cyp ) / rY ).angle();
-			if ( ! sweep_flag ) endAngle -= 2 * Math.PI;
+			var theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry );
+			var delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry );
+			delta = delta % ( Math.PI * 2 );
+			if ( ! sweep_flag ) delta -= 2 * Math.PI;
+
+			path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, theta + delta < theta, x_axis_rotation );
 
-			path.currentPath.absellipse( cx, cy, rX, rY, startAngle, endAngle, endAngle > startAngle, x_axis_rotation );
+		}
 
+		function svgAngle( ux, uy, vx, vy ) {
+			var dot = ux * vx + uy * vy;
+			var len = Math.sqrt( ux * ux + uy * uy ) *  Math.sqrt( vx * vx + vy * vy );
+			var ang = Math.acos( Math.max( -1, Math.min( 1, dot / len ) ) ); //floating point precision, slightly over values appear
+			if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang;
+			return ang;
 		}
 
 		/*