|
@@ -13,72 +13,72 @@
|
|
*/
|
|
*/
|
|
var SimplexNoise = function(r) {
|
|
var SimplexNoise = function(r) {
|
|
if (r == undefined) r = Math;
|
|
if (r == undefined) r = Math;
|
|
- this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0],
|
|
|
|
- [1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1],
|
|
|
|
- [0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]];
|
|
|
|
|
|
+ this.grad3 = [[ 1,1,0 ],[ -1,1,0 ],[ 1,-1,0 ],[ -1,-1,0 ],
|
|
|
|
+ [ 1,0,1 ],[ -1,0,1 ],[ 1,0,-1 ],[ -1,0,-1 ],
|
|
|
|
+ [ 0,1,1 ],[ 0,-1,1 ],[ 0,1,-1 ],[ 0,-1,-1 ]];
|
|
|
|
|
|
- this.grad4 = [[0,1,1,1], [0,1,1,-1], [0,1,-1,1], [0,1,-1,-1],
|
|
|
|
- [0,-1,1,1], [0,-1,1,-1], [0,-1,-1,1], [0,-1,-1,-1],
|
|
|
|
- [1,0,1,1], [1,0,1,-1], [1,0,-1,1], [1,0,-1,-1],
|
|
|
|
- [-1,0,1,1], [-1,0,1,-1], [-1,0,-1,1], [-1,0,-1,-1],
|
|
|
|
- [1,1,0,1], [1,1,0,-1], [1,-1,0,1], [1,-1,0,-1],
|
|
|
|
- [-1,1,0,1], [-1,1,0,-1], [-1,-1,0,1], [-1,-1,0,-1],
|
|
|
|
- [1,1,1,0], [1,1,-1,0], [1,-1,1,0], [1,-1,-1,0],
|
|
|
|
- [-1,1,1,0], [-1,1,-1,0], [-1,-1,1,0], [-1,-1,-1,0]];
|
|
|
|
|
|
+ this.grad4 = [[ 0,1,1,1 ], [ 0,1,1,-1 ], [ 0,1,-1,1 ], [ 0,1,-1,-1 ],
|
|
|
|
+ [ 0,-1,1,1 ], [ 0,-1,1,-1 ], [ 0,-1,-1,1 ], [ 0,-1,-1,-1 ],
|
|
|
|
+ [ 1,0,1,1 ], [ 1,0,1,-1 ], [ 1,0,-1,1 ], [ 1,0,-1,-1 ],
|
|
|
|
+ [ -1,0,1,1 ], [ -1,0,1,-1 ], [ -1,0,-1,1 ], [ -1,0,-1,-1 ],
|
|
|
|
+ [ 1,1,0,1 ], [ 1,1,0,-1 ], [ 1,-1,0,1 ], [ 1,-1,0,-1 ],
|
|
|
|
+ [ -1,1,0,1 ], [ -1,1,0,-1 ], [ -1,-1,0,1 ], [ -1,-1,0,-1 ],
|
|
|
|
+ [ 1,1,1,0 ], [ 1,1,-1,0 ], [ 1,-1,1,0 ], [ 1,-1,-1,0 ],
|
|
|
|
+ [ -1,1,1,0 ], [ -1,1,-1,0 ], [ -1,-1,1,0 ], [ -1,-1,-1,0 ]];
|
|
|
|
|
|
this.p = [];
|
|
this.p = [];
|
|
- for (var i=0; i<256; i++) {
|
|
|
|
- this.p[i] = Math.floor(r.random()*256);
|
|
|
|
|
|
+ for (var i = 0; i < 256; i ++) {
|
|
|
|
+ this.p[i] = Math.floor(r.random() * 256);
|
|
}
|
|
}
|
|
// To remove the need for index wrapping, double the permutation table length
|
|
// To remove the need for index wrapping, double the permutation table length
|
|
this.perm = [];
|
|
this.perm = [];
|
|
- for(var i=0; i<512; i++) {
|
|
|
|
- this.perm[i]=this.p[i & 255];
|
|
|
|
|
|
+ for (var i = 0; i < 512; i ++) {
|
|
|
|
+ this.perm[i] = this.p[i & 255];
|
|
}
|
|
}
|
|
|
|
|
|
// A lookup table to traverse the simplex around a given point in 4D.
|
|
// A lookup table to traverse the simplex around a given point in 4D.
|
|
// Details can be found where this table is used, in the 4D noise method.
|
|
// Details can be found where this table is used, in the 4D noise method.
|
|
this.simplex = [
|
|
this.simplex = [
|
|
- [0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0],
|
|
|
|
- [0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0],
|
|
|
|
- [0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
|
|
|
|
- [1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0],
|
|
|
|
- [1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0],
|
|
|
|
- [0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
|
|
|
|
- [2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0],
|
|
|
|
- [2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]];
|
|
|
|
|
|
+ [ 0,1,2,3 ],[ 0,1,3,2 ],[ 0,0,0,0 ],[ 0,2,3,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,2,3,0 ],
|
|
|
|
+ [ 0,2,1,3 ],[ 0,0,0,0 ],[ 0,3,1,2 ],[ 0,3,2,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,3,2,0 ],
|
|
|
|
+ [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],
|
|
|
|
+ [ 1,2,0,3 ],[ 0,0,0,0 ],[ 1,3,0,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,3,0,1 ],[ 2,3,1,0 ],
|
|
|
|
+ [ 1,0,2,3 ],[ 1,0,3,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,0,3,1 ],[ 0,0,0,0 ],[ 2,1,3,0 ],
|
|
|
|
+ [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],
|
|
|
|
+ [ 2,0,1,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,0,1,2 ],[ 3,0,2,1 ],[ 0,0,0,0 ],[ 3,1,2,0 ],
|
|
|
|
+ [ 2,1,0,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,1,0,2 ],[ 0,0,0,0 ],[ 3,2,0,1 ],[ 3,2,1,0 ]];
|
|
};
|
|
};
|
|
|
|
|
|
SimplexNoise.prototype.dot = function(g, x, y) {
|
|
SimplexNoise.prototype.dot = function(g, x, y) {
|
|
- return g[0]*x + g[1]*y;
|
|
|
|
|
|
+ return g[0] * x + g[1] * y;
|
|
};
|
|
};
|
|
|
|
|
|
SimplexNoise.prototype.dot3 = function(g, x, y, z) {
|
|
SimplexNoise.prototype.dot3 = function(g, x, y, z) {
|
|
- return g[0]*x + g[1]*y + g[2]*z;
|
|
|
|
|
|
+ return g[0] * x + g[1] * y + g[2] * z;
|
|
}
|
|
}
|
|
|
|
|
|
SimplexNoise.prototype.dot4 = function(g, x, y, z, w) {
|
|
SimplexNoise.prototype.dot4 = function(g, x, y, z, w) {
|
|
- return g[0]*x + g[1]*y + g[2]*z + g[3]*w;
|
|
|
|
|
|
+ return g[0] * x + g[1] * y + g[2] * z + g[3] * w;
|
|
};
|
|
};
|
|
|
|
|
|
SimplexNoise.prototype.noise = function(xin, yin) {
|
|
SimplexNoise.prototype.noise = function(xin, yin) {
|
|
var n0, n1, n2; // Noise contributions from the three corners
|
|
var n0, n1, n2; // Noise contributions from the three corners
|
|
// Skew the input space to determine which simplex cell we're in
|
|
// Skew the input space to determine which simplex cell we're in
|
|
- var F2 = 0.5*(Math.sqrt(3.0)-1.0);
|
|
|
|
- var s = (xin+yin)*F2; // Hairy factor for 2D
|
|
|
|
- var i = Math.floor(xin+s);
|
|
|
|
- var j = Math.floor(yin+s);
|
|
|
|
- var G2 = (3.0-Math.sqrt(3.0))/6.0;
|
|
|
|
- var t = (i+j)*G2;
|
|
|
|
- var X0 = i-t; // Unskew the cell origin back to (x,y) space
|
|
|
|
- var Y0 = j-t;
|
|
|
|
- var x0 = xin-X0; // The x,y distances from the cell origin
|
|
|
|
- var y0 = yin-Y0;
|
|
|
|
|
|
+ var F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
|
|
|
|
+ var s = (xin + yin) * F2; // Hairy factor for 2D
|
|
|
|
+ var i = Math.floor(xin + s);
|
|
|
|
+ var j = Math.floor(yin + s);
|
|
|
|
+ var G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
|
|
|
|
+ var t = (i + j) * G2;
|
|
|
|
+ var X0 = i - t; // Unskew the cell origin back to (x,y) space
|
|
|
|
+ var Y0 = j - t;
|
|
|
|
+ var x0 = xin - X0; // The x,y distances from the cell origin
|
|
|
|
+ var y0 = yin - Y0;
|
|
// For the 2D case, the simplex shape is an equilateral triangle.
|
|
// For the 2D case, the simplex shape is an equilateral triangle.
|
|
// Determine which simplex we are in.
|
|
// Determine which simplex we are in.
|
|
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
|
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
|
- if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
|
|
|
- else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
|
|
|
|
|
+ if (x0 > y0) {i1 = 1; j1 = 0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
|
|
|
+ else {i1 = 0; j1 = 1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
|
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
|
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
|
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
|
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
|
// c = (3-sqrt(3))/6
|
|
// c = (3-sqrt(3))/6
|
|
@@ -89,24 +89,24 @@ SimplexNoise.prototype.noise = function(xin, yin) {
|
|
// Work out the hashed gradient indices of the three simplex corners
|
|
// Work out the hashed gradient indices of the three simplex corners
|
|
var ii = i & 255;
|
|
var ii = i & 255;
|
|
var jj = j & 255;
|
|
var jj = j & 255;
|
|
- var gi0 = this.perm[ii+this.perm[jj]] % 12;
|
|
|
|
- var gi1 = this.perm[ii+i1+this.perm[jj+j1]] % 12;
|
|
|
|
- var gi2 = this.perm[ii+1+this.perm[jj+1]] % 12;
|
|
|
|
|
|
+ var gi0 = this.perm[ii + this.perm[jj]] % 12;
|
|
|
|
+ var gi1 = this.perm[ii + i1 + this.perm[jj + j1]] % 12;
|
|
|
|
+ var gi2 = this.perm[ii + 1 + this.perm[jj + 1]] % 12;
|
|
// Calculate the contribution from the three corners
|
|
// Calculate the contribution from the three corners
|
|
- var t0 = 0.5 - x0*x0-y0*y0;
|
|
|
|
- if(t0<0) n0 = 0.0;
|
|
|
|
|
|
+ var t0 = 0.5 - x0 * x0 - y0 * y0;
|
|
|
|
+ if (t0 < 0) n0 = 0.0;
|
|
else {
|
|
else {
|
|
t0 *= t0;
|
|
t0 *= t0;
|
|
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
|
|
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
|
|
}
|
|
}
|
|
- var t1 = 0.5 - x1*x1-y1*y1;
|
|
|
|
- if(t1<0) n1 = 0.0;
|
|
|
|
|
|
+ var t1 = 0.5 - x1 * x1 - y1 * y1;
|
|
|
|
+ if (t1 < 0) n1 = 0.0;
|
|
else {
|
|
else {
|
|
t1 *= t1;
|
|
t1 *= t1;
|
|
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
|
|
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
|
|
}
|
|
}
|
|
- var t2 = 0.5 - x2*x2-y2*y2;
|
|
|
|
- if(t2<0) n2 = 0.0;
|
|
|
|
|
|
+ var t2 = 0.5 - x2 * x2 - y2 * y2;
|
|
|
|
+ if (t2 < 0) n2 = 0.0;
|
|
else {
|
|
else {
|
|
t2 *= t2;
|
|
t2 *= t2;
|
|
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
|
|
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
|
|
@@ -120,33 +120,33 @@ SimplexNoise.prototype.noise = function(xin, yin) {
|
|
SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
|
|
SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
|
|
var n0, n1, n2, n3; // Noise contributions from the four corners
|
|
var n0, n1, n2, n3; // Noise contributions from the four corners
|
|
// Skew the input space to determine which simplex cell we're in
|
|
// Skew the input space to determine which simplex cell we're in
|
|
- var F3 = 1.0/3.0;
|
|
|
|
- var s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
|
|
|
|
- var i = Math.floor(xin+s);
|
|
|
|
- var j = Math.floor(yin+s);
|
|
|
|
- var k = Math.floor(zin+s);
|
|
|
|
- var G3 = 1.0/6.0; // Very nice and simple unskew factor, too
|
|
|
|
- var t = (i+j+k)*G3;
|
|
|
|
- var X0 = i-t; // Unskew the cell origin back to (x,y,z) space
|
|
|
|
- var Y0 = j-t;
|
|
|
|
- var Z0 = k-t;
|
|
|
|
- var x0 = xin-X0; // The x,y,z distances from the cell origin
|
|
|
|
- var y0 = yin-Y0;
|
|
|
|
- var z0 = zin-Z0;
|
|
|
|
|
|
+ var F3 = 1.0 / 3.0;
|
|
|
|
+ var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
|
|
|
|
+ var i = Math.floor(xin + s);
|
|
|
|
+ var j = Math.floor(yin + s);
|
|
|
|
+ var k = Math.floor(zin + s);
|
|
|
|
+ var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
|
|
|
|
+ var t = (i + j + k) * G3;
|
|
|
|
+ var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
|
|
|
|
+ var Y0 = j - t;
|
|
|
|
+ var Z0 = k - t;
|
|
|
|
+ var x0 = xin - X0; // The x,y,z distances from the cell origin
|
|
|
|
+ var y0 = yin - Y0;
|
|
|
|
+ var z0 = zin - Z0;
|
|
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
|
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
|
// Determine which simplex we are in.
|
|
// Determine which simplex we are in.
|
|
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
|
|
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
|
|
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
|
|
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
|
|
- if(x0>=y0) {
|
|
|
|
- if(y0>=z0)
|
|
|
|
- { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
|
|
|
|
- else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
|
|
|
|
- else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
|
|
|
|
|
|
+ if (x0 >= y0) {
|
|
|
|
+ if (y0 >= z0)
|
|
|
|
+ { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order
|
|
|
|
+ else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order
|
|
|
|
+ else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order
|
|
}
|
|
}
|
|
else { // x0<y0
|
|
else { // x0<y0
|
|
- if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
|
|
|
|
- else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
|
|
|
|
- else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
|
|
|
|
|
|
+ if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order
|
|
|
|
+ else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order
|
|
|
|
+ else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order
|
|
}
|
|
}
|
|
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
|
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
|
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
|
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
|
@@ -155,48 +155,48 @@ SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
|
|
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
|
|
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
|
|
var y1 = y0 - j1 + G3;
|
|
var y1 = y0 - j1 + G3;
|
|
var z1 = z0 - k1 + G3;
|
|
var z1 = z0 - k1 + G3;
|
|
- var x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
|
|
|
|
- var y2 = y0 - j2 + 2.0*G3;
|
|
|
|
- var z2 = z0 - k2 + 2.0*G3;
|
|
|
|
- var x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
|
|
|
|
- var y3 = y0 - 1.0 + 3.0*G3;
|
|
|
|
- var z3 = z0 - 1.0 + 3.0*G3;
|
|
|
|
|
|
+ var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
|
|
|
|
+ var y2 = y0 - j2 + 2.0 * G3;
|
|
|
|
+ var z2 = z0 - k2 + 2.0 * G3;
|
|
|
|
+ var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
|
|
|
|
+ var y3 = y0 - 1.0 + 3.0 * G3;
|
|
|
|
+ var z3 = z0 - 1.0 + 3.0 * G3;
|
|
// Work out the hashed gradient indices of the four simplex corners
|
|
// Work out the hashed gradient indices of the four simplex corners
|
|
var ii = i & 255;
|
|
var ii = i & 255;
|
|
var jj = j & 255;
|
|
var jj = j & 255;
|
|
var kk = k & 255;
|
|
var kk = k & 255;
|
|
- var gi0 = this.perm[ii+this.perm[jj+this.perm[kk]]] % 12;
|
|
|
|
- var gi1 = this.perm[ii+i1+this.perm[jj+j1+this.perm[kk+k1]]] % 12;
|
|
|
|
- var gi2 = this.perm[ii+i2+this.perm[jj+j2+this.perm[kk+k2]]] % 12;
|
|
|
|
- var gi3 = this.perm[ii+1+this.perm[jj+1+this.perm[kk+1]]] % 12;
|
|
|
|
|
|
+ var gi0 = this.perm[ii + this.perm[jj + this.perm[kk]]] % 12;
|
|
|
|
+ var gi1 = this.perm[ii + i1 + this.perm[jj + j1 + this.perm[kk + k1]]] % 12;
|
|
|
|
+ var gi2 = this.perm[ii + i2 + this.perm[jj + j2 + this.perm[kk + k2]]] % 12;
|
|
|
|
+ var gi3 = this.perm[ii + 1 + this.perm[jj + 1 + this.perm[kk + 1]]] % 12;
|
|
// Calculate the contribution from the four corners
|
|
// Calculate the contribution from the four corners
|
|
- var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
|
|
|
|
- if(t0<0) n0 = 0.0;
|
|
|
|
|
|
+ var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
|
|
|
|
+ if (t0 < 0) n0 = 0.0;
|
|
else {
|
|
else {
|
|
t0 *= t0;
|
|
t0 *= t0;
|
|
n0 = t0 * t0 * this.dot3(this.grad3[gi0], x0, y0, z0);
|
|
n0 = t0 * t0 * this.dot3(this.grad3[gi0], x0, y0, z0);
|
|
}
|
|
}
|
|
- var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
|
|
|
|
- if(t1<0) n1 = 0.0;
|
|
|
|
|
|
+ var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
|
|
|
|
+ if (t1 < 0) n1 = 0.0;
|
|
else {
|
|
else {
|
|
t1 *= t1;
|
|
t1 *= t1;
|
|
n1 = t1 * t1 * this.dot3(this.grad3[gi1], x1, y1, z1);
|
|
n1 = t1 * t1 * this.dot3(this.grad3[gi1], x1, y1, z1);
|
|
}
|
|
}
|
|
- var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
|
|
|
|
- if(t2<0) n2 = 0.0;
|
|
|
|
|
|
+ var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
|
|
|
|
+ if (t2 < 0) n2 = 0.0;
|
|
else {
|
|
else {
|
|
t2 *= t2;
|
|
t2 *= t2;
|
|
n2 = t2 * t2 * this.dot3(this.grad3[gi2], x2, y2, z2);
|
|
n2 = t2 * t2 * this.dot3(this.grad3[gi2], x2, y2, z2);
|
|
}
|
|
}
|
|
- var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
|
|
|
|
- if(t3<0) n3 = 0.0;
|
|
|
|
|
|
+ var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
|
|
|
|
+ if (t3 < 0) n3 = 0.0;
|
|
else {
|
|
else {
|
|
t3 *= t3;
|
|
t3 *= t3;
|
|
n3 = t3 * t3 * this.dot3(this.grad3[gi3], x3, y3, z3);
|
|
n3 = t3 * t3 * this.dot3(this.grad3[gi3], x3, y3, z3);
|
|
}
|
|
}
|
|
// Add contributions from each corner to get the final noise value.
|
|
// Add contributions from each corner to get the final noise value.
|
|
// The result is scaled to stay just inside [-1,1]
|
|
// The result is scaled to stay just inside [-1,1]
|
|
- return 32.0*(n0 + n1 + n2 + n3);
|
|
|
|
|
|
+ return 32.0 * (n0 + n1 + n2 + n3);
|
|
};
|
|
};
|
|
|
|
|
|
// 4D simplex noise
|
|
// 4D simplex noise
|
|
@@ -207,8 +207,8 @@ SimplexNoise.prototype.noise4d = function( x, y, z, w ) {
|
|
var perm = this.perm;
|
|
var perm = this.perm;
|
|
|
|
|
|
// The skewing and unskewing factors are hairy again for the 4D case
|
|
// The skewing and unskewing factors are hairy again for the 4D case
|
|
- var F4 = (Math.sqrt(5.0)-1.0)/4.0;
|
|
|
|
- var G4 = (5.0-Math.sqrt(5.0))/20.0;
|
|
|
|
|
|
+ var F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
|
|
|
|
+ var G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
|
|
var n0, n1, n2, n3, n4; // Noise contributions from the five corners
|
|
var n0, n1, n2, n3, n4; // Noise contributions from the five corners
|
|
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
|
|
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
|
|
var s = (x + y + z + w) * F4; // Factor for 4D skewing
|
|
var s = (x + y + z + w) * F4; // Factor for 4D skewing
|
|
@@ -249,72 +249,72 @@ SimplexNoise.prototype.noise4d = function( x, y, z, w ) {
|
|
// impossible. Only the 24 indices which have non-zero entries make any sense.
|
|
// impossible. Only the 24 indices which have non-zero entries make any sense.
|
|
// We use a thresholding to set the coordinates in turn from the largest magnitude.
|
|
// We use a thresholding to set the coordinates in turn from the largest magnitude.
|
|
// The number 3 in the "simplex" array is at the position of the largest coordinate.
|
|
// The number 3 in the "simplex" array is at the position of the largest coordinate.
|
|
- i1 = simplex[c][0]>=3 ? 1 : 0;
|
|
|
|
- j1 = simplex[c][1]>=3 ? 1 : 0;
|
|
|
|
- k1 = simplex[c][2]>=3 ? 1 : 0;
|
|
|
|
- l1 = simplex[c][3]>=3 ? 1 : 0;
|
|
|
|
|
|
+ i1 = simplex[c][0] >= 3 ? 1 : 0;
|
|
|
|
+ j1 = simplex[c][1] >= 3 ? 1 : 0;
|
|
|
|
+ k1 = simplex[c][2] >= 3 ? 1 : 0;
|
|
|
|
+ l1 = simplex[c][3] >= 3 ? 1 : 0;
|
|
// The number 2 in the "simplex" array is at the second largest coordinate.
|
|
// The number 2 in the "simplex" array is at the second largest coordinate.
|
|
- i2 = simplex[c][0]>=2 ? 1 : 0;
|
|
|
|
- j2 = simplex[c][1]>=2 ? 1 : 0; k2 = simplex[c][2]>=2 ? 1 : 0;
|
|
|
|
- l2 = simplex[c][3]>=2 ? 1 : 0;
|
|
|
|
|
|
+ i2 = simplex[c][0] >= 2 ? 1 : 0;
|
|
|
|
+ j2 = simplex[c][1] >= 2 ? 1 : 0; k2 = simplex[c][2] >= 2 ? 1 : 0;
|
|
|
|
+ l2 = simplex[c][3] >= 2 ? 1 : 0;
|
|
// The number 1 in the "simplex" array is at the second smallest coordinate.
|
|
// The number 1 in the "simplex" array is at the second smallest coordinate.
|
|
- i3 = simplex[c][0]>=1 ? 1 : 0;
|
|
|
|
- j3 = simplex[c][1]>=1 ? 1 : 0;
|
|
|
|
- k3 = simplex[c][2]>=1 ? 1 : 0;
|
|
|
|
- l3 = simplex[c][3]>=1 ? 1 : 0;
|
|
|
|
|
|
+ i3 = simplex[c][0] >= 1 ? 1 : 0;
|
|
|
|
+ j3 = simplex[c][1] >= 1 ? 1 : 0;
|
|
|
|
+ k3 = simplex[c][2] >= 1 ? 1 : 0;
|
|
|
|
+ l3 = simplex[c][3] >= 1 ? 1 : 0;
|
|
// The fifth corner has all coordinate offsets = 1, so no need to look that up.
|
|
// The fifth corner has all coordinate offsets = 1, so no need to look that up.
|
|
var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
|
|
var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
|
|
var y1 = y0 - j1 + G4;
|
|
var y1 = y0 - j1 + G4;
|
|
var z1 = z0 - k1 + G4;
|
|
var z1 = z0 - k1 + G4;
|
|
var w1 = w0 - l1 + G4;
|
|
var w1 = w0 - l1 + G4;
|
|
- var x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
|
|
|
|
- var y2 = y0 - j2 + 2.0*G4;
|
|
|
|
- var z2 = z0 - k2 + 2.0*G4;
|
|
|
|
- var w2 = w0 - l2 + 2.0*G4;
|
|
|
|
- var x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
|
|
|
|
- var y3 = y0 - j3 + 3.0*G4;
|
|
|
|
- var z3 = z0 - k3 + 3.0*G4;
|
|
|
|
- var w3 = w0 - l3 + 3.0*G4;
|
|
|
|
- var x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
|
|
|
|
- var y4 = y0 - 1.0 + 4.0*G4;
|
|
|
|
- var z4 = z0 - 1.0 + 4.0*G4;
|
|
|
|
- var w4 = w0 - 1.0 + 4.0*G4;
|
|
|
|
|
|
+ var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
|
|
|
|
+ var y2 = y0 - j2 + 2.0 * G4;
|
|
|
|
+ var z2 = z0 - k2 + 2.0 * G4;
|
|
|
|
+ var w2 = w0 - l2 + 2.0 * G4;
|
|
|
|
+ var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
|
|
|
|
+ var y3 = y0 - j3 + 3.0 * G4;
|
|
|
|
+ var z3 = z0 - k3 + 3.0 * G4;
|
|
|
|
+ var w3 = w0 - l3 + 3.0 * G4;
|
|
|
|
+ var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
|
|
|
|
+ var y4 = y0 - 1.0 + 4.0 * G4;
|
|
|
|
+ var z4 = z0 - 1.0 + 4.0 * G4;
|
|
|
|
+ var w4 = w0 - 1.0 + 4.0 * G4;
|
|
// Work out the hashed gradient indices of the five simplex corners
|
|
// Work out the hashed gradient indices of the five simplex corners
|
|
var ii = i & 255;
|
|
var ii = i & 255;
|
|
var jj = j & 255;
|
|
var jj = j & 255;
|
|
var kk = k & 255;
|
|
var kk = k & 255;
|
|
var ll = l & 255;
|
|
var ll = l & 255;
|
|
- var gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
|
|
|
|
- var gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
|
|
|
|
- var gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
|
|
|
|
- var gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
|
|
|
|
- var gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
|
|
|
|
|
|
+ var gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
|
|
|
|
+ var gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
|
|
|
|
+ var gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
|
|
|
|
+ var gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
|
|
|
|
+ var gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
|
|
// Calculate the contribution from the five corners
|
|
// Calculate the contribution from the five corners
|
|
- var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
|
|
|
|
- if(t0<0) n0 = 0.0;
|
|
|
|
|
|
+ var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
|
|
|
|
+ if (t0 < 0) n0 = 0.0;
|
|
else {
|
|
else {
|
|
t0 *= t0;
|
|
t0 *= t0;
|
|
n0 = t0 * t0 * this.dot4(grad4[gi0], x0, y0, z0, w0);
|
|
n0 = t0 * t0 * this.dot4(grad4[gi0], x0, y0, z0, w0);
|
|
}
|
|
}
|
|
- var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
|
|
|
|
- if(t1<0) n1 = 0.0;
|
|
|
|
|
|
+ var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
|
|
|
|
+ if (t1 < 0) n1 = 0.0;
|
|
else {
|
|
else {
|
|
t1 *= t1;
|
|
t1 *= t1;
|
|
n1 = t1 * t1 * this.dot4(grad4[gi1], x1, y1, z1, w1);
|
|
n1 = t1 * t1 * this.dot4(grad4[gi1], x1, y1, z1, w1);
|
|
}
|
|
}
|
|
- var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
|
|
|
|
- if(t2<0) n2 = 0.0;
|
|
|
|
|
|
+ var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
|
|
|
|
+ if (t2 < 0) n2 = 0.0;
|
|
else {
|
|
else {
|
|
t2 *= t2;
|
|
t2 *= t2;
|
|
n2 = t2 * t2 * this.dot4(grad4[gi2], x2, y2, z2, w2);
|
|
n2 = t2 * t2 * this.dot4(grad4[gi2], x2, y2, z2, w2);
|
|
- } var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
|
|
|
|
- if(t3<0) n3 = 0.0;
|
|
|
|
|
|
+ } var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
|
|
|
|
+ if (t3 < 0) n3 = 0.0;
|
|
else {
|
|
else {
|
|
t3 *= t3;
|
|
t3 *= t3;
|
|
n3 = t3 * t3 * this.dot4(grad4[gi3], x3, y3, z3, w3);
|
|
n3 = t3 * t3 * this.dot4(grad4[gi3], x3, y3, z3, w3);
|
|
}
|
|
}
|
|
- var t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
|
|
|
|
- if(t4<0) n4 = 0.0;
|
|
|
|
|
|
+ var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
|
|
|
|
+ if (t4 < 0) n4 = 0.0;
|
|
else {
|
|
else {
|
|
t4 *= t4;
|
|
t4 *= t4;
|
|
n4 = t4 * t4 * this.dot4(grad4[gi4], x4, y4, z4, w4);
|
|
n4 = t4 * t4 * this.dot4(grad4[gi4], x4, y4, z4, w4);
|