/** * @author mr.doob / http://mrdoob.com/ */ var THREE = THREE || { REVISION: '49dev' }; if ( ! self.Int32Array ) { self.Int32Array = Array; self.Float32Array = Array; } // http://paulirish.com/2011/requestanimationframe-for-smart-animating/ // http://my.opera.com/emoller/blog/2011/12/20/requestanimationframe-for-smart-er-animating // requestAnimationFrame polyfill by Erik Möller // fixes from Paul Irish and Tino Zijdel (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); /** * @author mr.doob / http://mrdoob.com/ */ THREE.Color = function ( hex ) { if ( hex !== undefined ) this.setHex( hex ); return this; }; THREE.Color.prototype = { constructor: THREE.Color, r: 1, g: 1, b: 1, copy: function ( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; }, copyGammaToLinear: function ( color ) { this.r = color.r * color.r; this.g = color.g * color.g; this.b = color.b * color.b; return this; }, copyLinearToGamma: function ( color ) { this.r = Math.sqrt( color.r ); this.g = Math.sqrt( color.g ); this.b = Math.sqrt( color.b ); return this; }, convertGammaToLinear: function () { var r = this.r, g = this.g, b = this.b; this.r = r * r; this.g = g * g; this.b = b * b; return this; }, convertLinearToGamma: function () { this.r = Math.sqrt( this.r ); this.g = Math.sqrt( this.g ); this.b = Math.sqrt( this.b ); return this; }, setRGB: function ( r, g, b ) { this.r = r; this.g = g; this.b = b; return this; }, setHSV: function ( h, s, v ) { // based on MochiKit implementation by Bob Ippolito // h,s,v ranges are < 0.0 - 1.0 > var i, f, p, q, t; if ( v === 0 ) { this.r = this.g = this.b = 0; } else { i = Math.floor( h * 6 ); f = ( h * 6 ) - i; p = v * ( 1 - s ); q = v * ( 1 - ( s * f ) ); t = v * ( 1 - ( s * ( 1 - f ) ) ); switch ( i ) { case 1: this.r = q; this.g = v; this.b = p; break; case 2: this.r = p; this.g = v; this.b = t; break; case 3: this.r = p; this.g = q; this.b = v; break; case 4: this.r = t; this.g = p; this.b = v; break; case 5: this.r = v; this.g = p; this.b = q; break; case 6: // fall through case 0: this.r = v; this.g = t; this.b = p; break; } } return this; }, setHex: function ( hex ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; return this; }, lerpSelf: function ( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; }, getHex: function () { return Math.floor( this.r * 255 ) << 16 ^ Math.floor( this.g * 255 ) << 8 ^ Math.floor( this.b * 255 ); }, getContextStyle: function () { return 'rgb(' + Math.floor( this.r * 255 ) + ',' + Math.floor( this.g * 255 ) + ',' + Math.floor( this.b * 255 ) + ')'; }, clone: function () { return new THREE.Color().setRGB( this.r, this.g, this.b ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.Vector2 = function ( x, y ) { this.x = x || 0; this.y = y || 0; }; THREE.Vector2.prototype = { constructor: THREE.Vector2, set: function ( x, y ) { this.x = x; this.y = y; return this; }, copy: function ( v ) { this.x = v.x; this.y = v.y; return this; }, add: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; }, addSelf: function ( v ) { this.x += v.x; this.y += v.y; return this; }, sub: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; }, subSelf: function ( v ) { this.x -= v.x; this.y -= v.y; return this; }, multiplyScalar: function ( s ) { this.x *= s; this.y *= s; return this; }, divideScalar: function ( s ) { if ( s ) { this.x /= s; this.y /= s; } else { this.set( 0, 0 ); } return this; }, negate: function() { return this.multiplyScalar( - 1 ); }, dot: function ( v ) { return this.x * v.x + this.y * v.y; }, lengthSq: function () { return this.x * this.x + this.y * this.y; }, length: function () { return Math.sqrt( this.lengthSq() ); }, normalize: function () { return this.divideScalar( this.length() ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; }, setLength: function ( l ) { return this.normalize().multiplyScalar( l ); }, lerpSelf: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; }, equals: function( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); }, isZero: function () { return ( this.lengthSq() < 0.0001 /* almostZero */ ); }, clone: function () { return new THREE.Vector2( this.x, this.y ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ */ THREE.Vector3 = function ( x, y, z ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; }; THREE.Vector3.prototype = { constructor: THREE.Vector3, set: function ( x, y, z ) { this.x = x; this.y = y; this.z = z; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; }, add: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; }, addSelf: function ( v ) { this.x += v.x; this.y += v.y; this.z += v.z; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; return this; }, sub: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; }, subSelf: function ( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; }, multiply: function ( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; }, multiplySelf: function ( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; }, multiplyScalar: function ( s ) { this.x *= s; this.y *= s; this.z *= s; return this; }, divideSelf: function ( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; }, divideScalar: function ( s ) { if ( s ) { this.x /= s; this.y /= s; this.z /= s; } else { this.x = 0; this.y = 0; this.z = 0; } return this; }, negate: function() { return this.multiplyScalar( - 1 ); }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z; }, length: function () { return Math.sqrt( this.lengthSq() ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( l ) { return this.normalize().multiplyScalar( l ); }, lerpSelf: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; }, cross: function ( a, b ) { this.x = a.y * b.z - a.z * b.y; this.y = a.z * b.x - a.x * b.z; this.z = a.x * b.y - a.y * b.x; return this; }, crossSelf: function ( v ) { var x = this.x, y = this.y, z = this.z; this.x = y * v.z - z * v.y; this.y = z * v.x - x * v.z; this.z = x * v.y - y * v.x; return this; }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { return new THREE.Vector3().sub( this, v ).lengthSq(); }, getPositionFromMatrix: function ( m ) { this.x = m.elements[12]; this.y = m.elements[13]; this.z = m.elements[14]; return this; }, getRotationFromMatrix: function ( m, scale ) { var sx = scale ? scale.x : 1; var sy = scale ? scale.y : 1; var sz = scale ? scale.z : 1; var m11 = m.elements[0] / sx, m12 = m.elements[4] / sy, m13 = m.elements[8] / sz; var m21 = m.elements[1] / sx, m22 = m.elements[5] / sy, m23 = m.elements[9] / sz; var m33 = m.elements[10] / sz; this.y = Math.asin( m13 ); var cosY = Math.cos( this.y ); if ( Math.abs( cosY ) > 0.00001 ) { this.x = Math.atan2( - m23 / cosY, m33 / cosY ); this.z = Math.atan2( - m12 / cosY, m11 / cosY ); } else { this.x = 0; this.z = Math.atan2( m21, m22 ); } return this; }, /* // from http://www.mathworks.com/matlabcentral/fileexchange/20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/content/SpinCalc.m // order XYZ getEulerXYZFromQuaternion: function ( q ) { this.x = Math.atan2( 2 * ( q.x * q.w - q.y * q.z ), ( q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z ) ); this.y = Math.asin( 2 * ( q.x * q.z + q.y * q.w ) ); this.z = Math.atan2( 2 * ( q.z * q.w - q.x * q.y ), ( q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z ) ); }, // from http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/index.htm // order YZX (assuming heading == y, attitude == z, bank == x) getEulerYZXFromQuaternion: function ( q ) { var sqw = q.w * q.w; var sqx = q.x * q.x; var sqy = q.y * q.y; var sqz = q.z * q.z; var unit = sqx + sqy + sqz + sqw; // if normalised is one, otherwise is correction factor var test = q.x * q.y + q.z * q.w; if ( test > 0.499 * unit ) { // singularity at north pole this.y = 2 * Math.atan2( q.x, q.w ); this.z = Math.PI / 2; this.x = 0; return; } if ( test < -0.499 * unit ) { // singularity at south pole this.y = -2 * Math.atan2( q.x, q.w ); this.z = -Math.PI / 2; this.x = 0; return; } this.y = Math.atan2( 2 * q.y * q.w - 2 * q.x * q.z, sqx - sqy - sqz + sqw ); this.z = Math.asin( 2 * test / unit ); this.x = Math.atan2( 2 * q.x * q.w - 2 * q.y * q.z, -sqx + sqy - sqz + sqw ); }, */ getScaleFromMatrix: function ( m ) { var sx = this.set( m.elements[0], m.elements[1], m.elements[2] ).length(); var sy = this.set( m.elements[4], m.elements[5], m.elements[6] ).length(); var sz = this.set( m.elements[8], m.elements[9], m.elements[10] ).length(); this.x = sx; this.y = sy; this.z = sz; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); }, isZero: function () { return ( this.lengthSq() < 0.0001 /* almostZero */ ); }, clone: function () { return new THREE.Vector3( this.x, this.y, this.z ); } }; /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ */ THREE.Vector4 = function ( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; }; THREE.Vector4.prototype = { constructor: THREE.Vector4, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; }, add: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; }, addSelf: function ( v ) { this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; }, sub: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; }, subSelf: function ( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; }, multiplyScalar: function ( s ) { this.x *= s; this.y *= s; this.z *= s; this.w *= s; return this; }, divideScalar: function ( s ) { if ( s ) { this.x /= s; this.y /= s; this.z /= s; this.w /= s; } else { this.x = 0; this.y = 0; this.z = 0; this.w = 1; } return this; }, negate: function() { return this.multiplyScalar( -1 ); }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; }, lengthSq: function () { return this.dot( this ); }, length: function () { return Math.sqrt( this.lengthSq() ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( l ) { return this.normalize().multiplyScalar( l ); }, lerpSelf: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; }, clone: function () { return new THREE.Vector4( this.x, this.y, this.z, this.w ); } }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Frustum = function ( ) { this.planes = [ new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4() ]; }; THREE.Frustum.prototype.setFromMatrix = function ( m ) { var i, plane, planes = this.planes; var me = m.elements; var me0 = me[0], me1 = me[1], me2 = me[2], me3 = me[3]; var me4 = me[4], me5 = me[5], me6 = me[6], me7 = me[7]; var me8 = me[8], me9 = me[9], me10 = me[10], me11 = me[11]; var me12 = me[12], me13 = me[13], me14 = me[14], me15 = me[15]; planes[ 0 ].set( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ); planes[ 1 ].set( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ); planes[ 2 ].set( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ); planes[ 3 ].set( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ); planes[ 4 ].set( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ); planes[ 5 ].set( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ); for ( i = 0; i < 6; i ++ ) { plane = planes[ i ]; plane.divideScalar( Math.sqrt( plane.x * plane.x + plane.y * plane.y + plane.z * plane.z ) ); } }; THREE.Frustum.prototype.contains = function ( object ) { var distance, planes = this.planes, matrix = object.matrixWorld, me = matrix.elements, scale = THREE.Frustum.__v1.set( matrix.getColumnX().length(), matrix.getColumnY().length(), matrix.getColumnZ().length() ), radius = - object.geometry.boundingSphere.radius * Math.max( scale.x, Math.max( scale.y, scale.z ) ); for ( var i = 0; i < 6; i ++ ) { distance = planes[ i ].x * me[12] + planes[ i ].y * me[13] + planes[ i ].z * me[14] + planes[ i ].w; if ( distance <= radius ) return false; } return true; }; THREE.Frustum.__v1 = new THREE.Vector3(); /** * @author mr.doob / http://mrdoob.com/ */ THREE.Ray = function ( origin, direction ) { this.origin = origin || new THREE.Vector3(); this.direction = direction || new THREE.Vector3(); var precision = 0.0001; this.setPrecision = function ( value ) { precision = value; }; var a = new THREE.Vector3(); var b = new THREE.Vector3(); var c = new THREE.Vector3(); var d = new THREE.Vector3(); var originCopy = new THREE.Vector3(); var directionCopy = new THREE.Vector3(); var vector = new THREE.Vector3(); var normal = new THREE.Vector3(); var intersectPoint = new THREE.Vector3() this.intersectObject = function ( object ) { var intersect, intersects = []; if ( object instanceof THREE.Particle ) { var distance = distanceFromIntersection( this.origin, this.direction, object.matrixWorld.getPosition() ); if ( distance > object.scale.x ) { return []; } intersect = { distance: distance, point: object.position, face: null, object: object }; intersects.push( intersect ); } else if ( object instanceof THREE.Mesh ) { // Checking boundingSphere var distance = distanceFromIntersection( this.origin, this.direction, object.matrixWorld.getPosition() ); var scale = THREE.Frustum.__v1.set( object.matrixWorld.getColumnX().length(), object.matrixWorld.getColumnY().length(), object.matrixWorld.getColumnZ().length() ); if ( distance > object.geometry.boundingSphere.radius * Math.max( scale.x, Math.max( scale.y, scale.z ) ) ) { return intersects; } // Checking faces var f, fl, face, dot, scalar, geometry = object.geometry, vertices = geometry.vertices, objMatrix; object.matrixRotationWorld.extractRotation( object.matrixWorld ); for ( f = 0, fl = geometry.faces.length; f < fl; f ++ ) { face = geometry.faces[ f ]; originCopy.copy( this.origin ); directionCopy.copy( this.direction ); objMatrix = object.matrixWorld; // determine if ray intersects the plane of the face // note: this works regardless of the direction of the face normal vector = objMatrix.multiplyVector3( vector.copy( face.centroid ) ).subSelf( originCopy ); normal = object.matrixRotationWorld.multiplyVector3( normal.copy( face.normal ) ); dot = directionCopy.dot( normal ); // bail if ray and plane are parallel if ( Math.abs( dot ) < precision ) continue; // calc distance to plane scalar = normal.dot( vector ) / dot; // if negative distance, then plane is behind ray if ( scalar < 0 ) continue; if ( object.doubleSided || ( object.flipSided ? dot > 0 : dot < 0 ) ) { intersectPoint.add( originCopy, directionCopy.multiplyScalar( scalar ) ); if ( face instanceof THREE.Face3 ) { a = objMatrix.multiplyVector3( a.copy( vertices[ face.a ].position ) ); b = objMatrix.multiplyVector3( b.copy( vertices[ face.b ].position ) ); c = objMatrix.multiplyVector3( c.copy( vertices[ face.c ].position ) ); if ( pointInFace3( intersectPoint, a, b, c ) ) { intersect = { distance: originCopy.distanceTo( intersectPoint ), point: intersectPoint.clone(), face: face, object: object }; intersects.push( intersect ); } } else if ( face instanceof THREE.Face4 ) { a = objMatrix.multiplyVector3( a.copy( vertices[ face.a ].position ) ); b = objMatrix.multiplyVector3( b.copy( vertices[ face.b ].position ) ); c = objMatrix.multiplyVector3( c.copy( vertices[ face.c ].position ) ); d = objMatrix.multiplyVector3( d.copy( vertices[ face.d ].position ) ); if ( pointInFace3( intersectPoint, a, b, d ) || pointInFace3( intersectPoint, b, c, d ) ) { intersect = { distance: originCopy.distanceTo( intersectPoint ), point: intersectPoint.clone(), face: face, object: object }; intersects.push( intersect ); } } } } } return intersects; } this.intersectObjects = function ( objects ) { var intersects = []; for ( var i = 0, l = objects.length; i < l; i ++ ) { Array.prototype.push.apply( intersects, this.intersectObject( objects[ i ] ) ); } intersects.sort( function ( a, b ) { return a.distance - b.distance; } ); return intersects; }; var v0 = new THREE.Vector3(), v1 = new THREE.Vector3(), v2 = new THREE.Vector3(); var dot, intersect, distance; function distanceFromIntersection( origin, direction, position ) { v0.sub( position, origin ); dot = v0.dot( direction ); intersect = v1.add( origin, v2.copy( direction ).multiplyScalar( dot ) ); distance = position.distanceTo( intersect ); return distance; } // http://www.blackpawn.com/texts/pointinpoly/default.html var dot00, dot01, dot02, dot11, dot12, invDenom, u, v; function pointInFace3( p, a, b, c ) { v0.sub( c, a ); v1.sub( b, a ); v2.sub( p, a ); dot00 = v0.dot( v0 ); dot01 = v0.dot( v1 ); dot02 = v0.dot( v2 ); dot11 = v1.dot( v1 ); dot12 = v1.dot( v2 ); invDenom = 1 / ( dot00 * dot11 - dot01 * dot01 ); u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; return ( u >= 0 ) && ( v >= 0 ) && ( u + v < 1 ); } };/** * @author mr.doob / http://mrdoob.com/ */ THREE.Rectangle = function () { var _left, _top, _right, _bottom, _width, _height, _isEmpty = true; function resize() { _width = _right - _left; _height = _bottom - _top; } this.getX = function () { return _left; }; this.getY = function () { return _top; }; this.getWidth = function () { return _width; }; this.getHeight = function () { return _height; }; this.getLeft = function() { return _left; }; this.getTop = function() { return _top; }; this.getRight = function() { return _right; }; this.getBottom = function() { return _bottom; }; this.set = function ( left, top, right, bottom ) { _isEmpty = false; _left = left; _top = top; _right = right; _bottom = bottom; resize(); }; this.addPoint = function ( x, y ) { if ( _isEmpty ) { _isEmpty = false; _left = x; _top = y; _right = x; _bottom = y; resize(); } else { _left = _left < x ? _left : x; // Math.min( _left, x ); _top = _top < y ? _top : y; // Math.min( _top, y ); _right = _right > x ? _right : x; // Math.max( _right, x ); _bottom = _bottom > y ? _bottom : y; // Math.max( _bottom, y ); resize(); } }; this.add3Points = function ( x1, y1, x2, y2, x3, y3 ) { if (_isEmpty) { _isEmpty = false; _left = x1 < x2 ? ( x1 < x3 ? x1 : x3 ) : ( x2 < x3 ? x2 : x3 ); _top = y1 < y2 ? ( y1 < y3 ? y1 : y3 ) : ( y2 < y3 ? y2 : y3 ); _right = x1 > x2 ? ( x1 > x3 ? x1 : x3 ) : ( x2 > x3 ? x2 : x3 ); _bottom = y1 > y2 ? ( y1 > y3 ? y1 : y3 ) : ( y2 > y3 ? y2 : y3 ); resize(); } else { _left = x1 < x2 ? ( x1 < x3 ? ( x1 < _left ? x1 : _left ) : ( x3 < _left ? x3 : _left ) ) : ( x2 < x3 ? ( x2 < _left ? x2 : _left ) : ( x3 < _left ? x3 : _left ) ); _top = y1 < y2 ? ( y1 < y3 ? ( y1 < _top ? y1 : _top ) : ( y3 < _top ? y3 : _top ) ) : ( y2 < y3 ? ( y2 < _top ? y2 : _top ) : ( y3 < _top ? y3 : _top ) ); _right = x1 > x2 ? ( x1 > x3 ? ( x1 > _right ? x1 : _right ) : ( x3 > _right ? x3 : _right ) ) : ( x2 > x3 ? ( x2 > _right ? x2 : _right ) : ( x3 > _right ? x3 : _right ) ); _bottom = y1 > y2 ? ( y1 > y3 ? ( y1 > _bottom ? y1 : _bottom ) : ( y3 > _bottom ? y3 : _bottom ) ) : ( y2 > y3 ? ( y2 > _bottom ? y2 : _bottom ) : ( y3 > _bottom ? y3 : _bottom ) ); resize(); }; }; this.addRectangle = function ( r ) { if ( _isEmpty ) { _isEmpty = false; _left = r.getLeft(); _top = r.getTop(); _right = r.getRight(); _bottom = r.getBottom(); resize(); } else { _left = _left < r.getLeft() ? _left : r.getLeft(); // Math.min(_left, r.getLeft() ); _top = _top < r.getTop() ? _top : r.getTop(); // Math.min(_top, r.getTop() ); _right = _right > r.getRight() ? _right : r.getRight(); // Math.max(_right, r.getRight() ); _bottom = _bottom > r.getBottom() ? _bottom : r.getBottom(); // Math.max(_bottom, r.getBottom() ); resize(); } }; this.inflate = function ( v ) { _left -= v; _top -= v; _right += v; _bottom += v; resize(); }; this.minSelf = function ( r ) { _left = _left > r.getLeft() ? _left : r.getLeft(); // Math.max( _left, r.getLeft() ); _top = _top > r.getTop() ? _top : r.getTop(); // Math.max( _top, r.getTop() ); _right = _right < r.getRight() ? _right : r.getRight(); // Math.min( _right, r.getRight() ); _bottom = _bottom < r.getBottom() ? _bottom : r.getBottom(); // Math.min( _bottom, r.getBottom() ); resize(); }; this.intersects = function ( r ) { // http://gamemath.com/2011/09/detecting-whether-two-boxes-overlap/ if ( _right < r.getLeft() ) return false; if ( _left > r.getRight() ) return false; if ( _bottom < r.getTop() ) return false; if ( _top > r.getBottom() ) return false; return true; }; this.empty = function () { _isEmpty = true; _left = 0; _top = 0; _right = 0; _bottom = 0; resize(); }; this.isEmpty = function () { return _isEmpty; }; }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.Math = { // Clamp value to range clamp: function ( x, a, b ) { return ( x < a ) ? a : ( ( x > b ) ? b : x ); }, // Clamp value to range to range mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, // Random float from <0, 1> with 16 bits of randomness // (standard Math.random() creates repetitive patterns when applied over larger space) random16: function () { return ( 65280 * Math.random() + 255 * Math.random() ) / 65535; }, // Random integer from interval randInt: function ( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); }, // Random float from interval randFloat: function ( low, high ) { return low + Math.random() * ( high - low ); }, // Random float from <-range/2, range/2> interval randFloatSpread: function ( range ) { return range * ( 0.5 - Math.random() ); }, sign: function ( x ) { return ( x < 0 ) ? -1 : ( ( x > 0 ) ? 1 : 0 ); } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.Matrix3 = function () { this.m = []; }; THREE.Matrix3.prototype = { constructor: THREE.Matrix3, getInverse: function ( matrix ) { // input: THREE.Matrix4 // ( based on http://code.google.com/p/webgl-mjs/ ) var a11 = matrix.elements[10] * matrix.elements[5] - matrix.elements[6] * matrix.elements[9]; var a21 = - matrix.elements[10] * matrix.elements[1] + matrix.elements[2] * matrix.elements[9]; var a31 = matrix.elements[6] * matrix.elements[1] - matrix.elements[2] * matrix.elements[5]; var a12 = - matrix.elements[10] * matrix.elements[4] + matrix.elements[6] * matrix.elements[8]; var a22 = matrix.elements[10] * matrix.elements[0] - matrix.elements[2] * matrix.elements[8]; var a32 = - matrix.elements[6] * matrix.elements[0] + matrix.elements[2] * matrix.elements[4]; var a13 = matrix.elements[9] * matrix.elements[4] - matrix.elements[5] * matrix.elements[8]; var a23 = - matrix.elements[9] * matrix.elements[0] + matrix.elements[1] * matrix.elements[8]; var a33 = matrix.elements[5] * matrix.elements[0] - matrix.elements[1] * matrix.elements[4]; var det = matrix.elements[0] * a11 + matrix.elements[1] * a12 + matrix.elements[2] * a13; // no inverse if ( det === 0 ) { console.warn( "Matrix3.getInverse(): determinant == 0" ); } var idet = 1.0 / det; var m = this.m; m[ 0 ] = idet * a11; m[ 1 ] = idet * a21; m[ 2 ] = idet * a31; m[ 3 ] = idet * a12; m[ 4 ] = idet * a22; m[ 5 ] = idet * a32; m[ 6 ] = idet * a13; m[ 7 ] = idet * a23; m[ 8 ] = idet * a33; return this; }, /* transpose: function () { var tmp, m = this.m; tmp = m[1]; m[1] = m[3]; m[3] = tmp; tmp = m[2]; m[2] = m[6]; m[6] = tmp; tmp = m[5]; m[5] = m[7]; m[7] = tmp; return this; }, */ transposeIntoArray: function ( r ) { var m = this.m; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; } }; /** * @author mr.doob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author jordi_ros / http://plattsoft.com * @author D1plo1d / http://github.com/D1plo1d * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author timknip / http://www.floorplanner.com/ */ THREE.Matrix4 = function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { this.elements = new Float32Array(16); this.set( ( n11 !== undefined ) ? n11 : 1, n12 || 0, n13 || 0, n14 || 0, n21 || 0, ( n22 !== undefined ) ? n22 : 1, n23 || 0, n24 || 0, n31 || 0, n32 || 0, ( n33 !== undefined ) ? n33 : 1, n34 || 0, n41 || 0, n42 || 0, n43 || 0, ( n44 !== undefined ) ? n44 : 1 ); }; THREE.Matrix4.prototype = { constructor: THREE.Matrix4, set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { var te = this.elements; te[0] = n11; te[4] = n12; te[8] = n13; te[12] = n14; te[1] = n21; te[5] = n22; te[9] = n23; te[13] = n24; te[2] = n31; te[6] = n32; te[10] = n33; te[14] = n34; te[3] = n41; te[7] = n42; te[11] = n43; te[15] = n44; return this; }, identity: function () { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, copy: function ( m ) { var me = m.elements; this.set( me[0], me[4], me[8], me[12], me[1], me[5], me[9], me[13], me[2], me[6], me[10], me[14], me[3], me[7], me[11], me[15] ); return this; }, lookAt: function ( eye, target, up ) { var te = this.elements; var x = THREE.Matrix4.__v1; var y = THREE.Matrix4.__v2; var z = THREE.Matrix4.__v3; z.sub( eye, target ).normalize(); if ( z.length() === 0 ) { z.z = 1; } x.cross( up, z ).normalize(); if ( x.length() === 0 ) { z.x += 0.0001; x.cross( up, z ).normalize(); } y.cross( z, x ); te[0] = x.x; te[4] = y.x; te[8] = z.x; te[1] = x.y; te[5] = y.y; te[9] = z.y; te[2] = x.z; te[6] = y.z; te[10] = z.z; return this; }, multiply: function ( a, b ) { var ae = a.elements, be = b.elements, te = this.elements; var a11 = ae[0], a12 = ae[4], a13 = ae[8], a14 = ae[12]; var a21 = ae[1], a22 = ae[5], a23 = ae[9], a24 = ae[13]; var a31 = ae[2], a32 = ae[6], a33 = ae[10], a34 = ae[14]; var a41 = ae[3], a42 = ae[7], a43 = ae[11], a44 = ae[15]; var b11 = be[0], b12 = be[4], b13 = be[8], b14 = be[12]; var b21 = be[1], b22 = be[5], b23 = be[9], b24 = be[13]; var b31 = be[2], b32 = be[6], b33 = be[10], b34 = be[14]; var b41 = be[3], b42 = be[7], b43 = be[11], b44 = be[15]; te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; }, multiplySelf: function ( m ) { return this.multiply( this, m ); }, multiplyToArray: function ( a, b, r ) { var te = this.elements; this.multiply( a, b ); r[ 0 ] = te[0]; r[ 1 ] = te[1]; r[ 2 ] = te[2]; r[ 3 ] = te[3]; r[ 4 ] = te[4]; r[ 5 ] = te[5]; r[ 6 ] = te[6]; r[ 7 ] = te[7]; r[ 8 ] = te[8]; r[ 9 ] = te[9]; r[ 10 ] = te[10]; r[ 11 ] = te[11]; r[ 12 ] = te[12]; r[ 13 ] = te[13]; r[ 14 ] = te[14]; r[ 15 ] = te[15]; return this; }, multiplyScalar: function ( s ) { var te = this.elements; te[0] *= s; te[4] *= s; te[8] *= s; te[12] *= s; te[1] *= s; te[5] *= s; te[9] *= s; te[13] *= s; te[2] *= s; te[6] *= s; te[10] *= s; te[14] *= s; te[3] *= s; te[7] *= s; te[11] *= s; te[15] *= s; return this; }, multiplyVector3: function ( v ) { var te = this.elements; var vx = v.x, vy = v.y, vz = v.z; var d = 1 / ( te[3] * vx + te[7] * vy + te[11] * vz + te[15] ); v.x = ( te[0] * vx + te[4] * vy + te[8] * vz + te[12] ) * d; v.y = ( te[1] * vx + te[5] * vy + te[9] * vz + te[13] ) * d; v.z = ( te[2] * vx + te[6] * vy + te[10] * vz + te[14] ) * d; return v; }, multiplyVector4: function ( v ) { var te = this.elements; var vx = v.x, vy = v.y, vz = v.z, vw = v.w; v.x = te[0] * vx + te[4] * vy + te[8] * vz + te[12] * vw; v.y = te[1] * vx + te[5] * vy + te[9] * vz + te[13] * vw; v.z = te[2] * vx + te[6] * vy + te[10] * vz + te[14] * vw; v.w = te[3] * vx + te[7] * vy + te[11] * vz + te[15] * vw; return v; }, rotateAxis: function ( v ) { var te = this.elements; var vx = v.x, vy = v.y, vz = v.z; v.x = vx * te[0] + vy * te[4] + vz * te[8]; v.y = vx * te[1] + vy * te[5] + vz * te[9]; v.z = vx * te[2] + vy * te[6] + vz * te[10]; v.normalize(); return v; }, crossVector: function ( a ) { var te = this.elements; var v = new THREE.Vector4(); v.x = te[0] * a.x + te[4] * a.y + te[8] * a.z + te[12] * a.w; v.y = te[1] * a.x + te[5] * a.y + te[9] * a.z + te[13] * a.w; v.z = te[2] * a.x + te[6] * a.y + te[10] * a.z + te[14] * a.w; v.w = ( a.w ) ? te[3] * a.x + te[7] * a.y + te[11] * a.z + te[15] * a.w : 1; return v; }, determinant: function () { var te = this.elements; var n11 = te[0], n12 = te[4], n13 = te[8], n14 = te[12]; var n21 = te[1], n22 = te[5], n23 = te[9], n24 = te[13]; var n31 = te[2], n32 = te[6], n33 = te[10], n34 = te[14]; var n41 = te[3], n42 = te[7], n43 = te[11], n44 = te[15]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n14 * n23 * n32 * n41- n13 * n24 * n32 * n41- n14 * n22 * n33 * n41+ n12 * n24 * n33 * n41+ n13 * n22 * n34 * n41- n12 * n23 * n34 * n41- n14 * n23 * n31 * n42+ n13 * n24 * n31 * n42+ n14 * n21 * n33 * n42- n11 * n24 * n33 * n42- n13 * n21 * n34 * n42+ n11 * n23 * n34 * n42+ n14 * n22 * n31 * n43- n12 * n24 * n31 * n43- n14 * n21 * n32 * n43+ n11 * n24 * n32 * n43+ n12 * n21 * n34 * n43- n11 * n22 * n34 * n43- n13 * n22 * n31 * n44+ n12 * n23 * n31 * n44+ n13 * n21 * n32 * n44- n11 * n23 * n32 * n44- n12 * n21 * n33 * n44+ n11 * n22 * n33 * n44 ); }, transpose: function () { var te = this.elements; var tmp; tmp = te[1]; te[1] = te[4]; te[4] = tmp; tmp = te[2]; te[2] = te[8]; te[8] = tmp; tmp = te[6]; te[6] = te[9]; te[9] = tmp; tmp = te[3]; te[3] = te[12]; te[12] = tmp; tmp = te[7]; te[7] = te[13]; te[13] = tmp; tmp = te[11]; te[11] = te[14]; te[14] = tmp; return this; }, flattenToArray: function ( flat ) { var te = this.elements; flat[ 0 ] = te[0]; flat[ 1 ] = te[1]; flat[ 2 ] = te[2]; flat[ 3 ] = te[3]; flat[ 4 ] = te[4]; flat[ 5 ] = te[5]; flat[ 6 ] = te[6]; flat[ 7 ] = te[7]; flat[ 8 ] = te[8]; flat[ 9 ] = te[9]; flat[ 10 ] = te[10]; flat[ 11 ] = te[11]; flat[ 12 ] = te[12]; flat[ 13 ] = te[13]; flat[ 14 ] = te[14]; flat[ 15 ] = te[15]; return flat; }, flattenToArrayOffset: function( flat, offset ) { var te = this.elements; flat[ offset ] = te[0]; flat[ offset + 1 ] = te[1]; flat[ offset + 2 ] = te[2]; flat[ offset + 3 ] = te[3]; flat[ offset + 4 ] = te[4]; flat[ offset + 5 ] = te[5]; flat[ offset + 6 ] = te[6]; flat[ offset + 7 ] = te[7]; flat[ offset + 8 ] = te[8]; flat[ offset + 9 ] = te[9]; flat[ offset + 10 ] = te[10]; flat[ offset + 11 ] = te[11]; flat[ offset + 12 ] = te[12]; flat[ offset + 13 ] = te[13]; flat[ offset + 14 ] = te[14]; flat[ offset + 15 ] = te[15]; return flat; }, getPosition: function () { var te = this.elements; return THREE.Matrix4.__v1.set( te[12], te[13], te[14] ); }, setPosition: function ( v ) { var te = this.elements; te[12] = v.x; te[13] = v.y; te[14] = v.z; return this; }, getColumnX: function () { var te = this.elements; return THREE.Matrix4.__v1.set( te[0], te[1], te[2] ); }, getColumnY: function () { var te = this.elements; return THREE.Matrix4.__v1.set( te[4], te[5], te[6] ); }, getColumnZ: function() { var te = this.elements; return THREE.Matrix4.__v1.set( te[8], te[9], te[10] ); }, getInverse: function ( m ) { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements; var me = m.elements; var n11 = me[0], n12 = me[4], n13 = me[8], n14 = me[12]; var n21 = me[1], n22 = me[5], n23 = me[9], n24 = me[13]; var n31 = me[2], n32 = me[6], n33 = me[10], n34 = me[14]; var n41 = me[3], n42 = me[7], n43 = me[11], n44 = me[15]; te[0] = n23*n34*n42 - n24*n33*n42 + n24*n32*n43 - n22*n34*n43 - n23*n32*n44 + n22*n33*n44; te[4] = n14*n33*n42 - n13*n34*n42 - n14*n32*n43 + n12*n34*n43 + n13*n32*n44 - n12*n33*n44; te[8] = n13*n24*n42 - n14*n23*n42 + n14*n22*n43 - n12*n24*n43 - n13*n22*n44 + n12*n23*n44; te[12] = n14*n23*n32 - n13*n24*n32 - n14*n22*n33 + n12*n24*n33 + n13*n22*n34 - n12*n23*n34; te[1] = n24*n33*n41 - n23*n34*n41 - n24*n31*n43 + n21*n34*n43 + n23*n31*n44 - n21*n33*n44; te[5] = n13*n34*n41 - n14*n33*n41 + n14*n31*n43 - n11*n34*n43 - n13*n31*n44 + n11*n33*n44; te[9] = n14*n23*n41 - n13*n24*n41 - n14*n21*n43 + n11*n24*n43 + n13*n21*n44 - n11*n23*n44; te[13] = n13*n24*n31 - n14*n23*n31 + n14*n21*n33 - n11*n24*n33 - n13*n21*n34 + n11*n23*n34; te[2] = n22*n34*n41 - n24*n32*n41 + n24*n31*n42 - n21*n34*n42 - n22*n31*n44 + n21*n32*n44; te[6] = n14*n32*n41 - n12*n34*n41 - n14*n31*n42 + n11*n34*n42 + n12*n31*n44 - n11*n32*n44; te[10] = n12*n24*n41 - n14*n22*n41 + n14*n21*n42 - n11*n24*n42 - n12*n21*n44 + n11*n22*n44; te[14] = n14*n22*n31 - n12*n24*n31 - n14*n21*n32 + n11*n24*n32 + n12*n21*n34 - n11*n22*n34; te[3] = n23*n32*n41 - n22*n33*n41 - n23*n31*n42 + n21*n33*n42 + n22*n31*n43 - n21*n32*n43; te[7] = n12*n33*n41 - n13*n32*n41 + n13*n31*n42 - n11*n33*n42 - n12*n31*n43 + n11*n32*n43; te[11] = n13*n22*n41 - n12*n23*n41 - n13*n21*n42 + n11*n23*n42 + n12*n21*n43 - n11*n22*n43; te[15] = n12*n23*n31 - n13*n22*n31 + n13*n21*n32 - n11*n23*n32 - n12*n21*n33 + n11*n22*n33; this.multiplyScalar( 1 / m.determinant() ); return this; }, setRotationFromEuler: function( v, order ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; var a = Math.cos( x ), b = Math.sin( x ); var c = Math.cos( y ), d = Math.sin( y ); var e = Math.cos( z ), f = Math.sin( z ); switch ( order ) { case 'YXZ': var ce = c * e, cf = c * f, de = d * e, df = d * f; te[0] = ce + df * b; te[4] = de * b - cf; te[8] = a * d; te[1] = a * f; te[5] = a * e; te[9] = - b; te[2] = cf * b - de; te[6] = df + ce * b; te[10] = a * c; break; case 'ZXY': var ce = c * e, cf = c * f, de = d * e, df = d * f; te[0] = ce - df * b; te[4] = - a * f; te[8] = de + cf * b; te[1] = cf + de * b; te[5] = a * e; te[9] = df - ce * b; te[2] = - a * d; te[6] = b; te[10] = a * c; break; case 'ZYX': var ae = a * e, af = a * f, be = b * e, bf = b * f; te[0] = c * e; te[4] = be * d - af; te[8] = ae * d + bf; te[1] = c * f; te[5] = bf * d + ae; te[9] = af * d - be; te[2] = - d; te[6] = b * c; te[10] = a * c; break; case 'YZX': var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[0] = c * e; te[4] = bd - ac * f; te[8] = bc * f + ad; te[1] = f; te[5] = a * e; te[9] = - b * e; te[2] = - d * e; te[6] = ad * f + bc; te[10] = ac - bd * f; break; case 'XZY': var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[0] = c * e; te[4] = - f; te[8] = d * e; te[1] = ac * f + bd; te[5] = a * e; te[9] = ad * f - bc; te[2] = bc * f - ad; te[6] = b * e; te[10] = bd * f + ac; break; default: // 'XYZ' var ae = a * e, af = a * f, be = b * e, bf = b * f; te[0] = c * e; te[4] = - c * f; te[8] = d; te[1] = af + be * d; te[5] = ae - bf * d; te[9] = - b * c; te[2] = bf - ae * d; te[6] = be + af * d; te[10] = a * c; break; } return this; }, setRotationFromQuaternion: function( q ) { var te = this.elements; var x = q.x, y = q.y, z = q.z, w = q.w; var x2 = x + x, y2 = y + y, z2 = z + z; var xx = x * x2, xy = x * y2, xz = x * z2; var yy = y * y2, yz = y * z2, zz = z * z2; var wx = w * x2, wy = w * y2, wz = w * z2; te[0] = 1 - ( yy + zz ); te[4] = xy - wz; te[8] = xz + wy; te[1] = xy + wz; te[5] = 1 - ( xx + zz ); te[9] = yz - wx; te[2] = xz - wy; te[6] = yz + wx; te[10] = 1 - ( xx + yy ); return this; }, compose: function ( translation, rotation, scale ) { var te = this.elements; var mRotation = THREE.Matrix4.__m1; var mScale = THREE.Matrix4.__m2; mRotation.identity(); mRotation.setRotationFromQuaternion( rotation ); mScale.makeScale( scale.x, scale.y, scale.z ); this.multiply( mRotation, mScale ); te[12] = translation.x; te[13] = translation.y; te[14] = translation.z; return this; }, decompose: function ( translation, rotation, scale ) { // grab the axis vectors var te = this.elements; var x = THREE.Matrix4.__v1; var y = THREE.Matrix4.__v2; var z = THREE.Matrix4.__v3; x.set( te[0], te[1], te[2] ); y.set( te[4], te[5], te[6] ); z.set( te[8], te[9], te[10] ); translation = ( translation instanceof THREE.Vector3 ) ? translation : new THREE.Vector3(); rotation = ( rotation instanceof THREE.Quaternion ) ? rotation : new THREE.Quaternion(); scale = ( scale instanceof THREE.Vector3 ) ? scale : new THREE.Vector3(); scale.x = x.length(); scale.y = y.length(); scale.z = z.length(); translation.x = te[12]; translation.y = te[13]; translation.z = te[14]; // scale the rotation part var matrix = THREE.Matrix4.__m1; matrix.copy( this ); matrix.elements[0] /= scale.x; matrix.elements[1] /= scale.x; matrix.elements[2] /= scale.x; matrix.elements[4] /= scale.y; matrix.elements[5] /= scale.y; matrix.elements[6] /= scale.y; matrix.elements[8] /= scale.z; matrix.elements[9] /= scale.z; matrix.elements[10] /= scale.z; rotation.setFromRotationMatrix( matrix ); return [ translation, rotation, scale ]; }, extractPosition: function ( m ) { var te = this.elements; var me = m.elements; te[12] = me[12]; te[13] = me[13]; te[14] = me[14]; return this; }, extractRotation: function ( m ) { var te = this.elements; var me = m.elements; var vector = THREE.Matrix4.__v1; var scaleX = 1 / vector.set( me[0], me[1], me[2] ).length(); var scaleY = 1 / vector.set( me[4], me[5], me[6] ).length(); var scaleZ = 1 / vector.set( me[8], me[9], me[10] ).length(); te[0] = me[0] * scaleX; te[1] = me[1] * scaleX; te[2] = me[2] * scaleX; te[4] = me[4] * scaleY; te[5] = me[5] * scaleY; te[6] = me[6] * scaleY; te[8] = me[8] * scaleZ; te[9] = me[9] * scaleZ; te[10] = me[10] * scaleZ; return this; }, // translate: function ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[12] = te[0] * x + te[4] * y + te[8] * z + te[12]; te[13] = te[1] * x + te[5] * y + te[9] * z + te[13]; te[14] = te[2] * x + te[6] * y + te[10] * z + te[14]; te[15] = te[3] * x + te[7] * y + te[11] * z + te[15]; return this; }, rotateX: function ( angle ) { var te = this.elements; var m12 = te[4]; var m22 = te[5]; var m32 = te[6]; var m42 = te[7]; var m13 = te[8]; var m23 = te[9]; var m33 = te[10]; var m43 = te[11]; var c = Math.cos( angle ); var s = Math.sin( angle ); te[4] = c * m12 + s * m13; te[5] = c * m22 + s * m23; te[6] = c * m32 + s * m33; te[7] = c * m42 + s * m43; te[8] = c * m13 - s * m12; te[9] = c * m23 - s * m22; te[10] = c * m33 - s * m32; te[11] = c * m43 - s * m42; return this; }, rotateY: function ( angle ) { var te = this.elements; var m11 = te[0]; var m21 = te[1]; var m31 = te[2]; var m41 = te[3]; var m13 = te[8]; var m23 = te[9]; var m33 = te[10]; var m43 = te[11]; var c = Math.cos( angle ); var s = Math.sin( angle ); te[0] = c * m11 - s * m13; te[1] = c * m21 - s * m23; te[2] = c * m31 - s * m33; te[3] = c * m41 - s * m43; te[8] = c * m13 + s * m11; te[9] = c * m23 + s * m21; te[10] = c * m33 + s * m31; te[11] = c * m43 + s * m41; return this; }, rotateZ: function ( angle ) { var te = this.elements; var m11 = te[0]; var m21 = te[1]; var m31 = te[2]; var m41 = te[3]; var m12 = te[4]; var m22 = te[5]; var m32 = te[6]; var m42 = te[7]; var c = Math.cos( angle ); var s = Math.sin( angle ); te[0] = c * m11 + s * m12; te[1] = c * m21 + s * m22; te[2] = c * m31 + s * m32; te[3] = c * m41 + s * m42; te[4] = c * m12 - s * m11; te[5] = c * m22 - s * m21; te[6] = c * m32 - s * m31; te[7] = c * m42 - s * m41; return this; }, rotateByAxis: function ( axis, angle ) { var te = this.elements; // optimize by checking axis if ( axis.x === 1 && axis.y === 0 && axis.z === 0 ) { return this.rotateX( angle ); } else if ( axis.x === 0 && axis.y === 1 && axis.z === 0 ) { return this.rotateY( angle ); } else if ( axis.x === 0 && axis.y === 0 && axis.z === 1 ) { return this.rotateZ( angle ); } var x = axis.x, y = axis.y, z = axis.z; var n = Math.sqrt(x * x + y * y + z * z); x /= n; y /= n; z /= n; var xx = x * x, yy = y * y, zz = z * z; var c = Math.cos( angle ); var s = Math.sin( angle ); var oneMinusCosine = 1 - c; var xy = x * y * oneMinusCosine; var xz = x * z * oneMinusCosine; var yz = y * z * oneMinusCosine; var xs = x * s; var ys = y * s; var zs = z * s; var r11 = xx + (1 - xx) * c; var r21 = xy + zs; var r31 = xz - ys; var r12 = xy - zs; var r22 = yy + (1 - yy) * c; var r32 = yz + xs; var r13 = xz + ys; var r23 = yz - xs; var r33 = zz + (1 - zz) * c; var m11 = te[0], m21 = te[1], m31 = te[2], m41 = te[3]; var m12 = te[4], m22 = te[5], m32 = te[6], m42 = te[7]; var m13 = te[8], m23 = te[9], m33 = te[10], m43 = te[11]; var m14 = te[12], m24 = te[13], m34 = te[14], m44 = te[15]; te[0] = r11 * m11 + r21 * m12 + r31 * m13; te[1] = r11 * m21 + r21 * m22 + r31 * m23; te[2] = r11 * m31 + r21 * m32 + r31 * m33; te[3] = r11 * m41 + r21 * m42 + r31 * m43; te[4] = r12 * m11 + r22 * m12 + r32 * m13; te[5] = r12 * m21 + r22 * m22 + r32 * m23; te[6] = r12 * m31 + r22 * m32 + r32 * m33; te[7] = r12 * m41 + r22 * m42 + r32 * m43; te[8] = r13 * m11 + r23 * m12 + r33 * m13; te[9] = r13 * m21 + r23 * m22 + r33 * m23; te[10] = r13 * m31 + r23 * m32 + r33 * m33; te[11] = r13 * m41 + r23 * m42 + r33 * m43; return this; }, scale: function ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[0] *= x; te[4] *= y; te[8] *= z; te[1] *= x; te[5] *= y; te[9] *= z; te[2] *= x; te[6] *= y; te[10] *= z; te[3] *= x; te[7] *= y; te[11] *= z; return this; }, // makeTranslation: function ( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; }, makeRotationX: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationY: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationZ: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, makeRotationAxis: function ( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos( angle ); var s = Math.sin( angle ); var t = 1 - c; var x = axis.x, y = axis.y, z = axis.z; var tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; }, makeScale: function ( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; }, makeFrustum: function ( left, right, bottom, top, near, far ) { var te = this.elements; var x = 2 * near / ( right - left ); var y = 2 * near / ( top - bottom ); var a = ( right + left ) / ( right - left ); var b = ( top + bottom ) / ( top - bottom ); var c = - ( far + near ) / ( far - near ); var d = - 2 * far * near / ( far - near ); te[0] = x; te[4] = 0; te[8] = a; te[12] = 0; te[1] = 0; te[5] = y; te[9] = b; te[13] = 0; te[2] = 0; te[6] = 0; te[10] = c; te[14] = d; te[3] = 0; te[7] = 0; te[11] = - 1; te[15] = 0; return this; }, makePerspective: function ( fov, aspect, near, far ) { var ymax = near * Math.tan( fov * Math.PI / 360 ); var ymin = - ymax; var xmin = ymin * aspect; var xmax = ymax * aspect; return this.makeFrustum( xmin, xmax, ymin, ymax, near, far ); }, makeOrthographic: function ( left, right, top, bottom, near, far ) { var te = this.elements; var w = right - left; var h = top - bottom; var p = far - near; var x = ( right + left ) / w; var y = ( top + bottom ) / h; var z = ( far + near ) / p; te[0] = 2 / w; te[4] = 0; te[8] = 0; te[12] = -x; te[1] = 0; te[5] = 2 / h; te[9] = 0; te[13] = -y; te[2] = 0; te[6] = 0; te[10] = -2 / p; te[14] = -z; te[3] = 0; te[7] = 0; te[11] = 0; te[15] = 1; return this; }, clone: function () { var te = this.elements; return new THREE.Matrix4( te[0], te[4], te[8], te[12], te[1], te[5], te[9], te[13], te[2], te[6], te[10], te[14], te[3], te[7], te[11], te[15] ); } }; THREE.Matrix4.__v1 = new THREE.Vector3(); THREE.Matrix4.__v2 = new THREE.Vector3(); THREE.Matrix4.__v3 = new THREE.Vector3(); THREE.Matrix4.__m1 = new THREE.Matrix4(); THREE.Matrix4.__m2 = new THREE.Matrix4(); /** * @author mr.doob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.Object3D = function () { this.id = THREE.Object3DCount ++; this.name = ''; this.parent = undefined; this.children = []; this.up = new THREE.Vector3( 0, 1, 0 ); this.position = new THREE.Vector3(); this.rotation = new THREE.Vector3(); this.eulerOrder = 'XYZ'; this.scale = new THREE.Vector3( 1, 1, 1 ); this.doubleSided = false; this.flipSided = false; this.renderDepth = null; this.rotationAutoUpdate = true; this.matrix = new THREE.Matrix4(); this.matrixWorld = new THREE.Matrix4(); this.matrixRotationWorld = new THREE.Matrix4(); this.matrixAutoUpdate = true; this.matrixWorldNeedsUpdate = true; this.quaternion = new THREE.Quaternion(); this.useQuaternion = false; this.boundRadius = 0.0; this.boundRadiusScale = 1.0; this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this._vector = new THREE.Vector3(); }; THREE.Object3D.prototype = { constructor: THREE.Object3D, applyMatrix: function ( matrix ) { this.matrix.multiply( matrix, this.matrix ); this.scale.getScaleFromMatrix( this.matrix ); this.rotation.getRotationFromMatrix( this.matrix, this.scale ); this.position.getPositionFromMatrix( this.matrix ); }, translate: function ( distance, axis ) { this.matrix.rotateAxis( axis ); this.position.addSelf( axis.multiplyScalar( distance ) ); }, translateX: function ( distance ) { this.translate( distance, this._vector.set( 1, 0, 0 ) ); }, translateY: function ( distance ) { this.translate( distance, this._vector.set( 0, 1, 0 ) ); }, translateZ: function ( distance ) { this.translate( distance, this._vector.set( 0, 0, 1 ) ); }, lookAt: function ( vector ) { // TODO: Add hierarchy support. this.matrix.lookAt( vector, this.position, this.up ); if ( this.rotationAutoUpdate ) { this.rotation.getRotationFromMatrix( this.matrix ); } }, add: function ( object ) { if ( object === this ) { console.warn( 'THREE.Object3D.add: An object can\'t be added as a child of itself.' ); return; } if ( this.children.indexOf( object ) === - 1 ) { if ( object.parent !== undefined ) { object.parent.remove( object ); } object.parent = this; this.children.push( object ); // add to scene var scene = this; while ( scene.parent !== undefined ) { scene = scene.parent; } if ( scene !== undefined && scene instanceof THREE.Scene ) { scene.__addObject( object ); } } }, remove: function ( object ) { var index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = undefined; this.children.splice( index, 1 ); // remove from scene var scene = this; while ( scene.parent !== undefined ) { scene = scene.parent; } if ( scene !== undefined && scene instanceof THREE.Scene ) { scene.__removeObject( object ); } } }, getChildByName: function ( name, recursive ) { var c, cl, child; for ( c = 0, cl = this.children.length; c < cl; c ++ ) { child = this.children[ c ]; if ( child.name === name ) { return child; } if ( recursive ) { child = child.getChildByName( name, recursive ); if ( child !== undefined ) { return child; } } } return undefined; }, updateMatrix: function () { this.matrix.setPosition( this.position ); if ( this.useQuaternion ) { this.matrix.setRotationFromQuaternion( this.quaternion ); } else { this.matrix.setRotationFromEuler( this.rotation, this.eulerOrder ); } if ( this.scale.x !== 1 || this.scale.y !== 1 || this.scale.z !== 1 ) { this.matrix.scale( this.scale ); this.boundRadiusScale = Math.max( this.scale.x, Math.max( this.scale.y, this.scale.z ) ); } this.matrixWorldNeedsUpdate = true; }, updateMatrixWorld: function ( force ) { this.matrixAutoUpdate && this.updateMatrix(); // update matrixWorld if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent ) { this.matrixWorld.multiply( this.parent.matrixWorld, this.matrix ); } else { this.matrixWorld.copy( this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].updateMatrixWorld( force ); } } }; THREE.Object3DCount = 0; /** * @author mr.doob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author julianwa / https://github.com/julianwa */ THREE.Projector = function() { var _object, _objectCount, _objectPool = [], _vertex, _vertexCount, _vertexPool = [], _face, _face3Count, _face3Pool = [], _face4Count, _face4Pool = [], _line, _lineCount, _linePool = [], _particle, _particleCount, _particlePool = [], _renderData = { objects: [], sprites: [], lights: [], elements: [] }, _vector3 = new THREE.Vector3(), _vector4 = new THREE.Vector4(), _projScreenMatrix = new THREE.Matrix4(), _projScreenobjectMatrixWorld = new THREE.Matrix4(), _frustum = new THREE.Frustum(), _clippedVertex1PositionScreen = new THREE.Vector4(), _clippedVertex2PositionScreen = new THREE.Vector4(), _face3VertexNormals; this.projectVector = function ( vector, camera ) { camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse ); _projScreenMatrix.multiplyVector3( vector ); return vector; }; this.unprojectVector = function ( vector, camera ) { camera.projectionMatrixInverse.getInverse( camera.projectionMatrix ); _projScreenMatrix.multiply( camera.matrixWorld, camera.projectionMatrixInverse ); _projScreenMatrix.multiplyVector3( vector ); return vector; }; this.pickingRay = function ( vector, camera ) { var end, ray, t; // set two vectors with opposing z values vector.z = -1.0; end = new THREE.Vector3( vector.x, vector.y, 1.0 ); this.unprojectVector( vector, camera ); this.unprojectVector( end, camera ); // find direction from vector to end end.subSelf( vector ).normalize(); return new THREE.Ray( vector, end ); }; this.projectGraph = function ( root, sort ) { _objectCount = 0; _renderData.objects.length = 0; _renderData.sprites.length = 0; _renderData.lights.length = 0; var projectObject = function ( object ) { if ( object.visible === false ) return; if ( ( object instanceof THREE.Mesh || object instanceof THREE.Line ) && ( object.frustumCulled === false || _frustum.contains( object ) ) ) { _vector3.copy( object.matrixWorld.getPosition() ); _projScreenMatrix.multiplyVector3( _vector3 ); _object = getNextObjectInPool(); _object.object = object; _object.z = _vector3.z; _renderData.objects.push( _object ); } else if ( object instanceof THREE.Sprite || object instanceof THREE.Particle ) { _vector3.copy( object.matrixWorld.getPosition() ); _projScreenMatrix.multiplyVector3( _vector3 ); _object = getNextObjectInPool(); _object.object = object; _object.z = _vector3.z; _renderData.sprites.push( _object ); } else if ( object instanceof THREE.Light ) { _renderData.lights.push( object ); } for ( var c = 0, cl = object.children.length; c < cl; c ++ ) { projectObject( object.children[ c ] ); } }; projectObject( root ); sort && _renderData.objects.sort( painterSort ); return _renderData; }; this.projectScene = function ( scene, camera, sort ) { var near = camera.near, far = camera.far, visible = false, o, ol, v, vl, f, fl, n, nl, c, cl, u, ul, object, objectMatrixWorld, objectMatrixWorldRotation, geometry, geometryMaterials, vertices, vertex, vertexPositionScreen, faces, face, faceVertexNormals, normal, faceVertexUvs, uvs, v1, v2, v3, v4; _face3Count = 0; _face4Count = 0; _lineCount = 0; _particleCount = 0; _renderData.elements.length = 0; if ( camera.parent === undefined ) { console.warn( 'DEPRECATED: Camera hasn\'t been added to a Scene. Adding it...' ); scene.add( camera ); } scene.updateMatrixWorld(); camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); _renderData = this.projectGraph( scene, false ); for ( o = 0, ol = _renderData.objects.length; o < ol; o++ ) { object = _renderData.objects[ o ].object; objectMatrixWorld = object.matrixWorld; _vertexCount = 0; if ( object instanceof THREE.Mesh ) { geometry = object.geometry; geometryMaterials = object.geometry.materials; vertices = geometry.vertices; faces = geometry.faces; faceVertexUvs = geometry.faceVertexUvs; objectMatrixWorldRotation = object.matrixRotationWorld.extractRotation( objectMatrixWorld ); for ( v = 0, vl = vertices.length; v < vl; v ++ ) { _vertex = getNextVertexInPool(); _vertex.positionWorld.copy( vertices[ v ].position ); objectMatrixWorld.multiplyVector3( _vertex.positionWorld ); _vertex.positionScreen.copy( _vertex.positionWorld ); _projScreenMatrix.multiplyVector4( _vertex.positionScreen ); _vertex.positionScreen.x /= _vertex.positionScreen.w; _vertex.positionScreen.y /= _vertex.positionScreen.w; _vertex.visible = _vertex.positionScreen.z > near && _vertex.positionScreen.z < far; } for ( f = 0, fl = faces.length; f < fl; f ++ ) { face = faces[ f ]; if ( face instanceof THREE.Face3 ) { v1 = _vertexPool[ face.a ]; v2 = _vertexPool[ face.b ]; v3 = _vertexPool[ face.c ]; if ( v1.visible && v2.visible && v3.visible ) { visible = ( ( v3.positionScreen.x - v1.positionScreen.x ) * ( v2.positionScreen.y - v1.positionScreen.y ) - ( v3.positionScreen.y - v1.positionScreen.y ) * ( v2.positionScreen.x - v1.positionScreen.x ) ) < 0; if ( object.doubleSided || visible != object.flipSided ) { _face = getNextFace3InPool(); _face.v1.copy( v1 ); _face.v2.copy( v2 ); _face.v3.copy( v3 ); } else { continue; } } else { continue; } } else if ( face instanceof THREE.Face4 ) { v1 = _vertexPool[ face.a ]; v2 = _vertexPool[ face.b ]; v3 = _vertexPool[ face.c ]; v4 = _vertexPool[ face.d ]; if ( v1.visible && v2.visible && v3.visible && v4.visible ) { visible = ( v4.positionScreen.x - v1.positionScreen.x ) * ( v2.positionScreen.y - v1.positionScreen.y ) - ( v4.positionScreen.y - v1.positionScreen.y ) * ( v2.positionScreen.x - v1.positionScreen.x ) < 0 || ( v2.positionScreen.x - v3.positionScreen.x ) * ( v4.positionScreen.y - v3.positionScreen.y ) - ( v2.positionScreen.y - v3.positionScreen.y ) * ( v4.positionScreen.x - v3.positionScreen.x ) < 0; if ( object.doubleSided || visible != object.flipSided ) { _face = getNextFace4InPool(); _face.v1.copy( v1 ); _face.v2.copy( v2 ); _face.v3.copy( v3 ); _face.v4.copy( v4 ); } else { continue; } } else { continue; } } _face.normalWorld.copy( face.normal ); if ( !visible && ( object.flipSided || object.doubleSided ) ) _face.normalWorld.negate(); objectMatrixWorldRotation.multiplyVector3( _face.normalWorld ); _face.centroidWorld.copy( face.centroid ); objectMatrixWorld.multiplyVector3( _face.centroidWorld ); _face.centroidScreen.copy( _face.centroidWorld ); _projScreenMatrix.multiplyVector3( _face.centroidScreen ); faceVertexNormals = face.vertexNormals; for ( n = 0, nl = faceVertexNormals.length; n < nl; n ++ ) { normal = _face.vertexNormalsWorld[ n ]; normal.copy( faceVertexNormals[ n ] ); if ( !visible && ( object.flipSided || object.doubleSided ) ) normal.negate(); objectMatrixWorldRotation.multiplyVector3( normal ); } for ( c = 0, cl = faceVertexUvs.length; c < cl; c ++ ) { uvs = faceVertexUvs[ c ][ f ]; if ( !uvs ) continue; for ( u = 0, ul = uvs.length; u < ul; u ++ ) { _face.uvs[ c ][ u ] = uvs[ u ]; } } _face.material = object.material; _face.faceMaterial = face.materialIndex !== null ? geometryMaterials[ face.materialIndex ] : null; _face.z = _face.centroidScreen.z; _renderData.elements.push( _face ); } } else if ( object instanceof THREE.Line ) { _projScreenobjectMatrixWorld.multiply( _projScreenMatrix, objectMatrixWorld ); vertices = object.geometry.vertices; v1 = getNextVertexInPool(); v1.positionScreen.copy( vertices[ 0 ].position ); _projScreenobjectMatrixWorld.multiplyVector4( v1.positionScreen ); // Handle LineStrip and LinePieces var step = object.type === THREE.LinePieces ? 2 : 1; for ( v = 1, vl = vertices.length; v < vl; v ++ ) { v1 = getNextVertexInPool(); v1.positionScreen.copy( vertices[ v ].position ); _projScreenobjectMatrixWorld.multiplyVector4( v1.positionScreen ); if ( ( v + 1 ) % step > 0 ) continue; v2 = _vertexPool[ _vertexCount - 2 ]; _clippedVertex1PositionScreen.copy( v1.positionScreen ); _clippedVertex2PositionScreen.copy( v2.positionScreen ); if ( clipLine( _clippedVertex1PositionScreen, _clippedVertex2PositionScreen ) ) { // Perform the perspective divide _clippedVertex1PositionScreen.multiplyScalar( 1 / _clippedVertex1PositionScreen.w ); _clippedVertex2PositionScreen.multiplyScalar( 1 / _clippedVertex2PositionScreen.w ); _line = getNextLineInPool(); _line.v1.positionScreen.copy( _clippedVertex1PositionScreen ); _line.v2.positionScreen.copy( _clippedVertex2PositionScreen ); _line.z = Math.max( _clippedVertex1PositionScreen.z, _clippedVertex2PositionScreen.z ); _line.material = object.material; _renderData.elements.push( _line ); } } } } for ( o = 0, ol = _renderData.sprites.length; o < ol; o++ ) { object = _renderData.sprites[ o ].object; objectMatrixWorld = object.matrixWorld; if ( object instanceof THREE.Particle ) { _vector4.set( objectMatrixWorld.elements[12], objectMatrixWorld.elements[13], objectMatrixWorld.elements[14], 1 ); _projScreenMatrix.multiplyVector4( _vector4 ); _vector4.z /= _vector4.w; if ( _vector4.z > 0 && _vector4.z < 1 ) { _particle = getNextParticleInPool(); _particle.x = _vector4.x / _vector4.w; _particle.y = _vector4.y / _vector4.w; _particle.z = _vector4.z; _particle.rotation = object.rotation.z; _particle.scale.x = object.scale.x * Math.abs( _particle.x - ( _vector4.x + camera.projectionMatrix.elements[0] ) / ( _vector4.w + camera.projectionMatrix.elements[12] ) ); _particle.scale.y = object.scale.y * Math.abs( _particle.y - ( _vector4.y + camera.projectionMatrix.elements[5] ) / ( _vector4.w + camera.projectionMatrix.elements[13] ) ); _particle.material = object.material; _renderData.elements.push( _particle ); } } } sort && _renderData.elements.sort( painterSort ); return _renderData; }; // Pools function getNextObjectInPool() { var object = _objectPool[ _objectCount ] = _objectPool[ _objectCount ] || new THREE.RenderableObject(); _objectCount ++; return object; } function getNextVertexInPool() { var vertex = _vertexPool[ _vertexCount ] = _vertexPool[ _vertexCount ] || new THREE.RenderableVertex(); _vertexCount ++; return vertex; } function getNextFace3InPool() { var face = _face3Pool[ _face3Count ] = _face3Pool[ _face3Count ] || new THREE.RenderableFace3(); _face3Count ++; return face; } function getNextFace4InPool() { var face = _face4Pool[ _face4Count ] = _face4Pool[ _face4Count ] || new THREE.RenderableFace4(); _face4Count ++; return face; } function getNextLineInPool() { var line = _linePool[ _lineCount ] = _linePool[ _lineCount ] || new THREE.RenderableLine(); _lineCount ++; return line; } function getNextParticleInPool() { var particle = _particlePool[ _particleCount ] = _particlePool[ _particleCount ] || new THREE.RenderableParticle(); _particleCount ++; return particle; } // function painterSort( a, b ) { return b.z - a.z; } function clipLine( s1, s2 ) { var alpha1 = 0, alpha2 = 1, // Calculate the boundary coordinate of each vertex for the near and far clip planes, // Z = -1 and Z = +1, respectively. bc1near = s1.z + s1.w, bc2near = s2.z + s2.w, bc1far = - s1.z + s1.w, bc2far = - s2.z + s2.w; if ( bc1near >= 0 && bc2near >= 0 && bc1far >= 0 && bc2far >= 0 ) { // Both vertices lie entirely within all clip planes. return true; } else if ( ( bc1near < 0 && bc2near < 0) || (bc1far < 0 && bc2far < 0 ) ) { // Both vertices lie entirely outside one of the clip planes. return false; } else { // The line segment spans at least one clip plane. if ( bc1near < 0 ) { // v1 lies outside the near plane, v2 inside alpha1 = Math.max( alpha1, bc1near / ( bc1near - bc2near ) ); } else if ( bc2near < 0 ) { // v2 lies outside the near plane, v1 inside alpha2 = Math.min( alpha2, bc1near / ( bc1near - bc2near ) ); } if ( bc1far < 0 ) { // v1 lies outside the far plane, v2 inside alpha1 = Math.max( alpha1, bc1far / ( bc1far - bc2far ) ); } else if ( bc2far < 0 ) { // v2 lies outside the far plane, v2 inside alpha2 = Math.min( alpha2, bc1far / ( bc1far - bc2far ) ); } if ( alpha2 < alpha1 ) { // The line segment spans two boundaries, but is outside both of them. // (This can't happen when we're only clipping against just near/far but good // to leave the check here for future usage if other clip planes are added.) return false; } else { // Update the s1 and s2 vertices to match the clipped line segment. s1.lerpSelf( s2, alpha1 ); s2.lerpSelf( s1, 1 - alpha2 ); return true; } } } }; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.Quaternion = function( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; }; THREE.Quaternion.prototype = { constructor: THREE.Quaternion, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, copy: function ( q ) { this.x = q.x; this.y = q.y; this.z = q.z; this.w = q.w; return this; }, setFromEuler: function ( vector ) { var c = Math.PI / 360, // 0.5 * Math.PI / 360, // 0.5 is an optimization x = vector.x * c, y = vector.y * c, z = vector.z * c, c1 = Math.cos( y ), s1 = Math.sin( y ), c2 = Math.cos( -z ), s2 = Math.sin( -z ), c3 = Math.cos( x ), s3 = Math.sin( x ), c1c2 = c1 * c2, s1s2 = s1 * s2; this.w = c1c2 * c3 - s1s2 * s3; this.x = c1c2 * s3 + s1s2 * c3; this.y = s1 * c2 * c3 + c1 * s2 * s3; this.z = c1 * s2 * c3 - s1 * c2 * s3; return this; }, setFromAxisAngle: function ( axis, angle ) { // from http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // axis have to be normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this.x = axis.x * s; this.y = axis.y * s; this.z = axis.z * s; this.w = Math.cos( halfAngle ); return this; }, setFromRotationMatrix: function ( m ) { // Adapted from: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm function copySign( a, b ) { return b < 0 ? -Math.abs( a ) : Math.abs( a ); } var absQ = Math.pow( m.determinant(), 1.0 / 3.0 ); this.w = Math.sqrt( Math.max( 0, absQ + m.elements[0] + m.elements[5] + m.elements[10] ) ) / 2; this.x = Math.sqrt( Math.max( 0, absQ + m.elements[0] - m.elements[5] - m.elements[10] ) ) / 2; this.y = Math.sqrt( Math.max( 0, absQ - m.elements[0] + m.elements[5] - m.elements[10] ) ) / 2; this.z = Math.sqrt( Math.max( 0, absQ - m.elements[0] - m.elements[5] + m.elements[10] ) ) / 2; this.x = copySign( this.x, ( m.elements[6] - m.elements[9] ) ); this.y = copySign( this.y, ( m.elements[8] - m.elements[2] ) ); this.z = copySign( this.z, ( m.elements[1] - m.elements[4] ) ); this.normalize(); return this; }, calculateW : function () { this.w = - Math.sqrt( Math.abs( 1.0 - this.x * this.x - this.y * this.y - this.z * this.z ) ); return this; }, inverse: function () { this.x *= -1; this.y *= -1; this.z *= -1; return this; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }, normalize: function () { var l = Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); if ( l === 0 ) { this.x = 0; this.y = 0; this.z = 0; this.w = 0; } else { l = 1 / l; this.x = this.x * l; this.y = this.y * l; this.z = this.z * l; this.w = this.w * l; } return this; }, multiply: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm this.x = a.x * b.w + a.y * b.z - a.z * b.y + a.w * b.x; this.y = -a.x * b.z + a.y * b.w + a.z * b.x + a.w * b.y; this.z = a.x * b.y - a.y * b.x + a.z * b.w + a.w * b.z; this.w = -a.x * b.x - a.y * b.y - a.z * b.z + a.w * b.w; return this; }, multiplySelf: function ( b ) { var qax = this.x, qay = this.y, qaz = this.z, qaw = this.w, qbx = b.x, qby = b.y, qbz = b.z, qbw = b.w; this.x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this.y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this.z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this.w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; return this; }, multiplyVector3: function ( vector, dest ) { if ( !dest ) { dest = vector; } var x = vector.x, y = vector.y, z = vector.z, qx = this.x, qy = this.y, qz = this.z, qw = this.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y, iy = qw * y + qz * x - qx * z, iz = qw * z + qx * y - qy * x, iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat dest.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; dest.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; dest.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; return dest; }, clone: function () { return new THREE.Quaternion( this.x, this.y, this.z, this.w ); } } THREE.Quaternion.slerp = function ( qa, qb, qm, t ) { // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = qa.w * qb.w + qa.x * qb.x + qa.y * qb.y + qa.z * qb.z; if (cosHalfTheta < 0) { qm.w = -qb.w; qm.x = -qb.x; qm.y = -qb.y; qm.z = -qb.z; cosHalfTheta = -cosHalfTheta; } else { qm.copy(qb); } if ( Math.abs( cosHalfTheta ) >= 1.0 ) { qm.w = qa.w; qm.x = qa.x; qm.y = qa.y; qm.z = qa.z; return qm; } var halfTheta = Math.acos( cosHalfTheta ), sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { qm.w = 0.5 * ( qa.w + qb.w ); qm.x = 0.5 * ( qa.x + qb.x ); qm.y = 0.5 * ( qa.y + qb.y ); qm.z = 0.5 * ( qa.z + qb.z ); return qm; } var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; qm.w = ( qa.w * ratioA + qm.w * ratioB ); qm.x = ( qa.x * ratioA + qm.x * ratioB ); qm.y = ( qa.y * ratioA + qm.y * ratioB ); qm.z = ( qa.z * ratioA + qm.z * ratioB ); return qm; } /** * @author mr.doob / http://mrdoob.com/ */ THREE.Vertex = function ( position ) { this.position = position || new THREE.Vector3(); }; THREE.Vertex.prototype = { constructor: THREE.Vertex, clone: function () { return new THREE.Vertex( this.position.clone() ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Face3 = function ( a, b, c, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3(); this.vertexNormals = normal instanceof Array ? normal : [ ]; this.color = color instanceof THREE.Color ? color : new THREE.Color(); this.vertexColors = color instanceof Array ? color : []; this.vertexTangents = []; this.materialIndex = materialIndex; this.centroid = new THREE.Vector3(); }; THREE.Face3.prototype = { constructor: THREE.Face3, clone: function () { var face = new THREE.Face3( this.a, this.b, this.c ); face.normal.copy( this.normal ); face.color.copy( this.color ); face.centroid.copy( this.centroid ); face.materialIndex = this.materialIndex; var i, il; for ( i = 0, il = this.vertexNormals.length; i < il; i ++ ) face.vertexNormals[ i ] = this.vertexNormals[ i ].clone(); for ( i = 0, il = this.vertexColors.length; i < il; i ++ ) face.vertexColors[ i ] = this.vertexColors[ i ].clone(); for ( i = 0, il = this.vertexTangents.length; i < il; i ++ ) face.vertexTangents[ i ] = this.vertexTangents[ i ].clone(); return face; } }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Face4 = function ( a, b, c, d, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.d = d; this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3(); this.vertexNormals = normal instanceof Array ? normal : [ ]; this.color = color instanceof THREE.Color ? color : new THREE.Color(); this.vertexColors = color instanceof Array ? color : []; this.vertexTangents = []; this.materialIndex = materialIndex; this.centroid = new THREE.Vector3(); }; THREE.Face4.prototype = { constructor: THREE.Face4, clone: function () { var face = new THREE.Face4( this.a, this.b, this.c, this.d ); face.normal.copy( this.normal ); face.color.copy( this.color ); face.centroid.copy( this.centroid ); face.materialIndex = this.materialIndex; var i, il; for ( i = 0, il = this.vertexNormals.length; i < il; i ++ ) face.vertexNormals[ i ] = this.vertexNormals[ i ].clone(); for ( i = 0, il = this.vertexColors.length; i < il; i ++ ) face.vertexColors[ i ] = this.vertexColors[ i ].clone(); for ( i = 0, il = this.vertexTangents.length; i < il; i ++ ) face.vertexTangents[ i ] = this.vertexTangents[ i ].clone(); return face; } }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.UV = function ( u, v ) { this.u = u || 0; this.v = v || 0; }; THREE.UV.prototype = { constructor: THREE.UV, set: function ( u, v ) { this.u = u; this.v = v; return this; }, copy: function ( uv ) { this.u = uv.u; this.v = uv.v; return this; }, lerpSelf: function ( uv, alpha ) { this.u += ( uv.u - this.u ) * alpha; this.v += ( uv.v - this.v ) * alpha; return this; }, clone: function () { return new THREE.UV( this.u, this.v ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.Geometry = function () { this.id = THREE.GeometryCount ++; this.vertices = []; this.colors = []; // one-to-one vertex colors, used in ParticleSystem, Line and Ribbon this.materials = []; this.faces = []; this.faceUvs = [[]]; this.faceVertexUvs = [[]]; this.morphTargets = []; this.morphColors = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.boundingBox = null; this.boundingSphere = null; this.hasTangents = false; this.dynamic = false; // unless set to true the *Arrays will be deleted once sent to a buffer. }; THREE.Geometry.prototype = { constructor : THREE.Geometry, applyMatrix: function ( matrix ) { var matrixRotation = new THREE.Matrix4(); matrixRotation.extractRotation( matrix ); for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { var vertex = this.vertices[ i ]; matrix.multiplyVector3( vertex.position ); } for ( var i = 0, il = this.faces.length; i < il; i ++ ) { var face = this.faces[ i ]; matrixRotation.multiplyVector3( face.normal ); for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { matrixRotation.multiplyVector3( face.vertexNormals[ j ] ); } matrix.multiplyVector3( face.centroid ); } }, computeCentroids: function () { var f, fl, face; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.centroid.set( 0, 0, 0 ); if ( face instanceof THREE.Face3 ) { face.centroid.addSelf( this.vertices[ face.a ].position ); face.centroid.addSelf( this.vertices[ face.b ].position ); face.centroid.addSelf( this.vertices[ face.c ].position ); face.centroid.divideScalar( 3 ); } else if ( face instanceof THREE.Face4 ) { face.centroid.addSelf( this.vertices[ face.a ].position ); face.centroid.addSelf( this.vertices[ face.b ].position ); face.centroid.addSelf( this.vertices[ face.c ].position ); face.centroid.addSelf( this.vertices[ face.d ].position ); face.centroid.divideScalar( 4 ); } } }, computeFaceNormals: function () { var n, nl, v, vl, vertex, f, fl, face, vA, vB, vC, cb = new THREE.Vector3(), ab = new THREE.Vector3(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vA = this.vertices[ face.a ]; vB = this.vertices[ face.b ]; vC = this.vertices[ face.c ]; cb.sub( vC.position, vB.position ); ab.sub( vA.position, vB.position ); cb.crossSelf( ab ); if ( !cb.isZero() ) { cb.normalize(); } face.normal.copy( cb ); } }, computeVertexNormals: function () { var v, vl, f, fl, face, vertices; // create internal buffers for reuse when calling this method repeatedly // (otherwise memory allocation / deallocation every frame is big resource hog) if ( this.__tmpVertices === undefined ) { this.__tmpVertices = new Array( this.vertices.length ); vertices = this.__tmpVertices; for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ] = new THREE.Vector3(); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( face instanceof THREE.Face3 ) { face.vertexNormals = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; } else if ( face instanceof THREE.Face4 ) { face.vertexNormals = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; } } } else { vertices = this.__tmpVertices; for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ].set( 0, 0, 0 ); } } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( face instanceof THREE.Face3 ) { vertices[ face.a ].addSelf( face.normal ); vertices[ face.b ].addSelf( face.normal ); vertices[ face.c ].addSelf( face.normal ); } else if ( face instanceof THREE.Face4 ) { vertices[ face.a ].addSelf( face.normal ); vertices[ face.b ].addSelf( face.normal ); vertices[ face.c ].addSelf( face.normal ); vertices[ face.d ].addSelf( face.normal ); } } for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ].normalize(); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( face instanceof THREE.Face3 ) { face.vertexNormals[ 0 ].copy( vertices[ face.a ] ); face.vertexNormals[ 1 ].copy( vertices[ face.b ] ); face.vertexNormals[ 2 ].copy( vertices[ face.c ] ); } else if ( face instanceof THREE.Face4 ) { face.vertexNormals[ 0 ].copy( vertices[ face.a ] ); face.vertexNormals[ 1 ].copy( vertices[ face.b ] ); face.vertexNormals[ 2 ].copy( vertices[ face.c ] ); face.vertexNormals[ 3 ].copy( vertices[ face.d ] ); } } }, computeMorphNormals: function () { var i, il, f, fl, face; // save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls) for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( ! face.__originalFaceNormal ) { face.__originalFaceNormal = face.normal.clone(); } else { face.__originalFaceNormal.copy( face.normal ); } if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = []; for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) { if ( ! face.__originalVertexNormals[ i ] ) { face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone(); } else { face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] ); } } } // use temp geometry to compute face and vertex normals for each morph var tmpGeo = new THREE.Geometry(); tmpGeo.faces = this.faces; for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) { // create on first access if ( ! this.morphNormals[ i ] ) { this.morphNormals[ i ] = {}; this.morphNormals[ i ].faceNormals = []; this.morphNormals[ i ].vertexNormals = []; var dstNormalsFace = this.morphNormals[ i ].faceNormals; var dstNormalsVertex = this.morphNormals[ i ].vertexNormals; var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; faceNormal = new THREE.Vector3(); if ( face instanceof THREE.Face3 ) { vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3() }; } else { vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3(), d: new THREE.Vector3() }; } dstNormalsFace.push( faceNormal ); dstNormalsVertex.push( vertexNormals ); } } var morphNormals = this.morphNormals[ i ]; // set vertices to morph target tmpGeo.vertices = this.morphTargets[ i ].vertices; // compute morph normals tmpGeo.computeFaceNormals(); tmpGeo.computeVertexNormals(); // store morph normals var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; faceNormal = morphNormals.faceNormals[ f ]; vertexNormals = morphNormals.vertexNormals[ f ]; faceNormal.copy( face.normal ); if ( face instanceof THREE.Face3 ) { vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] ); } else { vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] ); vertexNormals.d.copy( face.vertexNormals[ 3 ] ); } } } // restore original normals for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.normal = face.__originalFaceNormal; face.vertexNormals = face.__originalVertexNormals; } }, computeTangents: function () { // based on http://www.terathon.com/code/tangent.html // tangents go to vertices var f, fl, v, vl, i, il, vertexIndex, face, uv, vA, vB, vC, uvA, uvB, uvC, x1, x2, y1, y2, z1, z2, s1, s2, t1, t2, r, t, test, tan1 = [], tan2 = [], sdir = new THREE.Vector3(), tdir = new THREE.Vector3(), tmp = new THREE.Vector3(), tmp2 = new THREE.Vector3(), n = new THREE.Vector3(), w; for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { tan1[ v ] = new THREE.Vector3(); tan2[ v ] = new THREE.Vector3(); } function handleTriangle( context, a, b, c, ua, ub, uc ) { vA = context.vertices[ a ].position; vB = context.vertices[ b ].position; vC = context.vertices[ c ].position; uvA = uv[ ua ]; uvB = uv[ ub ]; uvC = uv[ uc ]; x1 = vB.x - vA.x; x2 = vC.x - vA.x; y1 = vB.y - vA.y; y2 = vC.y - vA.y; z1 = vB.z - vA.z; z2 = vC.z - vA.z; s1 = uvB.u - uvA.u; s2 = uvC.u - uvA.u; t1 = uvB.v - uvA.v; t2 = uvC.v - uvA.v; r = 1.0 / ( s1 * t2 - s2 * t1 ); sdir.set( ( t2 * x1 - t1 * x2 ) * r, ( t2 * y1 - t1 * y2 ) * r, ( t2 * z1 - t1 * z2 ) * r ); tdir.set( ( s1 * x2 - s2 * x1 ) * r, ( s1 * y2 - s2 * y1 ) * r, ( s1 * z2 - s2 * z1 ) * r ); tan1[ a ].addSelf( sdir ); tan1[ b ].addSelf( sdir ); tan1[ c ].addSelf( sdir ); tan2[ a ].addSelf( tdir ); tan2[ b ].addSelf( tdir ); tan2[ c ].addSelf( tdir ); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; uv = this.faceVertexUvs[ 0 ][ f ]; // use UV layer 0 for tangents if ( face instanceof THREE.Face3 ) { handleTriangle( this, face.a, face.b, face.c, 0, 1, 2 ); } else if ( face instanceof THREE.Face4 ) { handleTriangle( this, face.a, face.b, face.d, 0, 1, 3 ); handleTriangle( this, face.b, face.c, face.d, 1, 2, 3 ); } } var faceIndex = [ 'a', 'b', 'c', 'd' ]; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; for ( i = 0; i < face.vertexNormals.length; i++ ) { n.copy( face.vertexNormals[ i ] ); vertexIndex = face[ faceIndex[ i ] ]; t = tan1[ vertexIndex ]; // Gram-Schmidt orthogonalize tmp.copy( t ); tmp.subSelf( n.multiplyScalar( n.dot( t ) ) ).normalize(); // Calculate handedness tmp2.cross( face.vertexNormals[ i ], t ); test = tmp2.dot( tan2[ vertexIndex ] ); w = (test < 0.0) ? -1.0 : 1.0; face.vertexTangents[ i ] = new THREE.Vector4( tmp.x, tmp.y, tmp.z, w ); } } this.hasTangents = true; }, computeBoundingBox: function () { if ( ! this.boundingBox ) { this.boundingBox = { min: new THREE.Vector3(), max: new THREE.Vector3() }; } if ( this.vertices.length > 0 ) { var position, firstPosition = this.vertices[ 0 ].position; this.boundingBox.min.copy( firstPosition ); this.boundingBox.max.copy( firstPosition ); var min = this.boundingBox.min, max = this.boundingBox.max; for ( var v = 1, vl = this.vertices.length; v < vl; v ++ ) { position = this.vertices[ v ].position; if ( position.x < min.x ) { min.x = position.x; } else if ( position.x > max.x ) { max.x = position.x; } if ( position.y < min.y ) { min.y = position.y; } else if ( position.y > max.y ) { max.y = position.y; } if ( position.z < min.z ) { min.z = position.z; } else if ( position.z > max.z ) { max.z = position.z; } } } else { this.boundingBox.min.set( 0, 0, 0 ); this.boundingBox.max.set( 0, 0, 0 ); } }, computeBoundingSphere: function () { if ( ! this.boundingSphere ) this.boundingSphere = { radius: 0 }; var radius, maxRadius = 0; for ( var v = 0, vl = this.vertices.length; v < vl; v ++ ) { radius = this.vertices[ v ].position.length(); if ( radius > maxRadius ) maxRadius = radius; } this.boundingSphere.radius = maxRadius; }, /* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */ mergeVertices: function() { var verticesMap = {}; // Hashmap for looking up vertice by position coordinates (and making sure they are unique) var unique = [], changes = []; var v, key; var precisionPoints = 4; // number of decimal points, eg. 4 for epsilon of 0.0001 var precision = Math.pow( 10, precisionPoints ); var i,il, face; for ( i = 0, il = this.vertices.length; i < il; i ++ ) { v = this.vertices[ i ].position; key = [ Math.round( v.x * precision ), Math.round( v.y * precision ), Math.round( v.z * precision ) ].join( '_' ); if ( verticesMap[ key ] === undefined ) { verticesMap[ key ] = i; unique.push( this.vertices[ i ] ); changes[ i ] = unique.length - 1; } else { //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[ i ] = changes[ verticesMap[ key ] ]; } }; // Start to patch face indices for( i = 0, il = this.faces.length; i < il; i ++ ) { face = this.faces[ i ]; if ( face instanceof THREE.Face3 ) { face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; } else if ( face instanceof THREE.Face4 ) { face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; face.d = changes[ face.d ]; } } // Use unique set of vertices this.vertices = unique; } }; THREE.GeometryCount = 0; /** * Spline from Tween.js, slightly optimized (and trashed) * http://sole.github.com/tween.js/examples/05_spline.html * * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Spline = function ( points ) { this.points = points; var c = [], v3 = { x: 0, y: 0, z: 0 }, point, intPoint, weight, w2, w3, pa, pb, pc, pd; this.initFromArray = function( a ) { this.points = []; for ( var i = 0; i < a.length; i++ ) { this.points[ i ] = { x: a[ i ][ 0 ], y: a[ i ][ 1 ], z: a[ i ][ 2 ] }; } }; this.getPoint = function ( k ) { point = ( this.points.length - 1 ) * k; intPoint = Math.floor( point ); weight = point - intPoint; c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1; c[ 1 ] = intPoint; c[ 2 ] = intPoint > this.points.length - 2 ? this.points.length - 1 : intPoint + 1; c[ 3 ] = intPoint > this.points.length - 3 ? this.points.length - 1 : intPoint + 2; pa = this.points[ c[ 0 ] ]; pb = this.points[ c[ 1 ] ]; pc = this.points[ c[ 2 ] ]; pd = this.points[ c[ 3 ] ]; w2 = weight * weight; w3 = weight * w2; v3.x = interpolate( pa.x, pb.x, pc.x, pd.x, weight, w2, w3 ); v3.y = interpolate( pa.y, pb.y, pc.y, pd.y, weight, w2, w3 ); v3.z = interpolate( pa.z, pb.z, pc.z, pd.z, weight, w2, w3 ); return v3; }; this.getControlPointsArray = function () { var i, p, l = this.points.length, coords = []; for ( i = 0; i < l; i ++ ) { p = this.points[ i ]; coords[ i ] = [ p.x, p.y, p.z ]; } return coords; }; // approximate length by summing linear segments this.getLength = function ( nSubDivisions ) { var i, index, nSamples, position, point = 0, intPoint = 0, oldIntPoint = 0, oldPosition = new THREE.Vector3(), tmpVec = new THREE.Vector3(), chunkLengths = [], totalLength = 0; // first point has 0 length chunkLengths[ 0 ] = 0; if ( !nSubDivisions ) nSubDivisions = 100; nSamples = this.points.length * nSubDivisions; oldPosition.copy( this.points[ 0 ] ); for ( i = 1; i < nSamples; i ++ ) { index = i / nSamples; position = this.getPoint( index ); tmpVec.copy( position ); totalLength += tmpVec.distanceTo( oldPosition ); oldPosition.copy( position ); point = ( this.points.length - 1 ) * index; intPoint = Math.floor( point ); if ( intPoint != oldIntPoint ) { chunkLengths[ intPoint ] = totalLength; oldIntPoint = intPoint; } } // last point ends with total length chunkLengths[ chunkLengths.length ] = totalLength; return { chunks: chunkLengths, total: totalLength }; }; this.reparametrizeByArcLength = function ( samplingCoef ) { var i, j, index, indexCurrent, indexNext, linearDistance, realDistance, sampling, position, newpoints = [], tmpVec = new THREE.Vector3(), sl = this.getLength(); newpoints.push( tmpVec.copy( this.points[ 0 ] ).clone() ); for ( i = 1; i < this.points.length; i++ ) { //tmpVec.copy( this.points[ i - 1 ] ); //linearDistance = tmpVec.distanceTo( this.points[ i ] ); realDistance = sl.chunks[ i ] - sl.chunks[ i - 1 ]; sampling = Math.ceil( samplingCoef * realDistance / sl.total ); indexCurrent = ( i - 1 ) / ( this.points.length - 1 ); indexNext = i / ( this.points.length - 1 ); for ( j = 1; j < sampling - 1; j++ ) { index = indexCurrent + j * ( 1 / sampling ) * ( indexNext - indexCurrent ); position = this.getPoint( index ); newpoints.push( tmpVec.copy( position ).clone() ); } newpoints.push( tmpVec.copy( this.points[ i ] ).clone() ); } this.points = newpoints; }; // Catmull-Rom function interpolate( p0, p1, p2, p3, t, t2, t3 ) { var v0 = ( p2 - p0 ) * 0.5, v1 = ( p3 - p1 ) * 0.5; return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1; }; }; /** * @author mr.doob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ THREE.Camera = function () { THREE.Object3D.call( this ); this.matrixWorldInverse = new THREE.Matrix4(); this.projectionMatrix = new THREE.Matrix4(); this.projectionMatrixInverse = new THREE.Matrix4(); }; THREE.Camera.prototype = new THREE.Object3D(); THREE.Camera.prototype.constructor = THREE.Camera; THREE.Camera.prototype.lookAt = function ( vector ) { // TODO: Add hierarchy support. this.matrix.lookAt( this.position, vector, this.up ); if ( this.rotationAutoUpdate ) { this.rotation.getRotationFromMatrix( this.matrix ); } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.OrthographicCamera = function ( left, right, top, bottom, near, far ) { THREE.Camera.call( this ); this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = ( near !== undefined ) ? near : 0.1; this.far = ( far !== undefined ) ? far : 2000; this.updateProjectionMatrix(); }; THREE.OrthographicCamera.prototype = new THREE.Camera(); THREE.OrthographicCamera.prototype.constructor = THREE.OrthographicCamera; THREE.OrthographicCamera.prototype.updateProjectionMatrix = function () { this.projectionMatrix.makeOrthographic( this.left, this.right, this.top, this.bottom, this.near, this.far ); }; /** * @author mr.doob / http://mrdoob.com/ * @author greggman / http://games.greggman.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.PerspectiveCamera = function ( fov, aspect, near, far ) { THREE.Camera.call( this ); this.fov = fov !== undefined ? fov : 50; this.aspect = aspect !== undefined ? aspect : 1; this.near = near !== undefined ? near : 0.1; this.far = far !== undefined ? far : 2000; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype = new THREE.Camera(); THREE.PerspectiveCamera.prototype.constructor = THREE.PerspectiveCamera; /** * Uses Focal Length (in mm) to estimate and set FOV * 35mm (fullframe) camera is used if frame size is not specified; * Formula based on http://www.bobatkins.com/photography/technical/field_of_view.html */ THREE.PerspectiveCamera.prototype.setLens = function ( focalLength, frameHeight ) { frameHeight = frameHeight !== undefined ? frameHeight : 24; this.fov = 2 * Math.atan( frameHeight / ( focalLength * 2 ) ) * ( 180 / Math.PI ); this.updateProjectionMatrix(); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * var w = 1920; * var h = 1080; * var fullWidth = w * 3; * var fullHeight = h * 2; * * --A-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ THREE.PerspectiveCamera.prototype.setViewOffset = function ( fullWidth, fullHeight, x, y, width, height ) { this.fullWidth = fullWidth; this.fullHeight = fullHeight; this.x = x; this.y = y; this.width = width; this.height = height; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype.updateProjectionMatrix = function () { if ( this.fullWidth ) { var aspect = this.fullWidth / this.fullHeight; var top = Math.tan( this.fov * Math.PI / 360 ) * this.near; var bottom = -top; var left = aspect * bottom; var right = aspect * top; var width = Math.abs( right - left ); var height = Math.abs( top - bottom ); this.projectionMatrix.makeFrustum( left + this.x * width / this.fullWidth, left + ( this.x + this.width ) * width / this.fullWidth, top - ( this.y + this.height ) * height / this.fullHeight, top - this.y * height / this.fullHeight, this.near, this.far ); } else { this.projectionMatrix.makePerspective( this.fov, this.aspect, this.near, this.far ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Light = function ( hex ) { THREE.Object3D.call( this ); this.color = new THREE.Color( hex ); }; THREE.Light.prototype = new THREE.Object3D(); THREE.Light.prototype.constructor = THREE.Light; THREE.Light.prototype.supr = THREE.Object3D.prototype; /** * @author mr.doob / http://mrdoob.com/ */ THREE.AmbientLight = function ( hex ) { THREE.Light.call( this, hex ); }; THREE.AmbientLight.prototype = new THREE.Light(); THREE.AmbientLight.prototype.constructor = THREE.AmbientLight; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.DirectionalLight = function ( hex, intensity, distance ) { THREE.Light.call( this, hex ); this.position = new THREE.Vector3( 0, 1, 0 ); this.target = new THREE.Object3D(); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.distance = ( distance !== undefined ) ? distance : 0; this.castShadow = false; this.onlyShadow = false; // this.shadowCameraNear = 50; this.shadowCameraFar = 5000; this.shadowCameraLeft = -500; this.shadowCameraRight = 500; this.shadowCameraTop = 500; this.shadowCameraBottom = -500; this.shadowCameraVisible = false; this.shadowBias = 0; this.shadowDarkness = 0.5; this.shadowMapWidth = 512; this.shadowMapHeight = 512; // this.shadowCascade = false; this.shadowCascadeOffset = new THREE.Vector3( 0, 0, -1000 ); this.shadowCascadeCount = 2; this.shadowCascadeBias = [ 0, 0, 0 ]; this.shadowCascadeWidth = [ 512, 512, 512 ]; this.shadowCascadeHeight = [ 512, 512, 512 ]; this.shadowCascadeNearZ = [ -1.000, 0.990, 0.998 ]; this.shadowCascadeFarZ = [ 0.990, 0.998, 1.000 ]; this.shadowCascadeArray = []; // this.shadowMap = null; this.shadowMapSize = null; this.shadowCamera = null; this.shadowMatrix = null; }; THREE.DirectionalLight.prototype = new THREE.Light(); THREE.DirectionalLight.prototype.constructor = THREE.DirectionalLight; /** * @author mr.doob / http://mrdoob.com/ */ THREE.PointLight = function ( hex, intensity, distance ) { THREE.Light.call( this, hex ); this.position = new THREE.Vector3( 0, 0, 0 ); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.distance = ( distance !== undefined ) ? distance : 0; }; THREE.PointLight.prototype = new THREE.Light(); THREE.PointLight.prototype.constructor = THREE.PointLight; /** * @author alteredq / http://alteredqualia.com/ */ THREE.SpotLight = function ( hex, intensity, distance ) { THREE.Light.call( this, hex ); this.position = new THREE.Vector3( 0, 1, 0 ); this.target = new THREE.Object3D(); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.distance = ( distance !== undefined ) ? distance : 0; this.castShadow = false; this.onlyShadow = false; // this.shadowCameraNear = 50; this.shadowCameraFar = 5000; this.shadowCameraFov = 50; this.shadowCameraVisible = false; this.shadowBias = 0; this.shadowDarkness = 0.5; this.shadowMapWidth = 512; this.shadowMapHeight = 512; // this.shadowMap = null; this.shadowMapSize = null; this.shadowCamera = null; this.shadowMatrix = null; }; THREE.SpotLight.prototype = new THREE.Light(); THREE.SpotLight.prototype.constructor = THREE.SpotLight; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Material = function ( parameters ) { parameters = parameters || {}; this.id = THREE.MaterialCount ++; this.name = ''; this.opacity = parameters.opacity !== undefined ? parameters.opacity : 1; this.transparent = parameters.transparent !== undefined ? parameters.transparent : false; this.blending = parameters.blending !== undefined ? parameters.blending : THREE.NormalBlending; this.blendSrc = parameters.blendSrc !== undefined ? parameters.blendSrc : THREE.SrcAlphaFactor; this.blendDst = parameters.blendDst !== undefined ? parameters.blendDst : THREE.OneMinusSrcAlphaFactor; this.blendEquation = parameters.blendEquation !== undefined ? parameters.blendEquation : THREE.AddEquation; this.depthTest = parameters.depthTest !== undefined ? parameters.depthTest : true; this.depthWrite = parameters.depthWrite !== undefined ? parameters.depthWrite : true; this.polygonOffset = parameters.polygonOffset !== undefined ? parameters.polygonOffset : false; this.polygonOffsetFactor = parameters.polygonOffsetFactor !== undefined ? parameters.polygonOffsetFactor : 0; this.polygonOffsetUnits = parameters.polygonOffsetUnits !== undefined ? parameters.polygonOffsetUnits : 0; this.alphaTest = parameters.alphaTest !== undefined ? parameters.alphaTest : 0; this.overdraw = parameters.overdraw !== undefined ? parameters.overdraw : false; // Boolean for fixing antialiasing gaps in CanvasRenderer this.needsUpdate = true; } THREE.MaterialCount = 0; // shading THREE.NoShading = 0; THREE.FlatShading = 1; THREE.SmoothShading = 2; // colors THREE.NoColors = 0; THREE.FaceColors = 1; THREE.VertexColors = 2; // blending modes THREE.NoBlending = 0; THREE.NormalBlending = 1; THREE.AdditiveBlending = 2; THREE.SubtractiveBlending = 3; THREE.MultiplyBlending = 4; THREE.AdditiveAlphaBlending = 5; THREE.CustomBlending = 6; // custom blending equations // (numbers start from 100 not to clash with other // mappings to OpenGL constants defined in Texture.js) THREE.AddEquation = 100; THREE.SubtractEquation = 101; THREE.ReverseSubtractEquation = 102; // custom blending destination factors THREE.ZeroFactor = 200; THREE.OneFactor = 201; THREE.SrcColorFactor = 202; THREE.OneMinusSrcColorFactor = 203; THREE.SrcAlphaFactor = 204; THREE.OneMinusSrcAlphaFactor = 205; THREE.DstAlphaFactor = 206; THREE.OneMinusDstAlphaFactor = 207; // custom blending source factors //THREE.ZeroFactor = 200; //THREE.OneFactor = 201; //THREE.SrcAlphaFactor = 204; //THREE.OneMinusSrcAlphaFactor = 205; //THREE.DstAlphaFactor = 206; //THREE.OneMinusDstAlphaFactor = 207; THREE.DstColorFactor = 208; THREE.OneMinusDstColorFactor = 209; THREE.SrcAlphaSaturateFactor = 210; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * blending: THREE.NormalBlending, * depthTest: , * * linewidth: , * linecap: "round", * linejoin: "round", * * vertexColors: * * fog: * } */ THREE.LineBasicMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.linewidth = parameters.linewidth !== undefined ? parameters.linewidth : 1; this.linecap = parameters.linecap !== undefined ? parameters.linecap : 'round'; this.linejoin = parameters.linejoin !== undefined ? parameters.linejoin : 'round'; this.vertexColors = parameters.vertexColors ? parameters.vertexColors : false; this.fog = parameters.fog !== undefined ? parameters.fog : true; }; THREE.LineBasicMaterial.prototype = new THREE.Material(); THREE.LineBasicMaterial.prototype.constructor = THREE.LineBasicMaterial; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * * fog: * } */ THREE.MeshBasicMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; // color property represents emissive for MeshBasicMaterial this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.map = parameters.map !== undefined ? parameters.map : null; this.lightMap = parameters.lightMap !== undefined ? parameters.lightMap : null; this.envMap = parameters.envMap !== undefined ? parameters.envMap : null; this.combine = parameters.combine !== undefined ? parameters.combine : THREE.MultiplyOperation; this.reflectivity = parameters.reflectivity !== undefined ? parameters.reflectivity : 1; this.refractionRatio = parameters.refractionRatio !== undefined ? parameters.refractionRatio : 0.98; this.fog = parameters.fog !== undefined ? parameters.fog : true; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; this.wireframeLinecap = parameters.wireframeLinecap !== undefined ? parameters.wireframeLinecap : 'round'; this.wireframeLinejoin = parameters.wireframeLinejoin !== undefined ? parameters.wireframeLinejoin : 'round'; this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors; this.skinning = parameters.skinning !== undefined ? parameters.skinning : false; this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false; }; THREE.MeshBasicMaterial.prototype = new THREE.Material(); THREE.MeshBasicMaterial.prototype.constructor = THREE.MeshBasicMaterial; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * ambient: , * emissive: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshLambertMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; // color property represents diffuse for MeshLambertMaterial this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.ambient = parameters.ambient !== undefined ? new THREE.Color( parameters.ambient ) : new THREE.Color( 0xffffff ); this.emissive = parameters.emissive !== undefined ? new THREE.Color( parameters.emissive ) : new THREE.Color( 0x000000 ); this.wrapAround = parameters.wrapAround !== undefined ? parameters.wrapAround: false; this.wrapRGB = new THREE.Vector3( 1, 1, 1 ); this.map = parameters.map !== undefined ? parameters.map : null; this.lightMap = parameters.lightMap !== undefined ? parameters.lightMap : null; this.envMap = parameters.envMap !== undefined ? parameters.envMap : null; this.combine = parameters.combine !== undefined ? parameters.combine : THREE.MultiplyOperation; this.reflectivity = parameters.reflectivity !== undefined ? parameters.reflectivity : 1; this.refractionRatio = parameters.refractionRatio !== undefined ? parameters.refractionRatio : 0.98; this.fog = parameters.fog !== undefined ? parameters.fog : true; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; this.wireframeLinecap = parameters.wireframeLinecap !== undefined ? parameters.wireframeLinecap : 'round'; this.wireframeLinejoin = parameters.wireframeLinejoin !== undefined ? parameters.wireframeLinejoin : 'round'; this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors; this.skinning = parameters.skinning !== undefined ? parameters.skinning : false; this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false; this.morphNormals = parameters.morphNormals !== undefined ? parameters.morphNormals : false; }; THREE.MeshLambertMaterial.prototype = new THREE.Material(); THREE.MeshLambertMaterial.prototype.constructor = THREE.MeshLambertMaterial; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * ambient: , * emissive: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshPhongMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; // color property represents diffuse for MeshPhongMaterial this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.ambient = parameters.ambient !== undefined ? new THREE.Color( parameters.ambient ) : new THREE.Color( 0xffffff ); this.emissive = parameters.emissive !== undefined ? new THREE.Color( parameters.emissive ) : new THREE.Color( 0x000000 ); this.specular = parameters.specular !== undefined ? new THREE.Color( parameters.specular ) : new THREE.Color( 0x111111 ); this.shininess = parameters.shininess !== undefined ? parameters.shininess : 30; this.metal = parameters.metal !== undefined ? parameters.metal : false; this.perPixel = parameters.perPixel !== undefined ? parameters.perPixel : false; this.wrapAround = parameters.wrapAround !== undefined ? parameters.wrapAround: false; this.wrapRGB = new THREE.Vector3( 1, 1, 1 ); this.map = parameters.map !== undefined ? parameters.map : null; this.lightMap = parameters.lightMap !== undefined ? parameters.lightMap : null; this.envMap = parameters.envMap !== undefined ? parameters.envMap : null; this.combine = parameters.combine !== undefined ? parameters.combine : THREE.MultiplyOperation; this.reflectivity = parameters.reflectivity !== undefined ? parameters.reflectivity : 1; this.refractionRatio = parameters.refractionRatio !== undefined ? parameters.refractionRatio : 0.98; this.fog = parameters.fog !== undefined ? parameters.fog : true; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; this.wireframeLinecap = parameters.wireframeLinecap !== undefined ? parameters.wireframeLinecap : 'round'; this.wireframeLinejoin = parameters.wireframeLinejoin !== undefined ? parameters.wireframeLinejoin : 'round'; this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors; this.skinning = parameters.skinning !== undefined ? parameters.skinning : false; this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false; this.morphNormals = parameters.morphNormals !== undefined ? parameters.morphNormals : false; }; THREE.MeshPhongMaterial.prototype = new THREE.Material(); THREE.MeshPhongMaterial.prototype.constructor = THREE.MeshPhongMaterial; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * opacity: , * blending: THREE.NormalBlending, * depthTest: , * wireframe: , * wireframeLinewidth: * } */ THREE.MeshDepthMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; // doesn't really apply here, normals are not used this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; }; THREE.MeshDepthMaterial.prototype = new THREE.Material(); THREE.MeshDepthMaterial.prototype.constructor = THREE.MeshDepthMaterial; /** * @author mr.doob / http://mrdoob.com/ * * parameters = { * opacity: , * shading: THREE.FlatShading, * blending: THREE.NormalBlending, * depthTest: , * wireframe: , * wireframeLinewidth: * } */ THREE.MeshNormalMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.shading = parameters.shading ? parameters.shading : THREE.FlatShading; this.wireframe = parameters.wireframe ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth ? parameters.wireframeLinewidth : 1; }; THREE.MeshNormalMaterial.prototype = new THREE.Material(); THREE.MeshNormalMaterial.prototype.constructor = THREE.MeshNormalMaterial; /** * @author mr.doob / http://mrdoob.com/ */ THREE.MeshFaceMaterial = function () { }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * size: , * * blending: THREE.NormalBlending, * depthTest: , * * vertexColors: , * * fog: * } */ THREE.ParticleBasicMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.map = parameters.map !== undefined ? parameters.map : null; this.size = parameters.size !== undefined ? parameters.size : 1; this.sizeAttenuation = parameters.sizeAttenuation !== undefined ? parameters.sizeAttenuation : true; this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : false; this.fog = parameters.fog !== undefined ? parameters.fog : true; }; THREE.ParticleBasicMaterial.prototype = new THREE.Material(); THREE.ParticleBasicMaterial.prototype.constructor = THREE.ParticleBasicMaterial; /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * fragmentShader: , * vertexShader: , * * uniforms: { "parameter1": { type: "f", value: 1.0 }, "parameter2": { type: "i" value2: 2 } }, * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * * wireframe: , * wireframeLinewidth: , * * lights: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.ShaderMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.fragmentShader = parameters.fragmentShader !== undefined ? parameters.fragmentShader : "void main() {}"; this.vertexShader = parameters.vertexShader !== undefined ? parameters.vertexShader : "void main() {}"; this.uniforms = parameters.uniforms !== undefined ? parameters.uniforms : {}; this.attributes = parameters.attributes; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; this.fog = parameters.fog !== undefined ? parameters.fog : false; // set to use scene fog this.lights = parameters.lights !== undefined ? parameters.lights : false; // set to use scene lights this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors; // set to use "color" attribute stream this.skinning = parameters.skinning !== undefined ? parameters.skinning : false; // set to use skinning attribute streams this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false; // set to use morph targets this.morphNormals = parameters.morphNormals !== undefined ? parameters.morphNormals : false; // set to use morph normals }; THREE.ShaderMaterial.prototype = new THREE.Material(); THREE.ShaderMaterial.prototype.constructor = THREE.ShaderMaterial; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ THREE.Texture = function ( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type ) { this.id = THREE.TextureCount ++; this.image = image; this.mapping = mapping !== undefined ? mapping : new THREE.UVMapping(); this.wrapS = wrapS !== undefined ? wrapS : THREE.ClampToEdgeWrapping; this.wrapT = wrapT !== undefined ? wrapT : THREE.ClampToEdgeWrapping; this.magFilter = magFilter !== undefined ? magFilter : THREE.LinearFilter; this.minFilter = minFilter !== undefined ? minFilter : THREE.LinearMipMapLinearFilter; this.format = format !== undefined ? format : THREE.RGBAFormat; this.type = type !== undefined ? type : THREE.UnsignedByteType; this.offset = new THREE.Vector2( 0, 0 ); this.repeat = new THREE.Vector2( 1, 1 ); this.generateMipmaps = true; this.premultiplyAlpha = false; this.needsUpdate = false; this.onUpdate = null; }; THREE.Texture.prototype = { constructor: THREE.Texture, clone: function () { var clonedTexture = new THREE.Texture( this.image, this.mapping, this.wrapS, this.wrapT, this.magFilter, this.minFilter, this.format, this.type ); clonedTexture.offset.copy( this.offset ); clonedTexture.repeat.copy( this.repeat ); return clonedTexture; } }; THREE.TextureCount = 0; THREE.MultiplyOperation = 0; THREE.MixOperation = 1; // Mapping modes THREE.UVMapping = function () {}; THREE.CubeReflectionMapping = function () {}; THREE.CubeRefractionMapping = function () {}; THREE.SphericalReflectionMapping = function () {}; THREE.SphericalRefractionMapping = function () {}; // Wrapping modes THREE.RepeatWrapping = 0; THREE.ClampToEdgeWrapping = 1; THREE.MirroredRepeatWrapping = 2; // Filters THREE.NearestFilter = 3; THREE.NearestMipMapNearestFilter = 4; THREE.NearestMipMapLinearFilter = 5; THREE.LinearFilter = 6; THREE.LinearMipMapNearestFilter = 7; THREE.LinearMipMapLinearFilter = 8; // Types THREE.ByteType = 9; THREE.UnsignedByteType = 10; THREE.ShortType = 11; THREE.UnsignedShortType = 12; THREE.IntType = 13; THREE.UnsignedIntType = 14; THREE.FloatType = 15; // Formats THREE.AlphaFormat = 16; THREE.RGBFormat = 17; THREE.RGBAFormat = 18; THREE.LuminanceFormat = 19; THREE.LuminanceAlphaFormat = 20; /** * @author alteredq / http://alteredqualia.com/ */ THREE.DataTexture = function ( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter ) { THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type ); this.image = { data: data, width: width, height: height }; }; THREE.DataTexture.prototype = new THREE.Texture(); THREE.DataTexture.prototype.constructor = THREE.DataTexture; THREE.DataTexture.prototype.clone = function () { var clonedTexture = new THREE.DataTexture( this.image.data, this.image.width, this.image.height, this.format, this.type, this.mapping, this.wrapS, this.wrapT, this.magFilter, this.minFilter ); clonedTexture.offset.copy( this.offset ); clonedTexture.repeat.copy( this.repeat ); return clonedTexture; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.Particle = function ( material ) { THREE.Object3D.call( this ); this.material = material; }; THREE.Particle.prototype = new THREE.Object3D(); THREE.Particle.prototype.constructor = THREE.Particle; /** * @author alteredq / http://alteredqualia.com/ */ THREE.ParticleSystem = function ( geometry, material ) { THREE.Object3D.call( this ); this.geometry = geometry; this.material = ( material !== undefined ) ? material : new THREE.ParticleBasicMaterial( { color: Math.random() * 0xffffff } ); this.sortParticles = false; if ( this.geometry ) { // calc bound radius if( !this.geometry.boundingSphere ) { this.geometry.computeBoundingSphere(); } this.boundRadius = geometry.boundingSphere.radius; } this.frustumCulled = false; }; THREE.ParticleSystem.prototype = new THREE.Object3D(); THREE.ParticleSystem.prototype.constructor = THREE.ParticleSystem; /** * @author mr.doob / http://mrdoob.com/ */ THREE.Line = function ( geometry, material, type ) { THREE.Object3D.call( this ); this.geometry = geometry; this.material = ( material !== undefined ) ? material : new THREE.LineBasicMaterial( { color: Math.random() * 0xffffff } ); this.type = ( type !== undefined ) ? type : THREE.LineStrip; if ( this.geometry ) { if ( ! this.geometry.boundingSphere ) { this.geometry.computeBoundingSphere(); } } }; THREE.LineStrip = 0; THREE.LinePieces = 1; THREE.Line.prototype = new THREE.Object3D(); THREE.Line.prototype.constructor = THREE.Line; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ */ THREE.Mesh = function ( geometry, material ) { THREE.Object3D.call( this ); this.geometry = geometry; this.material = ( material !== undefined ) ? material : new THREE.MeshBasicMaterial( { color: Math.random() * 0xffffff, wireframe: true } ); if ( this.geometry ) { // calc bound radius if( ! this.geometry.boundingSphere ) { this.geometry.computeBoundingSphere(); } this.boundRadius = geometry.boundingSphere.radius; // setup morph targets if( this.geometry.morphTargets.length ) { this.morphTargetBase = -1; this.morphTargetForcedOrder = []; this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for( var m = 0; m < this.geometry.morphTargets.length; m ++ ) { this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ this.geometry.morphTargets[ m ].name ] = m; } } } } THREE.Mesh.prototype = new THREE.Object3D(); THREE.Mesh.prototype.constructor = THREE.Mesh; THREE.Mesh.prototype.supr = THREE.Object3D.prototype; /* * Get Morph Target Index by Name */ THREE.Mesh.prototype.getMorphTargetIndexByName = function( name ) { if ( this.morphTargetDictionary[ name ] !== undefined ) { return this.morphTargetDictionary[ name ]; } console.log( "THREE.Mesh.getMorphTargetIndexByName: morph target " + name + " does not exist. Returning 0." ); return 0; } /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.Bone = function( belongsToSkin ) { THREE.Object3D.call( this ); this.skin = belongsToSkin; this.skinMatrix = new THREE.Matrix4(); }; THREE.Bone.prototype = new THREE.Object3D(); THREE.Bone.prototype.constructor = THREE.Bone; THREE.Bone.prototype.supr = THREE.Object3D.prototype; THREE.Bone.prototype.update = function( parentSkinMatrix, forceUpdate ) { // update local if ( this.matrixAutoUpdate ) { forceUpdate |= this.updateMatrix(); } // update skin matrix if ( forceUpdate || this.matrixWorldNeedsUpdate ) { if( parentSkinMatrix ) { this.skinMatrix.multiply( parentSkinMatrix, this.matrix ); } else { this.skinMatrix.copy( this.matrix ); } this.matrixWorldNeedsUpdate = false; forceUpdate = true; } // update children var child, i, l = this.children.length; for ( i = 0; i < l; i ++ ) { this.children[ i ].update( this.skinMatrix, forceUpdate ); } }; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.SkinnedMesh = function ( geometry, material ) { THREE.Mesh.call( this, geometry, material ); // init bones this.identityMatrix = new THREE.Matrix4(); this.bones = []; this.boneMatrices = []; var b, bone, gbone, p, q, s; if ( this.geometry.bones !== undefined ) { for ( b = 0; b < this.geometry.bones.length; b ++ ) { gbone = this.geometry.bones[ b ]; p = gbone.pos; q = gbone.rotq; s = gbone.scl; bone = this.addBone(); bone.name = gbone.name; bone.position.set( p[0], p[1], p[2] ); bone.quaternion.set( q[0], q[1], q[2], q[3] ); bone.useQuaternion = true; if ( s !== undefined ) { bone.scale.set( s[0], s[1], s[2] ); } else { bone.scale.set( 1, 1, 1 ); } } for ( b = 0; b < this.bones.length; b ++ ) { gbone = this.geometry.bones[ b ]; bone = this.bones[ b ]; if ( gbone.parent === -1 ) { this.add( bone ); } else { this.bones[ gbone.parent ].add( bone ); } } this.boneMatrices = new Float32Array( 16 * this.bones.length ); this.pose(); } }; THREE.SkinnedMesh.prototype = new THREE.Mesh(); THREE.SkinnedMesh.prototype.constructor = THREE.SkinnedMesh; THREE.SkinnedMesh.prototype.addBone = function( bone ) { if ( bone === undefined ) { bone = new THREE.Bone( this ); } this.bones.push( bone ); return bone; }; THREE.SkinnedMesh.prototype.updateMatrixWorld = function ( force ) { this.matrixAutoUpdate && this.updateMatrix(); // update matrixWorld if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent ) { this.matrixWorld.multiply( this.parent.matrixWorld, this.matrix ); } else { this.matrixWorld.copy( this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { var child = this.children[ i ]; if ( child instanceof THREE.Bone ) { child.update( this.identityMatrix, false ); } else { child.updateMatrixWorld( true ); } } // flatten bone matrices to array var b, bl = this.bones.length, ba = this.bones, bm = this.boneMatrices; for ( b = 0; b < bl; b ++ ) { ba[ b ].skinMatrix.flattenToArrayOffset( bm, b * 16 ); } }; /* * Pose */ THREE.SkinnedMesh.prototype.pose = function() { this.updateMatrixWorld( true ); var bim, bone, boneInverses = []; for ( var b = 0; b < this.bones.length; b ++ ) { bone = this.bones[ b ]; var inverseMatrix = new THREE.Matrix4(); inverseMatrix.getInverse( bone.skinMatrix ); boneInverses.push( inverseMatrix ); bone.skinMatrix.flattenToArrayOffset( this.boneMatrices, b * 16 ); } // project vertices to local if ( this.geometry.skinVerticesA === undefined ) { this.geometry.skinVerticesA = []; this.geometry.skinVerticesB = []; var orgVertex, vertex; for ( var i = 0; i < this.geometry.skinIndices.length; i ++ ) { orgVertex = this.geometry.vertices[ i ].position; var indexA = this.geometry.skinIndices[ i ].x; var indexB = this.geometry.skinIndices[ i ].y; vertex = new THREE.Vector3( orgVertex.x, orgVertex.y, orgVertex.z ); this.geometry.skinVerticesA.push( boneInverses[ indexA ].multiplyVector3( vertex ) ); vertex = new THREE.Vector3( orgVertex.x, orgVertex.y, orgVertex.z ); this.geometry.skinVerticesB.push( boneInverses[ indexB ].multiplyVector3( vertex ) ); // todo: add more influences // normalize weights if ( this.geometry.skinWeights[ i ].x + this.geometry.skinWeights[ i ].y !== 1 ) { var len = ( 1.0 - ( this.geometry.skinWeights[ i ].x + this.geometry.skinWeights[ i ].y ) ) * 0.5; this.geometry.skinWeights[ i ].x += len; this.geometry.skinWeights[ i ].y += len; } } } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.Ribbon = function ( geometry, material ) { THREE.Object3D.call( this ); this.geometry = geometry; this.material = material; }; THREE.Ribbon.prototype = new THREE.Object3D(); THREE.Ribbon.prototype.constructor = THREE.Ribbon; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author mr.doob / http://mrdoob.com/ */ THREE.LOD = function () { THREE.Object3D.call( this ); this.LODs = []; }; THREE.LOD.prototype = new THREE.Object3D(); THREE.LOD.prototype.constructor = THREE.LOD; THREE.LOD.prototype.supr = THREE.Object3D.prototype; THREE.LOD.prototype.addLevel = function ( object3D, visibleAtDistance ) { if ( visibleAtDistance === undefined ) { visibleAtDistance = 0; } visibleAtDistance = Math.abs( visibleAtDistance ); for ( var l = 0; l < this.LODs.length; l ++ ) { if ( visibleAtDistance < this.LODs[ l ].visibleAtDistance ) { break; } } this.LODs.splice( l, 0, { visibleAtDistance: visibleAtDistance, object3D: object3D } ); this.add( object3D ); }; THREE.LOD.prototype.update = function ( camera ) { if ( this.LODs.length > 1 ) { camera.matrixWorldInverse.getInverse( camera.matrixWorld ); var inverse = camera.matrixWorldInverse; var distance = -( inverse.elements[2] * this.matrixWorld.elements[12] + inverse.elements[6] * this.matrixWorld.elements[13] + inverse.elements[10] * this.matrixWorld.elements[14] + inverse.elements[14] ); this.LODs[ 0 ].object3D.visible = true; for ( var l = 1; l < this.LODs.length; l ++ ) { if( distance >= this.LODs[ l ].visibleAtDistance ) { this.LODs[ l - 1 ].object3D.visible = false; this.LODs[ l ].object3D.visible = true; } else { break; } } for( ; l < this.LODs.length; l ++ ) { this.LODs[ l ].object3D.visible = false; } } }; /** * @author mikael emtinger / http://gomo.se/ */ THREE.Sprite = function ( parameters ) { THREE.Object3D.call( this ); this.color = ( parameters.color !== undefined ) ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.map = ( parameters.map !== undefined ) ? parameters.map : new THREE.Texture(); this.blending = ( parameters.blending !== undefined ) ? parameters.blending : THREE.NormalBlending; this.blendSrc = parameters.blendSrc !== undefined ? parameters.blendSrc : THREE.SrcAlphaFactor; this.blendDst = parameters.blendDst !== undefined ? parameters.blendDst : THREE.OneMinusSrcAlphaFactor; this.blendEquation = parameters.blendEquation !== undefined ? parameters.blendEquation : THREE.AddEquation; this.useScreenCoordinates = ( parameters.useScreenCoordinates !== undefined ) ? parameters.useScreenCoordinates : true; this.mergeWith3D = ( parameters.mergeWith3D !== undefined ) ? parameters.mergeWith3D : !this.useScreenCoordinates; this.affectedByDistance = ( parameters.affectedByDistance !== undefined ) ? parameters.affectedByDistance : !this.useScreenCoordinates; this.scaleByViewport = ( parameters.scaleByViewport !== undefined ) ? parameters.scaleByViewport : !this.affectedByDistance; this.alignment = ( parameters.alignment instanceof THREE.Vector2 ) ? parameters.alignment : THREE.SpriteAlignment.center; this.rotation3d = this.rotation; this.rotation = 0; this.opacity = 1; this.uvOffset = new THREE.Vector2( 0, 0 ); this.uvScale = new THREE.Vector2( 1, 1 ); }; THREE.Sprite.prototype = new THREE.Object3D(); THREE.Sprite.prototype.constructor = THREE.Sprite; /* * Custom update matrix */ THREE.Sprite.prototype.updateMatrix = function () { this.matrix.setPosition( this.position ); this.rotation3d.set( 0, 0, this.rotation ); this.matrix.setRotationFromEuler( this.rotation3d ); if ( this.scale.x !== 1 || this.scale.y !== 1 ) { this.matrix.scale( this.scale ); this.boundRadiusScale = Math.max( this.scale.x, this.scale.y ); } this.matrixWorldNeedsUpdate = true; }; /* * Alignment */ THREE.SpriteAlignment = {}; THREE.SpriteAlignment.topLeft = new THREE.Vector2( 1, -1 ); THREE.SpriteAlignment.topCenter = new THREE.Vector2( 0, -1 ); THREE.SpriteAlignment.topRight = new THREE.Vector2( -1, -1 ); THREE.SpriteAlignment.centerLeft = new THREE.Vector2( 1, 0 ); THREE.SpriteAlignment.center = new THREE.Vector2( 0, 0 ); THREE.SpriteAlignment.centerRight = new THREE.Vector2( -1, 0 ); THREE.SpriteAlignment.bottomLeft = new THREE.Vector2( 1, 1 ); THREE.SpriteAlignment.bottomCenter = new THREE.Vector2( 0, 1 ); THREE.SpriteAlignment.bottomRight = new THREE.Vector2( -1, 1 ); /** * @author mr.doob / http://mrdoob.com/ */ THREE.Scene = function () { THREE.Object3D.call( this ); this.fog = null; this.overrideMaterial = null; this.matrixAutoUpdate = false; this.__objects = []; this.__lights = []; this.__objectsAdded = []; this.__objectsRemoved = []; }; THREE.Scene.prototype = new THREE.Object3D(); THREE.Scene.prototype.constructor = THREE.Scene; THREE.Scene.prototype.__addObject = function ( object ) { if ( object instanceof THREE.Light ) { if ( this.__lights.indexOf( object ) === - 1 ) { this.__lights.push( object ); } } else if ( !( object instanceof THREE.Camera || object instanceof THREE.Bone ) ) { if ( this.__objects.indexOf( object ) === - 1 ) { this.__objects.push( object ); this.__objectsAdded.push( object ); // check if previously removed var i = this.__objectsRemoved.indexOf( object ); if ( i !== -1 ) { this.__objectsRemoved.splice( i, 1 ); } } } for ( var c = 0; c < object.children.length; c ++ ) { this.__addObject( object.children[ c ] ); } }; THREE.Scene.prototype.__removeObject = function ( object ) { if ( object instanceof THREE.Light ) { var i = this.__lights.indexOf( object ); if ( i !== -1 ) { this.__lights.splice( i, 1 ); } } else if ( !( object instanceof THREE.Camera ) ) { var i = this.__objects.indexOf( object ); if( i !== -1 ) { this.__objects.splice( i, 1 ); this.__objectsRemoved.push( object ); // check if previously added var ai = this.__objectsAdded.indexOf( object ); if ( ai !== -1 ) { this.__objectsAdded.splice( ai, 1 ); } } } for ( var c = 0; c < object.children.length; c ++ ) { this.__removeObject( object.children[ c ] ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Fog = function ( hex, near, far ) { this.color = new THREE.Color( hex ); this.near = ( near !== undefined ) ? near : 1; this.far = ( far !== undefined ) ? far : 1000; }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.FogExp2 = function ( hex, density ) { this.color = new THREE.Color( hex ); this.density = ( density !== undefined ) ? density : 0.00025; }; /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ THREE.ShaderChunk = { // FOG fog_pars_fragment: [ "#ifdef USE_FOG", "uniform vec3 fogColor;", "#ifdef FOG_EXP2", "uniform float fogDensity;", "#else", "uniform float fogNear;", "uniform float fogFar;", "#endif", "#endif" ].join("\n"), fog_fragment: [ "#ifdef USE_FOG", "float depth = gl_FragCoord.z / gl_FragCoord.w;", "#ifdef FOG_EXP2", "const float LOG2 = 1.442695;", "float fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );", "fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );", "#else", "float fogFactor = smoothstep( fogNear, fogFar, depth );", "#endif", "gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );", "#endif" ].join("\n"), // ENVIRONMENT MAP envmap_pars_fragment: [ "#ifdef USE_ENVMAP", "varying vec3 vReflect;", "uniform float reflectivity;", "uniform samplerCube envMap;", "uniform float flipEnvMap;", "uniform int combine;", "#endif" ].join("\n"), envmap_fragment: [ "#ifdef USE_ENVMAP", "#ifdef DOUBLE_SIDED", "float flipNormal = ( -1.0 + 2.0 * float( gl_FrontFacing ) );", "vec4 cubeColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * vReflect.x, vReflect.yz ) );", "#else", "vec4 cubeColor = textureCube( envMap, vec3( flipEnvMap * vReflect.x, vReflect.yz ) );", "#endif", "#ifdef GAMMA_INPUT", "cubeColor.xyz *= cubeColor.xyz;", "#endif", "if ( combine == 1 ) {", "gl_FragColor.xyz = mix( gl_FragColor.xyz, cubeColor.xyz, reflectivity );", "} else {", "gl_FragColor.xyz = gl_FragColor.xyz * cubeColor.xyz;", "}", "#endif" ].join("\n"), envmap_pars_vertex: [ "#ifdef USE_ENVMAP", "varying vec3 vReflect;", "uniform float refractionRatio;", "uniform bool useRefract;", "#endif" ].join("\n"), envmap_vertex : [ "#ifdef USE_ENVMAP", "vec4 mPosition = objectMatrix * vec4( position, 1.0 );", "vec3 nWorld = mat3( objectMatrix[ 0 ].xyz, objectMatrix[ 1 ].xyz, objectMatrix[ 2 ].xyz ) * normal;", "if ( useRefract ) {", "vReflect = refract( normalize( mPosition.xyz - cameraPosition ), normalize( nWorld.xyz ), refractionRatio );", "} else {", "vReflect = reflect( normalize( mPosition.xyz - cameraPosition ), normalize( nWorld.xyz ) );", "}", "#endif" ].join("\n"), // COLOR MAP (particles) map_particle_pars_fragment: [ "#ifdef USE_MAP", "uniform sampler2D map;", "#endif" ].join("\n"), map_particle_fragment: [ "#ifdef USE_MAP", "gl_FragColor = gl_FragColor * texture2D( map, gl_PointCoord );", "#endif" ].join("\n"), // COLOR MAP (triangles) map_pars_vertex: [ "#ifdef USE_MAP", "varying vec2 vUv;", "uniform vec4 offsetRepeat;", "#endif" ].join("\n"), map_pars_fragment: [ "#ifdef USE_MAP", "varying vec2 vUv;", "uniform sampler2D map;", "#endif" ].join("\n"), map_vertex: [ "#ifdef USE_MAP", "vUv = uv * offsetRepeat.zw + offsetRepeat.xy;", "#endif" ].join("\n"), map_fragment: [ "#ifdef USE_MAP", "#ifdef GAMMA_INPUT", "vec4 texelColor = texture2D( map, vUv );", "texelColor.xyz *= texelColor.xyz;", "gl_FragColor = gl_FragColor * texelColor;", "#else", "gl_FragColor = gl_FragColor * texture2D( map, vUv );", "#endif", "#endif" ].join("\n"), // LIGHT MAP lightmap_pars_fragment: [ "#ifdef USE_LIGHTMAP", "varying vec2 vUv2;", "uniform sampler2D lightMap;", "#endif" ].join("\n"), lightmap_pars_vertex: [ "#ifdef USE_LIGHTMAP", "varying vec2 vUv2;", "#endif" ].join("\n"), lightmap_fragment: [ "#ifdef USE_LIGHTMAP", "gl_FragColor = gl_FragColor * texture2D( lightMap, vUv2 );", "#endif" ].join("\n"), lightmap_vertex: [ "#ifdef USE_LIGHTMAP", "vUv2 = uv2;", "#endif" ].join("\n"), // LIGHTS LAMBERT lights_lambert_pars_vertex: [ "uniform vec3 ambient;", "uniform vec3 diffuse;", "uniform vec3 emissive;", "uniform vec3 ambientLightColor;", "#if MAX_DIR_LIGHTS > 0", "uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];", "uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];", "#endif", "#if MAX_POINT_LIGHTS > 0", "uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];", "uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];", "uniform float pointLightDistance[ MAX_POINT_LIGHTS ];", "#endif", "#ifdef WRAP_AROUND", "uniform vec3 wrapRGB;", "#endif", ].join("\n"), lights_lambert_vertex: [ "vLightFront = vec3( 0.0 );", "#ifdef DOUBLE_SIDED", "vLightBack = vec3( 0.0 );", "#endif", "transformedNormal = normalize( transformedNormal );", "#if MAX_DIR_LIGHTS > 0", "for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {", "vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );", "vec3 dirVector = normalize( lDirection.xyz );", "float dotProduct = dot( transformedNormal, dirVector );", "vec3 directionalLightWeighting = vec3( max( dotProduct, 0.0 ) );", "#ifdef DOUBLE_SIDED", "vec3 directionalLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );", "#ifdef WRAP_AROUND", "vec3 directionalLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );", "#endif", "#endif", "#ifdef WRAP_AROUND", "vec3 directionalLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );", "directionalLightWeighting = mix( directionalLightWeighting, directionalLightWeightingHalf, wrapRGB );", "#ifdef DOUBLE_SIDED", "directionalLightWeightingBack = mix( directionalLightWeightingBack, directionalLightWeightingHalfBack, wrapRGB );", "#endif", "#endif", "vLightFront += directionalLightColor[ i ] * directionalLightWeighting;", "#ifdef DOUBLE_SIDED", "vLightBack += directionalLightColor[ i ] * directionalLightWeightingBack;", "#endif", "}", "#endif", "#if MAX_POINT_LIGHTS > 0", "for( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {", "vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );", "vec3 lVector = lPosition.xyz - mvPosition.xyz;", "float lDistance = 1.0;", "if ( pointLightDistance[ i ] > 0.0 )", "lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );", "lVector = normalize( lVector );", "float dotProduct = dot( transformedNormal, lVector );", "vec3 pointLightWeighting = vec3( max( dotProduct, 0.0 ) );", "#ifdef DOUBLE_SIDED", "vec3 pointLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );", "#ifdef WRAP_AROUND", "vec3 pointLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );", "#endif", "#endif", "#ifdef WRAP_AROUND", "vec3 pointLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );", "pointLightWeighting = mix( pointLightWeighting, pointLightWeightingHalf, wrapRGB );", "#ifdef DOUBLE_SIDED", "pointLightWeightingBack = mix( pointLightWeightingBack, pointLightWeightingHalfBack, wrapRGB );", "#endif", "#endif", "vLightFront += pointLightColor[ i ] * pointLightWeighting * lDistance;", "#ifdef DOUBLE_SIDED", "vLightBack += pointLightColor[ i ] * pointLightWeightingBack * lDistance;", "#endif", "}", "#endif", "vLightFront = vLightFront * diffuse + ambient * ambientLightColor + emissive;", "#ifdef DOUBLE_SIDED", "vLightBack = vLightBack * diffuse + ambient * ambientLightColor + emissive;", "#endif", ].join("\n"), // LIGHTS PHONG lights_phong_pars_vertex: [ "#if MAX_POINT_LIGHTS > 0", "#ifndef PHONG_PER_PIXEL", "uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];", "uniform float pointLightDistance[ MAX_POINT_LIGHTS ];", "varying vec4 vPointLight[ MAX_POINT_LIGHTS ];", "#endif", "#endif" ].join("\n"), lights_phong_vertex: [ "#if MAX_POINT_LIGHTS > 0", "#ifndef PHONG_PER_PIXEL", "for( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {", "vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );", "vec3 lVector = lPosition.xyz - mvPosition.xyz;", "float lDistance = 1.0;", "if ( pointLightDistance[ i ] > 0.0 )", "lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );", "vPointLight[ i ] = vec4( lVector, lDistance );", "}", "#endif", "#endif" ].join("\n"), lights_phong_pars_fragment: [ "uniform vec3 ambientLightColor;", "#if MAX_DIR_LIGHTS > 0", "uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];", "uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];", "#endif", "#if MAX_POINT_LIGHTS > 0", "uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];", "#ifdef PHONG_PER_PIXEL", "uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];", "uniform float pointLightDistance[ MAX_POINT_LIGHTS ];", "#else", "varying vec4 vPointLight[ MAX_POINT_LIGHTS ];", "#endif", "#endif", "#ifdef WRAP_AROUND", "uniform vec3 wrapRGB;", "#endif", "varying vec3 vViewPosition;", "varying vec3 vNormal;" ].join("\n"), lights_phong_fragment: [ "vec3 normal = normalize( vNormal );", "vec3 viewPosition = normalize( vViewPosition );", "#ifdef DOUBLE_SIDED", "normal = normal * ( -1.0 + 2.0 * float( gl_FrontFacing ) );", "#endif", "#if MAX_POINT_LIGHTS > 0", "vec3 pointDiffuse = vec3( 0.0 );", "vec3 pointSpecular = vec3( 0.0 );", "for ( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {", "#ifdef PHONG_PER_PIXEL", "vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );", "vec3 lVector = lPosition.xyz + vViewPosition.xyz;", "float lDistance = 1.0;", "if ( pointLightDistance[ i ] > 0.0 )", "lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );", "lVector = normalize( lVector );", "#else", "vec3 lVector = normalize( vPointLight[ i ].xyz );", "float lDistance = vPointLight[ i ].w;", "#endif", // diffuse "float dotProduct = dot( normal, lVector );", "#ifdef WRAP_AROUND", "float pointDiffuseWeightFull = max( dotProduct, 0.0 );", "float pointDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );", "vec3 pointDiffuseWeight = mix( vec3 ( pointDiffuseWeightFull ), vec3( pointDiffuseWeightHalf ), wrapRGB );", "#else", "float pointDiffuseWeight = max( dotProduct, 0.0 );", "#endif", "pointDiffuse += diffuse * pointLightColor[ i ] * pointDiffuseWeight * lDistance;", // specular "vec3 pointHalfVector = normalize( lVector + viewPosition );", "float pointDotNormalHalf = max( dot( normal, pointHalfVector ), 0.0 );", "float pointSpecularWeight = max( pow( pointDotNormalHalf, shininess ), 0.0 );", "#ifdef PHYSICALLY_BASED_SHADING", // 2.0 => 2.0001 is hack to work around ANGLE bug "float specularNormalization = ( shininess + 2.0001 ) / 8.0;", "vec3 schlick = specular + vec3( 1.0 - specular ) * pow( 1.0 - dot( lVector, pointHalfVector ), 5.0 );", "pointSpecular += schlick * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * lDistance * specularNormalization;", "#else", "pointSpecular += specular * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * lDistance;", "#endif", "}", "#endif", "#if MAX_DIR_LIGHTS > 0", "vec3 dirDiffuse = vec3( 0.0 );", "vec3 dirSpecular = vec3( 0.0 );" , "for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {", "vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );", "vec3 dirVector = normalize( lDirection.xyz );", // diffuse "float dotProduct = dot( normal, dirVector );", "#ifdef WRAP_AROUND", "float dirDiffuseWeightFull = max( dotProduct, 0.0 );", "float dirDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );", "vec3 dirDiffuseWeight = mix( vec3( dirDiffuseWeightFull ), vec3( dirDiffuseWeightHalf ), wrapRGB );", "#else", "float dirDiffuseWeight = max( dotProduct, 0.0 );", "#endif", "dirDiffuse += diffuse * directionalLightColor[ i ] * dirDiffuseWeight;", // specular "vec3 dirHalfVector = normalize( dirVector + viewPosition );", "float dirDotNormalHalf = max( dot( normal, dirHalfVector ), 0.0 );", "float dirSpecularWeight = max( pow( dirDotNormalHalf, shininess ), 0.0 );", "#ifdef PHYSICALLY_BASED_SHADING", /* // fresnel term from skin shader "const float F0 = 0.128;", "float base = 1.0 - dot( viewPosition, dirHalfVector );", "float exponential = pow( base, 5.0 );", "float fresnel = exponential + F0 * ( 1.0 - exponential );", */ /* // fresnel term from fresnel shader "const float mFresnelBias = 0.08;", "const float mFresnelScale = 0.3;", "const float mFresnelPower = 5.0;", "float fresnel = mFresnelBias + mFresnelScale * pow( 1.0 + dot( normalize( -viewPosition ), normal ), mFresnelPower );", */ // 2.0 => 2.0001 is hack to work around ANGLE bug "float specularNormalization = ( shininess + 2.0001 ) / 8.0;", //"dirSpecular += specular * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization * fresnel;", "vec3 schlick = specular + vec3( 1.0 - specular ) * pow( 1.0 - dot( dirVector, dirHalfVector ), 5.0 );", "dirSpecular += schlick * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization;", "#else", "dirSpecular += specular * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight;", "#endif", "}", "#endif", "vec3 totalDiffuse = vec3( 0.0 );", "vec3 totalSpecular = vec3( 0.0 );", "#if MAX_DIR_LIGHTS > 0", "totalDiffuse += dirDiffuse;", "totalSpecular += dirSpecular;", "#endif", "#if MAX_POINT_LIGHTS > 0", "totalDiffuse += pointDiffuse;", "totalSpecular += pointSpecular;", "#endif", "#ifdef METAL", "gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient + totalSpecular );", "#else", "gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient ) + totalSpecular;", "#endif" ].join("\n"), // VERTEX COLORS color_pars_fragment: [ "#ifdef USE_COLOR", "varying vec3 vColor;", "#endif" ].join("\n"), color_fragment: [ "#ifdef USE_COLOR", "gl_FragColor = gl_FragColor * vec4( vColor, opacity );", "#endif" ].join("\n"), color_pars_vertex: [ "#ifdef USE_COLOR", "varying vec3 vColor;", "#endif" ].join("\n"), color_vertex: [ "#ifdef USE_COLOR", "#ifdef GAMMA_INPUT", "vColor = color * color;", "#else", "vColor = color;", "#endif", "#endif" ].join("\n"), // SKINNING skinning_pars_vertex: [ "#ifdef USE_SKINNING", "uniform mat4 boneGlobalMatrices[ MAX_BONES ];", "#endif" ].join("\n"), skinning_vertex: [ "#ifdef USE_SKINNING", "gl_Position = ( boneGlobalMatrices[ int( skinIndex.x ) ] * skinVertexA ) * skinWeight.x;", "gl_Position += ( boneGlobalMatrices[ int( skinIndex.y ) ] * skinVertexB ) * skinWeight.y;", "gl_Position = projectionMatrix * modelViewMatrix * gl_Position;", "#endif" ].join("\n"), // MORPHING morphtarget_pars_vertex: [ "#ifdef USE_MORPHTARGETS", "#ifndef USE_MORPHNORMALS", "uniform float morphTargetInfluences[ 8 ];", "#else", "uniform float morphTargetInfluences[ 4 ];", "#endif", "#endif" ].join("\n"), morphtarget_vertex: [ "#ifdef USE_MORPHTARGETS", "vec3 morphed = vec3( 0.0 );", "morphed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];", "morphed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];", "morphed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];", "morphed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];", "#ifndef USE_MORPHNORMALS", "morphed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];", "morphed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];", "morphed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];", "morphed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];", "#endif", "morphed += position;", "gl_Position = projectionMatrix * modelViewMatrix * vec4( morphed, 1.0 );", "#endif" ].join("\n"), default_vertex : [ "#ifndef USE_MORPHTARGETS", "#ifndef USE_SKINNING", "gl_Position = projectionMatrix * mvPosition;", "#endif", "#endif" ].join("\n"), morphnormal_vertex: [ "#ifdef USE_MORPHNORMALS", "vec3 morphedNormal = vec3( 0.0 );", "morphedNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];", "morphedNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];", "morphedNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];", "morphedNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];", "morphedNormal += normal;", "vec3 transformedNormal = normalMatrix * morphedNormal;", "#else", "vec3 transformedNormal = normalMatrix * normal;", "#endif" ].join("\n"), // SHADOW MAP // based on SpiderGL shadow map and Fabien Sanglard's GLSL shadow mapping examples // http://spidergl.org/example.php?id=6 // http://fabiensanglard.net/shadowmapping shadowmap_pars_fragment: [ "#ifdef USE_SHADOWMAP", "uniform sampler2D shadowMap[ MAX_SHADOWS ];", "uniform vec2 shadowMapSize[ MAX_SHADOWS ];", "uniform float shadowDarkness[ MAX_SHADOWS ];", "uniform float shadowBias[ MAX_SHADOWS ];", "varying vec4 vShadowCoord[ MAX_SHADOWS ];", "float unpackDepth( const in vec4 rgba_depth ) {", "const vec4 bit_shift = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );", "float depth = dot( rgba_depth, bit_shift );", "return depth;", "}", "#endif" ].join("\n"), shadowmap_fragment: [ "#ifdef USE_SHADOWMAP", "#ifdef SHADOWMAP_DEBUG", "vec3 frustumColors[3];", "frustumColors[0] = vec3( 1.0, 0.5, 0.0 );", "frustumColors[1] = vec3( 0.0, 1.0, 0.8 );", "frustumColors[2] = vec3( 0.0, 0.5, 1.0 );", "#endif", "#ifdef SHADOWMAP_CASCADE", "int inFrustumCount = 0;", "#endif", "float fDepth;", "vec3 shadowColor = vec3( 1.0 );", "for( int i = 0; i < MAX_SHADOWS; i ++ ) {", "vec3 shadowCoord = vShadowCoord[ i ].xyz / vShadowCoord[ i ].w;", // "if ( something && something )" breaks ATI OpenGL shader compiler // "if ( all( something, something ) )" using this instead "bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );", "bool inFrustum = all( inFrustumVec );", // don't shadow pixels outside of light frustum // use just first frustum (for cascades) // don't shadow pixels behind far plane of light frustum "#ifdef SHADOWMAP_CASCADE", "inFrustumCount += int( inFrustum );", "bvec3 frustumTestVec = bvec3( inFrustum, inFrustumCount == 1, shadowCoord.z <= 1.0 );", "#else", "bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );", "#endif", "bool frustumTest = all( frustumTestVec );", "if ( frustumTest ) {", "shadowCoord.z += shadowBias[ i ];", "#ifdef SHADOWMAP_SOFT", // Percentage-close filtering // (9 pixel kernel) // http://fabiensanglard.net/shadowmappingPCF/ "float shadow = 0.0;", /* // nested loops breaks shader compiler / validator on some ATI cards when using OpenGL // must enroll loop manually "for ( float y = -1.25; y <= 1.25; y += 1.25 )", "for ( float x = -1.25; x <= 1.25; x += 1.25 ) {", "vec4 rgbaDepth = texture2D( shadowMap[ i ], vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy );", // doesn't seem to produce any noticeable visual difference compared to simple "texture2D" lookup //"vec4 rgbaDepth = texture2DProj( shadowMap[ i ], vec4( vShadowCoord[ i ].w * ( vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy ), 0.05, vShadowCoord[ i ].w ) );", "float fDepth = unpackDepth( rgbaDepth );", "if ( fDepth < shadowCoord.z )", "shadow += 1.0;", "}", "shadow /= 9.0;", */ "const float shadowDelta = 1.0 / 9.0;", "float xPixelOffset = 1.0 / shadowMapSize[ i ].x;", "float yPixelOffset = 1.0 / shadowMapSize[ i ].y;", "float dx0 = -1.25 * xPixelOffset;", "float dy0 = -1.25 * yPixelOffset;", "float dx1 = 1.25 * xPixelOffset;", "float dy1 = 1.25 * yPixelOffset;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );", "#else", "vec4 rgbaDepth = texture2D( shadowMap[ i ], shadowCoord.xy );", "float fDepth = unpackDepth( rgbaDepth );", "if ( fDepth < shadowCoord.z )", // spot with multiple shadows is darker "shadowColor = shadowColor * vec3( 1.0 - shadowDarkness[ i ] );", // spot with multiple shadows has the same color as single shadow spot //"shadowColor = min( shadowColor, vec3( shadowDarkness[ i ] ) );", "#endif", "}", "#ifdef SHADOWMAP_DEBUG", "#ifdef SHADOWMAP_CASCADE", "if ( inFrustum && inFrustumCount == 1 ) gl_FragColor.xyz *= frustumColors[ i ];", "#else", "if ( inFrustum ) gl_FragColor.xyz *= frustumColors[ i ];", "#endif", "#endif", "}", "#ifdef GAMMA_OUTPUT", "shadowColor *= shadowColor;", "#endif", "gl_FragColor.xyz = gl_FragColor.xyz * shadowColor;", "#endif" ].join("\n"), shadowmap_pars_vertex: [ "#ifdef USE_SHADOWMAP", "varying vec4 vShadowCoord[ MAX_SHADOWS ];", "uniform mat4 shadowMatrix[ MAX_SHADOWS ];", "#endif" ].join("\n"), shadowmap_vertex: [ "#ifdef USE_SHADOWMAP", "for( int i = 0; i < MAX_SHADOWS; i ++ ) {", "#ifdef USE_MORPHTARGETS", "vShadowCoord[ i ] = shadowMatrix[ i ] * objectMatrix * vec4( morphed, 1.0 );", "#else", "vShadowCoord[ i ] = shadowMatrix[ i ] * objectMatrix * vec4( position, 1.0 );", "#endif", "}", "#endif" ].join("\n"), // ALPHATEST alphatest_fragment: [ "#ifdef ALPHATEST", "if ( gl_FragColor.a < ALPHATEST ) discard;", "#endif" ].join("\n"), // LINEAR SPACE linear_to_gamma_fragment: [ "#ifdef GAMMA_OUTPUT", "gl_FragColor.xyz = sqrt( gl_FragColor.xyz );", "#endif" ].join("\n"), }; THREE.UniformsUtils = { merge: function ( uniforms ) { var u, p, tmp, merged = {}; for ( u = 0; u < uniforms.length; u++ ) { tmp = this.clone( uniforms[ u ] ); for ( p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; }, clone: function ( uniforms_src ) { var u, p, parameter, parameter_src, uniforms_dst = {}; for ( u in uniforms_src ) { uniforms_dst[ u ] = {}; for ( p in uniforms_src[ u ] ) { parameter_src = uniforms_src[ u ][ p ]; if ( parameter_src instanceof THREE.Color || parameter_src instanceof THREE.Vector2 || parameter_src instanceof THREE.Vector3 || parameter_src instanceof THREE.Vector4 || parameter_src instanceof THREE.Matrix4 || parameter_src instanceof THREE.Texture ) { uniforms_dst[ u ][ p ] = parameter_src.clone(); } else if ( parameter_src instanceof Array ) { uniforms_dst[ u ][ p ] = parameter_src.slice(); } else { uniforms_dst[ u ][ p ] = parameter_src; } } } return uniforms_dst; } }; THREE.UniformsLib = { common: { "diffuse" : { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity" : { type: "f", value: 1.0 }, "map" : { type: "t", value: 0, texture: null }, "offsetRepeat" : { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) }, "lightMap" : { type: "t", value: 2, texture: null }, "envMap" : { type: "t", value: 1, texture: null }, "flipEnvMap" : { type: "f", value: -1 }, "useRefract" : { type: "i", value: 0 }, "reflectivity" : { type: "f", value: 1.0 }, "refractionRatio" : { type: "f", value: 0.98 }, "combine" : { type: "i", value: 0 }, "morphTargetInfluences" : { type: "f", value: 0 } }, fog : { "fogDensity" : { type: "f", value: 0.00025 }, "fogNear" : { type: "f", value: 1 }, "fogFar" : { type: "f", value: 2000 }, "fogColor" : { type: "c", value: new THREE.Color( 0xffffff ) } }, lights: { "ambientLightColor" : { type: "fv", value: [] }, "directionalLightDirection" : { type: "fv", value: [] }, "directionalLightColor" : { type: "fv", value: [] }, "pointLightColor" : { type: "fv", value: [] }, "pointLightPosition" : { type: "fv", value: [] }, "pointLightDistance" : { type: "fv1", value: [] } }, particle: { "psColor" : { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity" : { type: "f", value: 1.0 }, "size" : { type: "f", value: 1.0 }, "scale" : { type: "f", value: 1.0 }, "map" : { type: "t", value: 0, texture: null }, "fogDensity" : { type: "f", value: 0.00025 }, "fogNear" : { type: "f", value: 1 }, "fogFar" : { type: "f", value: 2000 }, "fogColor" : { type: "c", value: new THREE.Color( 0xffffff ) } }, shadowmap: { "shadowMap": { type: "tv", value: 6, texture: [] }, "shadowMapSize": { type: "v2v", value: [] }, "shadowBias" : { type: "fv1", value: [] }, "shadowDarkness": { type: "fv1", value: [] }, "shadowMatrix" : { type: "m4v", value: [] }, } }; THREE.ShaderLib = { 'depth': { uniforms: { "mNear": { type: "f", value: 1.0 }, "mFar" : { type: "f", value: 2000.0 }, "opacity" : { type: "f", value: 1.0 } }, vertexShader: [ "void main() {", "gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );", "}" ].join("\n"), fragmentShader: [ "uniform float mNear;", "uniform float mFar;", "uniform float opacity;", "void main() {", "float depth = gl_FragCoord.z / gl_FragCoord.w;", "float color = 1.0 - smoothstep( mNear, mFar, depth );", "gl_FragColor = vec4( vec3( color ), opacity );", "}" ].join("\n") }, 'normal': { uniforms: { "opacity" : { type: "f", value: 1.0 } }, vertexShader: [ "varying vec3 vNormal;", "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", "vNormal = normalMatrix * normal;", "gl_Position = projectionMatrix * mvPosition;", "}" ].join("\n"), fragmentShader: [ "uniform float opacity;", "varying vec3 vNormal;", "void main() {", "gl_FragColor = vec4( 0.5 * normalize( vNormal ) + 0.5, opacity );", "}" ].join("\n") }, 'basic': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "shadowmap" ] ] ), vertexShader: [ THREE.ShaderChunk[ "map_pars_vertex" ], THREE.ShaderChunk[ "lightmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "map_vertex" ], THREE.ShaderChunk[ "lightmap_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], "void main() {", "gl_FragColor = vec4( diffuse, opacity );", THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "lightmap_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'lambert': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], THREE.UniformsLib[ "shadowmap" ], { "ambient" : { type: "c", value: new THREE.Color( 0xffffff ) }, "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) } } ] ), vertexShader: [ "varying vec3 vLightFront;", "#ifdef DOUBLE_SIDED", "varying vec3 vLightBack;", "#endif", THREE.ShaderChunk[ "map_pars_vertex" ], THREE.ShaderChunk[ "lightmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "lights_lambert_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "map_vertex" ], THREE.ShaderChunk[ "lightmap_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "lights_lambert_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform float opacity;", "varying vec3 vLightFront;", "#ifdef DOUBLE_SIDED", "varying vec3 vLightBack;", "#endif", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], "void main() {", "gl_FragColor = vec4( vec3 ( 1.0 ), opacity );", THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], "#ifdef DOUBLE_SIDED", //"float isFront = float( gl_FrontFacing );", //"gl_FragColor.xyz *= isFront * vLightFront + ( 1.0 - isFront ) * vLightBack;", "if ( gl_FrontFacing )", "gl_FragColor.xyz *= vLightFront;", "else", "gl_FragColor.xyz *= vLightBack;", "#else", "gl_FragColor.xyz *= vLightFront;", "#endif", THREE.ShaderChunk[ "lightmap_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'phong': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], THREE.UniformsLib[ "shadowmap" ], { "ambient" : { type: "c", value: new THREE.Color( 0xffffff ) }, "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "specular" : { type: "c", value: new THREE.Color( 0x111111 ) }, "shininess": { type: "f", value: 30 }, "wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) } } ] ), vertexShader: [ "varying vec3 vViewPosition;", "varying vec3 vNormal;", THREE.ShaderChunk[ "map_pars_vertex" ], THREE.ShaderChunk[ "lightmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "lights_phong_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "map_vertex" ], THREE.ShaderChunk[ "lightmap_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "color_vertex" ], "#ifndef USE_ENVMAP", "vec4 mPosition = objectMatrix * vec4( position, 1.0 );", "#endif", "vViewPosition = -mvPosition.xyz;", THREE.ShaderChunk[ "morphnormal_vertex" ], "vNormal = transformedNormal;", THREE.ShaderChunk[ "lights_phong_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", "uniform vec3 ambient;", "uniform vec3 emissive;", "uniform vec3 specular;", "uniform float shininess;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "lights_phong_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], "void main() {", "gl_FragColor = vec4( vec3 ( 1.0 ), opacity );", THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "lights_phong_fragment" ], THREE.ShaderChunk[ "lightmap_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'particle_basic': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "particle" ], THREE.UniformsLib[ "shadowmap" ] ] ), vertexShader: [ "uniform float size;", "uniform float scale;", THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "color_vertex" ], "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", "#ifdef USE_SIZEATTENUATION", "gl_PointSize = size * ( scale / length( mvPosition.xyz ) );", "#else", "gl_PointSize = size;", "#endif", "gl_Position = projectionMatrix * mvPosition;", THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 psColor;", "uniform float opacity;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_particle_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], "void main() {", "gl_FragColor = vec4( psColor, opacity );", THREE.ShaderChunk[ "map_particle_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, // Depth encoding into RGBA texture // based on SpiderGL shadow map example // http://spidergl.org/example.php?id=6 // originally from // http://www.gamedev.net/topic/442138-packing-a-float-into-a-a8r8g8b8-texture-shader/page__whichpage__1%25EF%25BF%25BD // see also here: // http://aras-p.info/blog/2009/07/30/encoding-floats-to-rgba-the-final/ 'depthRGBA': { uniforms: {}, vertexShader: [ THREE.ShaderChunk[ "morphtarget_pars_vertex" ], "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], "}" ].join("\n"), fragmentShader: [ "vec4 pack_depth( const in float depth ) {", "const vec4 bit_shift = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );", "const vec4 bit_mask = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );", "vec4 res = fract( depth * bit_shift );", "res -= res.xxyz * bit_mask;", "return res;", "}", "void main() {", "gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z );", //"gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z / gl_FragCoord.w );", //"float z = ( ( gl_FragCoord.z / gl_FragCoord.w ) - 3.0 ) / ( 4000.0 - 3.0 );", //"gl_FragData[ 0 ] = pack_depth( z );", //"gl_FragData[ 0 ] = vec4( z, z, z, 1.0 );", "}" ].join("\n") } };/** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ THREE.WebGLRenderer = function ( parameters ) { // constructor parameters parameters = parameters || {}; var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElement( 'canvas' ), _precision = parameters.precision !== undefined ? parameters.precision : 'highp', _alpha = parameters.alpha !== undefined ? parameters.alpha : true, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _clearColor = parameters.clearColor !== undefined ? new THREE.Color( parameters.clearColor ) : new THREE.Color( 0x000000 ), _clearAlpha = parameters.clearAlpha !== undefined ? parameters.clearAlpha : 0, _maxLights = parameters.maxLights !== undefined ? parameters.maxLights : 4; // public properties this.domElement = _canvas; this.context = null; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; this.autoUpdateObjects = true; this.autoUpdateScene = true; // physically based shading this.gammaInput = false; this.gammaOutput = false; this.physicallyBasedShading = false; // shadow map this.shadowMapEnabled = false; this.shadowMapAutoUpdate = true; this.shadowMapSoft = true; this.shadowMapCullFrontFaces = true; this.shadowMapDebug = false; this.shadowMapCascade = false; // morphs this.maxMorphTargets = 8; this.maxMorphNormals = 4; // flags this.autoScaleCubemaps = true; // custom render plugins this.renderPluginsPre = []; this.renderPluginsPost = []; // info this.info = { memory: { programs: 0, geometries: 0, textures: 0 }, render: { calls: 0, vertices: 0, faces: 0, points: 0 } }; // internal properties var _this = this, _gl, _programs = [], // internal state cache _currentProgram = null, _currentFramebuffer = null, _currentMaterialId = -1, _currentGeometryGroupHash = null, _currentCamera = null, _geometryGroupCounter = 0, // GL state cache _oldDoubleSided = null, _oldFlipSided = null, _oldBlending = null, _oldBlendEquation = null, _oldBlendSrc = null, _oldBlendDst = null, _oldDepthTest = null, _oldDepthWrite = null, _oldPolygonOffset = null, _oldPolygonOffsetFactor = null, _oldPolygonOffsetUnits = null, _oldLineWidth = null, _viewportX = 0, _viewportY = 0, _viewportWidth = 0, _viewportHeight = 0, _currentWidth = 0, _currentHeight = 0, // frustum _frustum = new THREE.Frustum(), // camera matrices cache _projScreenMatrix = new THREE.Matrix4(), _projScreenMatrixPS = new THREE.Matrix4(), _vector3 = new THREE.Vector4(), // light arrays cache _direction = new THREE.Vector3(), _lights = { ambient: [ 0, 0, 0 ], directional: { length: 0, colors: new Array(), positions: new Array() }, point: { length: 0, colors: new Array(), positions: new Array(), distances: new Array() } }; // initialize _gl = initGL(); setDefaultGLState(); this.context = _gl; // GPU capabilities var _maxVertexTextures = _gl.getParameter( _gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ), _maxTextureSize = _gl.getParameter( _gl.MAX_TEXTURE_SIZE ), _maxCubemapSize = _gl.getParameter( _gl.MAX_CUBE_MAP_TEXTURE_SIZE ); // API this.getContext = function () { return _gl; }; this.supportsVertexTextures = function () { return _maxVertexTextures > 0; }; this.setSize = function ( width, height ) { _canvas.width = width; _canvas.height = height; this.setViewport( 0, 0, _canvas.width, _canvas.height ); }; this.setViewport = function ( x, y, width, height ) { _viewportX = x; _viewportY = y; _viewportWidth = width; _viewportHeight = height; _gl.viewport( _viewportX, _viewportY, _viewportWidth, _viewportHeight ); }; this.setScissor = function ( x, y, width, height ) { _gl.scissor( x, y, width, height ); }; this.enableScissorTest = function ( enable ) { enable ? _gl.enable( _gl.SCISSOR_TEST ) : _gl.disable( _gl.SCISSOR_TEST ); }; // Clearing this.setClearColorHex = function ( hex, alpha ) { _clearColor.setHex( hex ); _clearAlpha = alpha; _gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.setClearColor = function ( color, alpha ) { _clearColor.copy( color ); _clearAlpha = alpha; _gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.getClearColor = function () { return _clearColor; }; this.getClearAlpha = function () { return _clearAlpha; }; this.clear = function ( color, depth, stencil ) { var bits = 0; if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT; if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT; if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT; _gl.clear( bits ); }; this.clearTarget = function ( renderTarget, color, depth, stencil ) { this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil ); }; // Plugins this.addPostPlugin = function ( plugin ) { plugin.init( this ); this.renderPluginsPost.push( plugin ); }; this.addPrePlugin = function ( plugin ) { plugin.init( this ); this.renderPluginsPre.push( plugin ); }; // Deallocation this.deallocateObject = function ( object ) { if ( ! object.__webglInit ) return; object.__webglInit = false; delete object._modelViewMatrix; delete object._normalMatrix; delete object._normalMatrixArray; delete object._modelViewMatrixArray; delete object._objectMatrixArray; if ( object instanceof THREE.Mesh ) { for ( var g in object.geometry.geometryGroups ) { deleteMeshBuffers( object.geometry.geometryGroups[ g ] ); } } else if ( object instanceof THREE.Ribbon ) { deleteRibbonBuffers( object.geometry ); } else if ( object instanceof THREE.Line ) { deleteLineBuffers( object.geometry ); } else if ( object instanceof THREE.ParticleSystem ) { deleteParticleBuffers( object.geometry ); } }; this.deallocateTexture = function ( texture ) { if ( ! texture.__webglInit ) return; texture.__webglInit = false; _gl.deleteTexture( texture.__webglTexture ); _this.info.memory.textures --; }; this.deallocateRenderTarget = function ( renderTarget ) { if ( !renderTarget || ! renderTarget.__webglTexture ) return; _gl.deleteTexture( renderTarget.__webglTexture ); if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) { for ( var i = 0; i < 6; i ++ ) { _gl.deleteFramebuffer( renderTarget.__webglFramebuffer[ i ] ); _gl.deleteRenderbuffer( renderTarget.__webglRenderbuffer[ i ] ); } } else { _gl.deleteFramebuffer( renderTarget.__webglFramebuffer ); _gl.deleteRenderbuffer( renderTarget.__webglRenderbuffer ); } }; // Rendering this.updateShadowMap = function ( scene, camera ) { _currentProgram = null; _oldBlending = -1; _oldDepthTest = -1; _oldDepthWrite = -1; _currentGeometryGroupHash = -1; _currentMaterialId = -1; this.shadowMapPlugin.update( scene, camera ); }; // Internal functions // Buffer allocation function createParticleBuffers ( geometry ) { geometry.__webglVertexBuffer = _gl.createBuffer(); geometry.__webglColorBuffer = _gl.createBuffer(); _this.info.geometries ++; }; function createLineBuffers ( geometry ) { geometry.__webglVertexBuffer = _gl.createBuffer(); geometry.__webglColorBuffer = _gl.createBuffer(); _this.info.memory.geometries ++; }; function createRibbonBuffers ( geometry ) { geometry.__webglVertexBuffer = _gl.createBuffer(); geometry.__webglColorBuffer = _gl.createBuffer(); _this.info.memory.geometries ++; }; function createMeshBuffers ( geometryGroup ) { geometryGroup.__webglVertexBuffer = _gl.createBuffer(); geometryGroup.__webglNormalBuffer = _gl.createBuffer(); geometryGroup.__webglTangentBuffer = _gl.createBuffer(); geometryGroup.__webglColorBuffer = _gl.createBuffer(); geometryGroup.__webglUVBuffer = _gl.createBuffer(); geometryGroup.__webglUV2Buffer = _gl.createBuffer(); geometryGroup.__webglSkinVertexABuffer = _gl.createBuffer(); geometryGroup.__webglSkinVertexBBuffer = _gl.createBuffer(); geometryGroup.__webglSkinIndicesBuffer = _gl.createBuffer(); geometryGroup.__webglSkinWeightsBuffer = _gl.createBuffer(); geometryGroup.__webglFaceBuffer = _gl.createBuffer(); geometryGroup.__webglLineBuffer = _gl.createBuffer(); var m, ml; if ( geometryGroup.numMorphTargets ) { geometryGroup.__webglMorphTargetsBuffers = []; for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) { geometryGroup.__webglMorphTargetsBuffers.push( _gl.createBuffer() ); } } if ( geometryGroup.numMorphNormals ) { geometryGroup.__webglMorphNormalsBuffers = []; for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) { geometryGroup.__webglMorphNormalsBuffers.push( _gl.createBuffer() ); } } _this.info.memory.geometries ++; }; // Buffer deallocation function deleteParticleBuffers ( geometry ) { _gl.deleteBuffer( geometry.__webglVertexBuffer ); _gl.deleteBuffer( geometry.__webglColorBuffer ); _this.info.memory.geometries --; }; function deleteLineBuffers ( geometry ) { _gl.deleteBuffer( geometry.__webglVertexBuffer ); _gl.deleteBuffer( geometry.__webglColorBuffer ); _this.info.memory.geometries --; }; function deleteRibbonBuffers ( geometry ) { _gl.deleteBuffer( geometry.__webglVertexBuffer ); _gl.deleteBuffer( geometry.__webglColorBuffer ); _this.info.memory.geometries --; }; function deleteMeshBuffers ( geometryGroup ) { _gl.deleteBuffer( geometryGroup.__webglVertexBuffer ); _gl.deleteBuffer( geometryGroup.__webglNormalBuffer ); _gl.deleteBuffer( geometryGroup.__webglTangentBuffer ); _gl.deleteBuffer( geometryGroup.__webglColorBuffer ); _gl.deleteBuffer( geometryGroup.__webglUVBuffer ); _gl.deleteBuffer( geometryGroup.__webglUV2Buffer ); _gl.deleteBuffer( geometryGroup.__webglSkinVertexABuffer ); _gl.deleteBuffer( geometryGroup.__webglSkinVertexBBuffer ); _gl.deleteBuffer( geometryGroup.__webglSkinIndicesBuffer ); _gl.deleteBuffer( geometryGroup.__webglSkinWeightsBuffer ); _gl.deleteBuffer( geometryGroup.__webglFaceBuffer ); _gl.deleteBuffer( geometryGroup.__webglLineBuffer ); var m, ml; if ( geometryGroup.numMorphTargets ) { for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) { _gl.deleteBuffer( geometryGroup.__webglMorphTargetsBuffers[ m ] ); } } if ( geometryGroup.numMorphNormals ) { for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) { _gl.deleteBuffer( geometryGroup.__webglMorphNormalsBuffers[ m ] ); } } if ( geometryGroup.__webglCustomAttributesList ) { for ( var id in geometryGroup.__webglCustomAttributesList ) { _gl.deleteBuffer( geometryGroup.__webglCustomAttributesList[ id ].buffer ); } } _this.info.memory.geometries --; }; // Buffer initialization function initCustomAttributes ( geometry, object ) { var nvertices = geometry.vertices.length; var material = object.material; if ( material.attributes ) { if ( geometry.__webglCustomAttributesList === undefined ) { geometry.__webglCustomAttributesList = []; } for ( var a in material.attributes ) { var attribute = material.attributes[ a ]; if( !attribute.__webglInitialized || attribute.createUniqueBuffers ) { attribute.__webglInitialized = true; var size = 1; // "f" and "i" if ( attribute.type === "v2" ) size = 2; else if ( attribute.type === "v3" ) size = 3; else if ( attribute.type === "v4" ) size = 4; else if ( attribute.type === "c" ) size = 3; attribute.size = size; attribute.array = new Float32Array( nvertices * size ); attribute.buffer = _gl.createBuffer(); attribute.buffer.belongsToAttribute = a; attribute.needsUpdate = true; } geometry.__webglCustomAttributesList.push( attribute ); } } }; function initParticleBuffers ( geometry, object ) { var nvertices = geometry.vertices.length; geometry.__vertexArray = new Float32Array( nvertices * 3 ); geometry.__colorArray = new Float32Array( nvertices * 3 ); geometry.__sortArray = []; geometry.__webglParticleCount = nvertices; initCustomAttributes ( geometry, object ); }; function initLineBuffers ( geometry, object ) { var nvertices = geometry.vertices.length; geometry.__vertexArray = new Float32Array( nvertices * 3 ); geometry.__colorArray = new Float32Array( nvertices * 3 ); geometry.__webglLineCount = nvertices; initCustomAttributes ( geometry, object ); }; function initRibbonBuffers ( geometry ) { var nvertices = geometry.vertices.length; geometry.__vertexArray = new Float32Array( nvertices * 3 ); geometry.__colorArray = new Float32Array( nvertices * 3 ); geometry.__webglVertexCount = nvertices; }; function initMeshBuffers ( geometryGroup, object ) { var geometry = object.geometry, faces3 = geometryGroup.faces3, faces4 = geometryGroup.faces4, nvertices = faces3.length * 3 + faces4.length * 4, ntris = faces3.length * 1 + faces4.length * 2, nlines = faces3.length * 3 + faces4.length * 4, material = getBufferMaterial( object, geometryGroup ), uvType = bufferGuessUVType( material ), normalType = bufferGuessNormalType( material ), vertexColorType = bufferGuessVertexColorType( material ); //console.log( "uvType", uvType, "normalType", normalType, "vertexColorType", vertexColorType, object, geometryGroup, material ); geometryGroup.__vertexArray = new Float32Array( nvertices * 3 ); if ( normalType ) { geometryGroup.__normalArray = new Float32Array( nvertices * 3 ); } if ( geometry.hasTangents ) { geometryGroup.__tangentArray = new Float32Array( nvertices * 4 ); } if ( vertexColorType ) { geometryGroup.__colorArray = new Float32Array( nvertices * 3 ); } if ( uvType ) { if ( geometry.faceUvs.length > 0 || geometry.faceVertexUvs.length > 0 ) { geometryGroup.__uvArray = new Float32Array( nvertices * 2 ); } if ( geometry.faceUvs.length > 1 || geometry.faceVertexUvs.length > 1 ) { geometryGroup.__uv2Array = new Float32Array( nvertices * 2 ); } } if ( object.geometry.skinWeights.length && object.geometry.skinIndices.length ) { geometryGroup.__skinVertexAArray = new Float32Array( nvertices * 4 ); geometryGroup.__skinVertexBArray = new Float32Array( nvertices * 4 ); geometryGroup.__skinIndexArray = new Float32Array( nvertices * 4 ); geometryGroup.__skinWeightArray = new Float32Array( nvertices * 4 ); } geometryGroup.__faceArray = new Uint16Array( ntris * 3 ); geometryGroup.__lineArray = new Uint16Array( nlines * 2 ); var m, ml; if ( geometryGroup.numMorphTargets ) { geometryGroup.__morphTargetsArrays = []; for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) { geometryGroup.__morphTargetsArrays.push( new Float32Array( nvertices * 3 ) ); } } if ( geometryGroup.numMorphNormals ) { geometryGroup.__morphNormalsArrays = []; for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) { geometryGroup.__morphNormalsArrays.push( new Float32Array( nvertices * 3 ) ); } } geometryGroup.__webglFaceCount = ntris * 3; geometryGroup.__webglLineCount = nlines * 2; // custom attributes if ( material.attributes ) { if ( geometryGroup.__webglCustomAttributesList === undefined ) { geometryGroup.__webglCustomAttributesList = []; } for ( var a in material.attributes ) { // Do a shallow copy of the attribute object so different geometryGroup chunks use different // attribute buffers which are correctly indexed in the setMeshBuffers function var originalAttribute = material.attributes[ a ]; var attribute = {}; for ( var property in originalAttribute ) { attribute[ property ] = originalAttribute[ property ]; } if( !attribute.__webglInitialized || attribute.createUniqueBuffers ) { attribute.__webglInitialized = true; var size = 1; // "f" and "i" if( attribute.type === "v2" ) size = 2; else if( attribute.type === "v3" ) size = 3; else if( attribute.type === "v4" ) size = 4; else if( attribute.type === "c" ) size = 3; attribute.size = size; attribute.array = new Float32Array( nvertices * size ); attribute.buffer = _gl.createBuffer(); attribute.buffer.belongsToAttribute = a; originalAttribute.needsUpdate = true; attribute.__original = originalAttribute; } geometryGroup.__webglCustomAttributesList.push( attribute ); } } geometryGroup.__inittedArrays = true; }; function getBufferMaterial( object, geometryGroup ) { if ( object.material && ! ( object.material instanceof THREE.MeshFaceMaterial ) ) { return object.material; } else if ( geometryGroup.materialIndex >= 0 ) { return object.geometry.materials[ geometryGroup.materialIndex ]; } }; function materialNeedsSmoothNormals ( material ) { return material && material.shading !== undefined && material.shading === THREE.SmoothShading; }; function bufferGuessNormalType ( material ) { // only MeshBasicMaterial and MeshDepthMaterial don't need normals if ( ( material instanceof THREE.MeshBasicMaterial && !material.envMap ) || material instanceof THREE.MeshDepthMaterial ) { return false; } if ( materialNeedsSmoothNormals( material ) ) { return THREE.SmoothShading; } else { return THREE.FlatShading; } }; function bufferGuessVertexColorType ( material ) { if ( material.vertexColors ) { return material.vertexColors; } return false; }; function bufferGuessUVType ( material ) { // material must use some texture to require uvs if ( material.map || material.lightMap || material instanceof THREE.ShaderMaterial ) { return true; } return false; }; // Buffer setting function setParticleBuffers ( geometry, hint, object ) { var v, c, vertex, offset, index, color, vertices = geometry.vertices, vl = vertices.length, colors = geometry.colors, cl = colors.length, vertexArray = geometry.__vertexArray, colorArray = geometry.__colorArray, sortArray = geometry.__sortArray, dirtyVertices = geometry.__dirtyVertices, dirtyElements = geometry.__dirtyElements, dirtyColors = geometry.__dirtyColors, customAttributes = geometry.__webglCustomAttributesList, i, il, a, ca, cal, value, customAttribute; if ( object.sortParticles ) { _projScreenMatrixPS.copy( _projScreenMatrix ); _projScreenMatrixPS.multiplySelf( object.matrixWorld ); for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ].position; _vector3.copy( vertex ); _projScreenMatrixPS.multiplyVector3( _vector3 ); sortArray[ v ] = [ _vector3.z, v ]; } sortArray.sort( function( a, b ) { return b[ 0 ] - a[ 0 ]; } ); for ( v = 0; v < vl; v ++ ) { vertex = vertices[ sortArray[v][1] ].position; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } for ( c = 0; c < cl; c ++ ) { offset = c * 3; color = colors[ sortArray[c][1] ]; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( ! ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) ) continue; offset = 0; cal = customAttribute.value.length; if ( customAttribute.size === 1 ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; customAttribute.array[ ca ] = customAttribute.value[ index ]; } } else if ( customAttribute.size === 2 ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; offset += 2; } } else if ( customAttribute.size === 3 ) { if ( customAttribute.type === "c" ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.r; customAttribute.array[ offset + 1 ] = value.g; customAttribute.array[ offset + 2 ] = value.b; offset += 3; } } else { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; offset += 3; } } } else if ( customAttribute.size === 4 ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; customAttribute.array[ offset + 3 ] = value.w; offset += 4; } } } } } else { if ( dirtyVertices ) { for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ].position; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } } if ( dirtyColors ) { for ( c = 0; c < cl; c ++ ) { color = colors[ c ]; offset = c * 3; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( customAttribute.needsUpdate && ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices") ) { cal = customAttribute.value.length; offset = 0; if ( customAttribute.size === 1 ) { for ( ca = 0; ca < cal; ca ++ ) { customAttribute.array[ ca ] = customAttribute.value[ ca ]; } } else if ( customAttribute.size === 2 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; offset += 2; } } else if ( customAttribute.size === 3 ) { if ( customAttribute.type === "c" ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.r; customAttribute.array[ offset + 1 ] = value.g; customAttribute.array[ offset + 2 ] = value.b; offset += 3; } } else { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; offset += 3; } } } else if ( customAttribute.size === 4 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; customAttribute.array[ offset + 3 ] = value.w; offset += 4; } } } } } } if ( dirtyVertices || object.sortParticles ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyColors || object.sortParticles ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( customAttribute.needsUpdate || object.sortParticles ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint ); } } } }; function setLineBuffers ( geometry, hint ) { var v, c, vertex, offset, color, vertices = geometry.vertices, colors = geometry.colors, vl = vertices.length, cl = colors.length, vertexArray = geometry.__vertexArray, colorArray = geometry.__colorArray, dirtyVertices = geometry.__dirtyVertices, dirtyColors = geometry.__dirtyColors, customAttributes = geometry.__webglCustomAttributesList, i, il, a, ca, cal, value, customAttribute; if ( dirtyVertices ) { for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ].position; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyColors ) { for ( c = 0; c < cl; c ++ ) { color = colors[ c ]; offset = c * 3; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( customAttribute.needsUpdate && ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) ) { offset = 0; cal = customAttribute.value.length; if ( customAttribute.size === 1 ) { for ( ca = 0; ca < cal; ca ++ ) { customAttribute.array[ ca ] = customAttribute.value[ ca ]; } } else if ( customAttribute.size === 2 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; offset += 2; } } else if ( customAttribute.size === 3 ) { if ( customAttribute.type === "c" ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.r; customAttribute.array[ offset + 1 ] = value.g; customAttribute.array[ offset + 2 ] = value.b; offset += 3; } } else { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; offset += 3; } } } else if ( customAttribute.size === 4 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; customAttribute.array[ offset + 3 ] = value.w; offset += 4; } } _gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint ); } } } }; function setRibbonBuffers ( geometry, hint ) { var v, c, vertex, offset, color, vertices = geometry.vertices, colors = geometry.colors, vl = vertices.length, cl = colors.length, vertexArray = geometry.__vertexArray, colorArray = geometry.__colorArray, dirtyVertices = geometry.__dirtyVertices, dirtyColors = geometry.__dirtyColors; if ( dirtyVertices ) { for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ].position; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyColors ) { for ( c = 0; c < cl; c ++ ) { color = colors[ c ]; offset = c * 3; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } }; function setMeshBuffers( geometryGroup, object, hint, dispose, material ) { if ( ! geometryGroup.__inittedArrays ) { // console.log( object ); return; } var normalType = bufferGuessNormalType( material ), vertexColorType = bufferGuessVertexColorType( material ), uvType = bufferGuessUVType( material ), needsSmoothNormals = ( normalType === THREE.SmoothShading ); var f, fl, fi, face, vertexNormals, faceNormal, normal, vertexColors, faceColor, vertexTangents, uv, uv2, v1, v2, v3, v4, t1, t2, t3, t4, n1, n2, n3, n4, c1, c2, c3, c4, sw1, sw2, sw3, sw4, si1, si2, si3, si4, sa1, sa2, sa3, sa4, sb1, sb2, sb3, sb4, m, ml, i, il, vn, uvi, uv2i, vk, vkl, vka, nka, chf, faceVertexNormals, a, vertexIndex = 0, offset = 0, offset_uv = 0, offset_uv2 = 0, offset_face = 0, offset_normal = 0, offset_tangent = 0, offset_line = 0, offset_color = 0, offset_skin = 0, offset_morphTarget = 0, offset_custom = 0, offset_customSrc = 0, value, vertexArray = geometryGroup.__vertexArray, uvArray = geometryGroup.__uvArray, uv2Array = geometryGroup.__uv2Array, normalArray = geometryGroup.__normalArray, tangentArray = geometryGroup.__tangentArray, colorArray = geometryGroup.__colorArray, skinVertexAArray = geometryGroup.__skinVertexAArray, skinVertexBArray = geometryGroup.__skinVertexBArray, skinIndexArray = geometryGroup.__skinIndexArray, skinWeightArray = geometryGroup.__skinWeightArray, morphTargetsArrays = geometryGroup.__morphTargetsArrays, morphNormalsArrays = geometryGroup.__morphNormalsArrays, customAttributes = geometryGroup.__webglCustomAttributesList, customAttribute, faceArray = geometryGroup.__faceArray, lineArray = geometryGroup.__lineArray, geometry = object.geometry, // this is shared for all chunks dirtyVertices = geometry.__dirtyVertices, dirtyElements = geometry.__dirtyElements, dirtyUvs = geometry.__dirtyUvs, dirtyNormals = geometry.__dirtyNormals, dirtyTangents = geometry.__dirtyTangents, dirtyColors = geometry.__dirtyColors, dirtyMorphTargets = geometry.__dirtyMorphTargets, vertices = geometry.vertices, chunk_faces3 = geometryGroup.faces3, chunk_faces4 = geometryGroup.faces4, obj_faces = geometry.faces, obj_uvs = geometry.faceVertexUvs[ 0 ], obj_uvs2 = geometry.faceVertexUvs[ 1 ], obj_colors = geometry.colors, obj_skinVerticesA = geometry.skinVerticesA, obj_skinVerticesB = geometry.skinVerticesB, obj_skinIndices = geometry.skinIndices, obj_skinWeights = geometry.skinWeights, morphTargets = geometry.morphTargets, morphNormals = geometry.morphNormals; if ( dirtyVertices ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = vertices[ face.a ].position; v2 = vertices[ face.b ].position; v3 = vertices[ face.c ].position; vertexArray[ offset ] = v1.x; vertexArray[ offset + 1 ] = v1.y; vertexArray[ offset + 2 ] = v1.z; vertexArray[ offset + 3 ] = v2.x; vertexArray[ offset + 4 ] = v2.y; vertexArray[ offset + 5 ] = v2.z; vertexArray[ offset + 6 ] = v3.x; vertexArray[ offset + 7 ] = v3.y; vertexArray[ offset + 8 ] = v3.z; offset += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; v1 = vertices[ face.a ].position; v2 = vertices[ face.b ].position; v3 = vertices[ face.c ].position; v4 = vertices[ face.d ].position; vertexArray[ offset ] = v1.x; vertexArray[ offset + 1 ] = v1.y; vertexArray[ offset + 2 ] = v1.z; vertexArray[ offset + 3 ] = v2.x; vertexArray[ offset + 4 ] = v2.y; vertexArray[ offset + 5 ] = v2.z; vertexArray[ offset + 6 ] = v3.x; vertexArray[ offset + 7 ] = v3.y; vertexArray[ offset + 8 ] = v3.z; vertexArray[ offset + 9 ] = v4.x; vertexArray[ offset + 10 ] = v4.y; vertexArray[ offset + 11 ] = v4.z; offset += 12; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyMorphTargets ) { for ( vk = 0, vkl = morphTargets.length; vk < vkl; vk ++ ) { offset_morphTarget = 0; for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { chf = chunk_faces3[ f ]; face = obj_faces[ chf ]; // morph positions v1 = morphTargets[ vk ].vertices[ face.a ].position; v2 = morphTargets[ vk ].vertices[ face.b ].position; v3 = morphTargets[ vk ].vertices[ face.c ].position; vka = morphTargetsArrays[ vk ]; vka[ offset_morphTarget ] = v1.x; vka[ offset_morphTarget + 1 ] = v1.y; vka[ offset_morphTarget + 2 ] = v1.z; vka[ offset_morphTarget + 3 ] = v2.x; vka[ offset_morphTarget + 4 ] = v2.y; vka[ offset_morphTarget + 5 ] = v2.z; vka[ offset_morphTarget + 6 ] = v3.x; vka[ offset_morphTarget + 7 ] = v3.y; vka[ offset_morphTarget + 8 ] = v3.z; // morph normals if ( material.morphNormals ) { if ( needsSmoothNormals ) { faceVertexNormals = morphNormals[ vk ].vertexNormals[ chf ]; n1 = faceVertexNormals.a; n2 = faceVertexNormals.b; n3 = faceVertexNormals.c; } else { n1 = morphNormals[ vk ].faceNormals[ chf ]; n2 = n1; n3 = n1; } nka = morphNormalsArrays[ vk ]; nka[ offset_morphTarget ] = n1.x; nka[ offset_morphTarget + 1 ] = n1.y; nka[ offset_morphTarget + 2 ] = n1.z; nka[ offset_morphTarget + 3 ] = n2.x; nka[ offset_morphTarget + 4 ] = n2.y; nka[ offset_morphTarget + 5 ] = n2.z; nka[ offset_morphTarget + 6 ] = n3.x; nka[ offset_morphTarget + 7 ] = n3.y; nka[ offset_morphTarget + 8 ] = n3.z; } // offset_morphTarget += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { chf = chunk_faces4[ f ]; face = obj_faces[ chf ]; // morph positions v1 = morphTargets[ vk ].vertices[ face.a ].position; v2 = morphTargets[ vk ].vertices[ face.b ].position; v3 = morphTargets[ vk ].vertices[ face.c ].position; v4 = morphTargets[ vk ].vertices[ face.d ].position; vka = morphTargetsArrays[ vk ]; vka[ offset_morphTarget ] = v1.x; vka[ offset_morphTarget + 1 ] = v1.y; vka[ offset_morphTarget + 2 ] = v1.z; vka[ offset_morphTarget + 3 ] = v2.x; vka[ offset_morphTarget + 4 ] = v2.y; vka[ offset_morphTarget + 5 ] = v2.z; vka[ offset_morphTarget + 6 ] = v3.x; vka[ offset_morphTarget + 7 ] = v3.y; vka[ offset_morphTarget + 8 ] = v3.z; vka[ offset_morphTarget + 9 ] = v4.x; vka[ offset_morphTarget + 10 ] = v4.y; vka[ offset_morphTarget + 11 ] = v4.z; // morph normals if ( material.morphNormals ) { if ( needsSmoothNormals ) { faceVertexNormals = morphNormals[ vk ].vertexNormals[ chf ]; n1 = faceVertexNormals.a; n2 = faceVertexNormals.b; n3 = faceVertexNormals.c; n4 = faceVertexNormals.d; } else { n1 = morphNormals[ vk ].faceNormals[ chf ]; n2 = n1; n3 = n1; n4 = n1; } nka = morphNormalsArrays[ vk ]; nka[ offset_morphTarget ] = n1.x; nka[ offset_morphTarget + 1 ] = n1.y; nka[ offset_morphTarget + 2 ] = n1.z; nka[ offset_morphTarget + 3 ] = n2.x; nka[ offset_morphTarget + 4 ] = n2.y; nka[ offset_morphTarget + 5 ] = n2.z; nka[ offset_morphTarget + 6 ] = n3.x; nka[ offset_morphTarget + 7 ] = n3.y; nka[ offset_morphTarget + 8 ] = n3.z; nka[ offset_morphTarget + 9 ] = n4.x; nka[ offset_morphTarget + 10 ] = n4.y; nka[ offset_morphTarget + 11 ] = n4.z; } // offset_morphTarget += 12; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ vk ] ); _gl.bufferData( _gl.ARRAY_BUFFER, morphTargetsArrays[ vk ], hint ); if ( material.morphNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ vk ] ); _gl.bufferData( _gl.ARRAY_BUFFER, morphNormalsArrays[ vk ], hint ); } } } if ( obj_skinWeights.length ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; // weights sw1 = obj_skinWeights[ face.a ]; sw2 = obj_skinWeights[ face.b ]; sw3 = obj_skinWeights[ face.c ]; skinWeightArray[ offset_skin ] = sw1.x; skinWeightArray[ offset_skin + 1 ] = sw1.y; skinWeightArray[ offset_skin + 2 ] = sw1.z; skinWeightArray[ offset_skin + 3 ] = sw1.w; skinWeightArray[ offset_skin + 4 ] = sw2.x; skinWeightArray[ offset_skin + 5 ] = sw2.y; skinWeightArray[ offset_skin + 6 ] = sw2.z; skinWeightArray[ offset_skin + 7 ] = sw2.w; skinWeightArray[ offset_skin + 8 ] = sw3.x; skinWeightArray[ offset_skin + 9 ] = sw3.y; skinWeightArray[ offset_skin + 10 ] = sw3.z; skinWeightArray[ offset_skin + 11 ] = sw3.w; // indices si1 = obj_skinIndices[ face.a ]; si2 = obj_skinIndices[ face.b ]; si3 = obj_skinIndices[ face.c ]; skinIndexArray[ offset_skin ] = si1.x; skinIndexArray[ offset_skin + 1 ] = si1.y; skinIndexArray[ offset_skin + 2 ] = si1.z; skinIndexArray[ offset_skin + 3 ] = si1.w; skinIndexArray[ offset_skin + 4 ] = si2.x; skinIndexArray[ offset_skin + 5 ] = si2.y; skinIndexArray[ offset_skin + 6 ] = si2.z; skinIndexArray[ offset_skin + 7 ] = si2.w; skinIndexArray[ offset_skin + 8 ] = si3.x; skinIndexArray[ offset_skin + 9 ] = si3.y; skinIndexArray[ offset_skin + 10 ] = si3.z; skinIndexArray[ offset_skin + 11 ] = si3.w; // vertices A sa1 = obj_skinVerticesA[ face.a ]; sa2 = obj_skinVerticesA[ face.b ]; sa3 = obj_skinVerticesA[ face.c ]; skinVertexAArray[ offset_skin ] = sa1.x; skinVertexAArray[ offset_skin + 1 ] = sa1.y; skinVertexAArray[ offset_skin + 2 ] = sa1.z; skinVertexAArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader skinVertexAArray[ offset_skin + 4 ] = sa2.x; skinVertexAArray[ offset_skin + 5 ] = sa2.y; skinVertexAArray[ offset_skin + 6 ] = sa2.z; skinVertexAArray[ offset_skin + 7 ] = 1; skinVertexAArray[ offset_skin + 8 ] = sa3.x; skinVertexAArray[ offset_skin + 9 ] = sa3.y; skinVertexAArray[ offset_skin + 10 ] = sa3.z; skinVertexAArray[ offset_skin + 11 ] = 1; // vertices B sb1 = obj_skinVerticesB[ face.a ]; sb2 = obj_skinVerticesB[ face.b ]; sb3 = obj_skinVerticesB[ face.c ]; skinVertexBArray[ offset_skin ] = sb1.x; skinVertexBArray[ offset_skin + 1 ] = sb1.y; skinVertexBArray[ offset_skin + 2 ] = sb1.z; skinVertexBArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader skinVertexBArray[ offset_skin + 4 ] = sb2.x; skinVertexBArray[ offset_skin + 5 ] = sb2.y; skinVertexBArray[ offset_skin + 6 ] = sb2.z; skinVertexBArray[ offset_skin + 7 ] = 1; skinVertexBArray[ offset_skin + 8 ] = sb3.x; skinVertexBArray[ offset_skin + 9 ] = sb3.y; skinVertexBArray[ offset_skin + 10 ] = sb3.z; skinVertexBArray[ offset_skin + 11 ] = 1; offset_skin += 12; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; // weights sw1 = obj_skinWeights[ face.a ]; sw2 = obj_skinWeights[ face.b ]; sw3 = obj_skinWeights[ face.c ]; sw4 = obj_skinWeights[ face.d ]; skinWeightArray[ offset_skin ] = sw1.x; skinWeightArray[ offset_skin + 1 ] = sw1.y; skinWeightArray[ offset_skin + 2 ] = sw1.z; skinWeightArray[ offset_skin + 3 ] = sw1.w; skinWeightArray[ offset_skin + 4 ] = sw2.x; skinWeightArray[ offset_skin + 5 ] = sw2.y; skinWeightArray[ offset_skin + 6 ] = sw2.z; skinWeightArray[ offset_skin + 7 ] = sw2.w; skinWeightArray[ offset_skin + 8 ] = sw3.x; skinWeightArray[ offset_skin + 9 ] = sw3.y; skinWeightArray[ offset_skin + 10 ] = sw3.z; skinWeightArray[ offset_skin + 11 ] = sw3.w; skinWeightArray[ offset_skin + 12 ] = sw4.x; skinWeightArray[ offset_skin + 13 ] = sw4.y; skinWeightArray[ offset_skin + 14 ] = sw4.z; skinWeightArray[ offset_skin + 15 ] = sw4.w; // indices si1 = obj_skinIndices[ face.a ]; si2 = obj_skinIndices[ face.b ]; si3 = obj_skinIndices[ face.c ]; si4 = obj_skinIndices[ face.d ]; skinIndexArray[ offset_skin ] = si1.x; skinIndexArray[ offset_skin + 1 ] = si1.y; skinIndexArray[ offset_skin + 2 ] = si1.z; skinIndexArray[ offset_skin + 3 ] = si1.w; skinIndexArray[ offset_skin + 4 ] = si2.x; skinIndexArray[ offset_skin + 5 ] = si2.y; skinIndexArray[ offset_skin + 6 ] = si2.z; skinIndexArray[ offset_skin + 7 ] = si2.w; skinIndexArray[ offset_skin + 8 ] = si3.x; skinIndexArray[ offset_skin + 9 ] = si3.y; skinIndexArray[ offset_skin + 10 ] = si3.z; skinIndexArray[ offset_skin + 11 ] = si3.w; skinIndexArray[ offset_skin + 12 ] = si4.x; skinIndexArray[ offset_skin + 13 ] = si4.y; skinIndexArray[ offset_skin + 14 ] = si4.z; skinIndexArray[ offset_skin + 15 ] = si4.w; // vertices A sa1 = obj_skinVerticesA[ face.a ]; sa2 = obj_skinVerticesA[ face.b ]; sa3 = obj_skinVerticesA[ face.c ]; sa4 = obj_skinVerticesA[ face.d ]; skinVertexAArray[ offset_skin ] = sa1.x; skinVertexAArray[ offset_skin + 1 ] = sa1.y; skinVertexAArray[ offset_skin + 2 ] = sa1.z; skinVertexAArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader skinVertexAArray[ offset_skin + 4 ] = sa2.x; skinVertexAArray[ offset_skin + 5 ] = sa2.y; skinVertexAArray[ offset_skin + 6 ] = sa2.z; skinVertexAArray[ offset_skin + 7 ] = 1; skinVertexAArray[ offset_skin + 8 ] = sa3.x; skinVertexAArray[ offset_skin + 9 ] = sa3.y; skinVertexAArray[ offset_skin + 10 ] = sa3.z; skinVertexAArray[ offset_skin + 11 ] = 1; skinVertexAArray[ offset_skin + 12 ] = sa4.x; skinVertexAArray[ offset_skin + 13 ] = sa4.y; skinVertexAArray[ offset_skin + 14 ] = sa4.z; skinVertexAArray[ offset_skin + 15 ] = 1; // vertices B sb1 = obj_skinVerticesB[ face.a ]; sb2 = obj_skinVerticesB[ face.b ]; sb3 = obj_skinVerticesB[ face.c ]; sb4 = obj_skinVerticesB[ face.d ]; skinVertexBArray[ offset_skin ] = sb1.x; skinVertexBArray[ offset_skin + 1 ] = sb1.y; skinVertexBArray[ offset_skin + 2 ] = sb1.z; skinVertexBArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader skinVertexBArray[ offset_skin + 4 ] = sb2.x; skinVertexBArray[ offset_skin + 5 ] = sb2.y; skinVertexBArray[ offset_skin + 6 ] = sb2.z; skinVertexBArray[ offset_skin + 7 ] = 1; skinVertexBArray[ offset_skin + 8 ] = sb3.x; skinVertexBArray[ offset_skin + 9 ] = sb3.y; skinVertexBArray[ offset_skin + 10 ] = sb3.z; skinVertexBArray[ offset_skin + 11 ] = 1; skinVertexBArray[ offset_skin + 12 ] = sb4.x; skinVertexBArray[ offset_skin + 13 ] = sb4.y; skinVertexBArray[ offset_skin + 14 ] = sb4.z; skinVertexBArray[ offset_skin + 15 ] = 1; offset_skin += 16; } if ( offset_skin > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexABuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinVertexAArray, hint ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexBBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinVertexBArray, hint ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinIndicesBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinIndexArray, hint ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinWeightsBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinWeightArray, hint ); } } if ( dirtyColors && vertexColorType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; vertexColors = face.vertexColors; faceColor = face.color; if ( vertexColors.length === 3 && vertexColorType === THREE.VertexColors ) { c1 = vertexColors[ 0 ]; c2 = vertexColors[ 1 ]; c3 = vertexColors[ 2 ]; } else { c1 = faceColor; c2 = faceColor; c3 = faceColor; } colorArray[ offset_color ] = c1.r; colorArray[ offset_color + 1 ] = c1.g; colorArray[ offset_color + 2 ] = c1.b; colorArray[ offset_color + 3 ] = c2.r; colorArray[ offset_color + 4 ] = c2.g; colorArray[ offset_color + 5 ] = c2.b; colorArray[ offset_color + 6 ] = c3.r; colorArray[ offset_color + 7 ] = c3.g; colorArray[ offset_color + 8 ] = c3.b; offset_color += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; vertexColors = face.vertexColors; faceColor = face.color; if ( vertexColors.length === 4 && vertexColorType === THREE.VertexColors ) { c1 = vertexColors[ 0 ]; c2 = vertexColors[ 1 ]; c3 = vertexColors[ 2 ]; c4 = vertexColors[ 3 ]; } else { c1 = faceColor; c2 = faceColor; c3 = faceColor; c4 = faceColor; } colorArray[ offset_color ] = c1.r; colorArray[ offset_color + 1 ] = c1.g; colorArray[ offset_color + 2 ] = c1.b; colorArray[ offset_color + 3 ] = c2.r; colorArray[ offset_color + 4 ] = c2.g; colorArray[ offset_color + 5 ] = c2.b; colorArray[ offset_color + 6 ] = c3.r; colorArray[ offset_color + 7 ] = c3.g; colorArray[ offset_color + 8 ] = c3.b; colorArray[ offset_color + 9 ] = c4.r; colorArray[ offset_color + 10 ] = c4.g; colorArray[ offset_color + 11 ] = c4.b; offset_color += 12; } if ( offset_color > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } } if ( dirtyTangents && geometry.hasTangents ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; vertexTangents = face.vertexTangents; t1 = vertexTangents[ 0 ]; t2 = vertexTangents[ 1 ]; t3 = vertexTangents[ 2 ]; tangentArray[ offset_tangent ] = t1.x; tangentArray[ offset_tangent + 1 ] = t1.y; tangentArray[ offset_tangent + 2 ] = t1.z; tangentArray[ offset_tangent + 3 ] = t1.w; tangentArray[ offset_tangent + 4 ] = t2.x; tangentArray[ offset_tangent + 5 ] = t2.y; tangentArray[ offset_tangent + 6 ] = t2.z; tangentArray[ offset_tangent + 7 ] = t2.w; tangentArray[ offset_tangent + 8 ] = t3.x; tangentArray[ offset_tangent + 9 ] = t3.y; tangentArray[ offset_tangent + 10 ] = t3.z; tangentArray[ offset_tangent + 11 ] = t3.w; offset_tangent += 12; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; vertexTangents = face.vertexTangents; t1 = vertexTangents[ 0 ]; t2 = vertexTangents[ 1 ]; t3 = vertexTangents[ 2 ]; t4 = vertexTangents[ 3 ]; tangentArray[ offset_tangent ] = t1.x; tangentArray[ offset_tangent + 1 ] = t1.y; tangentArray[ offset_tangent + 2 ] = t1.z; tangentArray[ offset_tangent + 3 ] = t1.w; tangentArray[ offset_tangent + 4 ] = t2.x; tangentArray[ offset_tangent + 5 ] = t2.y; tangentArray[ offset_tangent + 6 ] = t2.z; tangentArray[ offset_tangent + 7 ] = t2.w; tangentArray[ offset_tangent + 8 ] = t3.x; tangentArray[ offset_tangent + 9 ] = t3.y; tangentArray[ offset_tangent + 10 ] = t3.z; tangentArray[ offset_tangent + 11 ] = t3.w; tangentArray[ offset_tangent + 12 ] = t4.x; tangentArray[ offset_tangent + 13 ] = t4.y; tangentArray[ offset_tangent + 14 ] = t4.z; tangentArray[ offset_tangent + 15 ] = t4.w; offset_tangent += 16; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglTangentBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, tangentArray, hint ); } if ( dirtyNormals && normalType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; vertexNormals = face.vertexNormals; faceNormal = face.normal; if ( vertexNormals.length === 3 && needsSmoothNormals ) { for ( i = 0; i < 3; i ++ ) { vn = vertexNormals[ i ]; normalArray[ offset_normal ] = vn.x; normalArray[ offset_normal + 1 ] = vn.y; normalArray[ offset_normal + 2 ] = vn.z; offset_normal += 3; } } else { for ( i = 0; i < 3; i ++ ) { normalArray[ offset_normal ] = faceNormal.x; normalArray[ offset_normal + 1 ] = faceNormal.y; normalArray[ offset_normal + 2 ] = faceNormal.z; offset_normal += 3; } } } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; vertexNormals = face.vertexNormals; faceNormal = face.normal; if ( vertexNormals.length === 4 && needsSmoothNormals ) { for ( i = 0; i < 4; i ++ ) { vn = vertexNormals[ i ]; normalArray[ offset_normal ] = vn.x; normalArray[ offset_normal + 1 ] = vn.y; normalArray[ offset_normal + 2 ] = vn.z; offset_normal += 3; } } else { for ( i = 0; i < 4; i ++ ) { normalArray[ offset_normal ] = faceNormal.x; normalArray[ offset_normal + 1 ] = faceNormal.y; normalArray[ offset_normal + 2 ] = faceNormal.z; offset_normal += 3; } } } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglNormalBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, normalArray, hint ); } if ( dirtyUvs && obj_uvs && uvType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { fi = chunk_faces3[ f ]; face = obj_faces[ fi ]; uv = obj_uvs[ fi ]; if ( uv === undefined ) continue; for ( i = 0; i < 3; i ++ ) { uvi = uv[ i ]; uvArray[ offset_uv ] = uvi.u; uvArray[ offset_uv + 1 ] = uvi.v; offset_uv += 2; } } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { fi = chunk_faces4[ f ]; face = obj_faces[ fi ]; uv = obj_uvs[ fi ]; if ( uv === undefined ) continue; for ( i = 0; i < 4; i ++ ) { uvi = uv[ i ]; uvArray[ offset_uv ] = uvi.u; uvArray[ offset_uv + 1 ] = uvi.v; offset_uv += 2; } } if ( offset_uv > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUVBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, uvArray, hint ); } } if ( dirtyUvs && obj_uvs2 && uvType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { fi = chunk_faces3[ f ]; face = obj_faces[ fi ]; uv2 = obj_uvs2[ fi ]; if ( uv2 === undefined ) continue; for ( i = 0; i < 3; i ++ ) { uv2i = uv2[ i ]; uv2Array[ offset_uv2 ] = uv2i.u; uv2Array[ offset_uv2 + 1 ] = uv2i.v; offset_uv2 += 2; } } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { fi = chunk_faces4[ f ]; face = obj_faces[ fi ]; uv2 = obj_uvs2[ fi ]; if ( uv2 === undefined ) continue; for ( i = 0; i < 4; i ++ ) { uv2i = uv2[ i ]; uv2Array[ offset_uv2 ] = uv2i.u; uv2Array[ offset_uv2 + 1 ] = uv2i.v; offset_uv2 += 2; } } if ( offset_uv2 > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUV2Buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, uv2Array, hint ); } } if ( dirtyElements ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; faceArray[ offset_face ] = vertexIndex; faceArray[ offset_face + 1 ] = vertexIndex + 1; faceArray[ offset_face + 2 ] = vertexIndex + 2; offset_face += 3; lineArray[ offset_line ] = vertexIndex; lineArray[ offset_line + 1 ] = vertexIndex + 1; lineArray[ offset_line + 2 ] = vertexIndex; lineArray[ offset_line + 3 ] = vertexIndex + 2; lineArray[ offset_line + 4 ] = vertexIndex + 1; lineArray[ offset_line + 5 ] = vertexIndex + 2; offset_line += 6; vertexIndex += 3; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; faceArray[ offset_face ] = vertexIndex; faceArray[ offset_face + 1 ] = vertexIndex + 1; faceArray[ offset_face + 2 ] = vertexIndex + 3; faceArray[ offset_face + 3 ] = vertexIndex + 1; faceArray[ offset_face + 4 ] = vertexIndex + 2; faceArray[ offset_face + 5 ] = vertexIndex + 3; offset_face += 6; lineArray[ offset_line ] = vertexIndex; lineArray[ offset_line + 1 ] = vertexIndex + 1; lineArray[ offset_line + 2 ] = vertexIndex; lineArray[ offset_line + 3 ] = vertexIndex + 3; lineArray[ offset_line + 4 ] = vertexIndex + 1; lineArray[ offset_line + 5 ] = vertexIndex + 2; lineArray[ offset_line + 6 ] = vertexIndex + 2; lineArray[ offset_line + 7 ] = vertexIndex + 3; offset_line += 8; vertexIndex += 4; } _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglFaceBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, faceArray, hint ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglLineBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, lineArray, hint ); } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( ! customAttribute.__original.needsUpdate ) continue; offset_custom = 0; offset_customSrc = 0; if ( customAttribute.size === 1 ) { if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; customAttribute.array[ offset_custom ] = customAttribute.value[ face.a ]; customAttribute.array[ offset_custom + 1 ] = customAttribute.value[ face.b ]; customAttribute.array[ offset_custom + 2 ] = customAttribute.value[ face.c ]; offset_custom += 3; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; customAttribute.array[ offset_custom ] = customAttribute.value[ face.a ]; customAttribute.array[ offset_custom + 1 ] = customAttribute.value[ face.b ]; customAttribute.array[ offset_custom + 2 ] = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom + 3 ] = customAttribute.value[ face.d ]; offset_custom += 4; } } else if ( customAttribute.boundTo === "faces" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; customAttribute.array[ offset_custom ] = value; customAttribute.array[ offset_custom + 1 ] = value; customAttribute.array[ offset_custom + 2 ] = value; offset_custom += 3; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces4[ f ] ]; customAttribute.array[ offset_custom ] = value; customAttribute.array[ offset_custom + 1 ] = value; customAttribute.array[ offset_custom + 2 ] = value; customAttribute.array[ offset_custom + 3 ] = value; offset_custom += 4; } } } else if ( customAttribute.size === 2 ) { if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; offset_custom += 6; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; v4 = customAttribute.value[ face.d ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; customAttribute.array[ offset_custom + 6 ] = v4.x; customAttribute.array[ offset_custom + 7 ] = v4.y; offset_custom += 8; } } else if ( customAttribute.boundTo === "faces" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value; v2 = value; v3 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; offset_custom += 6; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces4[ f ] ]; v1 = value; v2 = value; v3 = value; v4 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; customAttribute.array[ offset_custom + 6 ] = v4.x; customAttribute.array[ offset_custom + 7 ] = v4.y; offset_custom += 8; } } } else if ( customAttribute.size === 3 ) { var pp; if ( customAttribute.type === "c" ) { pp = [ "r", "g", "b" ]; } else { pp = [ "x", "y", "z" ]; } if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; offset_custom += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; v4 = customAttribute.value[ face.d ]; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 9 ] = v4[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 10 ] = v4[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 11 ] = v4[ pp[ 2 ] ]; offset_custom += 12; } } else if ( customAttribute.boundTo === "faces" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value; v2 = value; v3 = value; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; offset_custom += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces4[ f ] ]; v1 = value; v2 = value; v3 = value; v4 = value; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 9 ] = v4[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 10 ] = v4[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 11 ] = v4[ pp[ 2 ] ]; offset_custom += 12; } } } else if ( customAttribute.size === 4 ) { if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; offset_custom += 12; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; v4 = customAttribute.value[ face.d ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; customAttribute.array[ offset_custom + 12 ] = v4.x; customAttribute.array[ offset_custom + 13 ] = v4.y; customAttribute.array[ offset_custom + 14 ] = v4.z; customAttribute.array[ offset_custom + 15 ] = v4.w; offset_custom += 16; } } else if ( customAttribute.boundTo === "faces" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value; v2 = value; v3 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; offset_custom += 12; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces4[ f ] ]; v1 = value; v2 = value; v3 = value; v4 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; customAttribute.array[ offset_custom + 12 ] = v4.x; customAttribute.array[ offset_custom + 13 ] = v4.y; customAttribute.array[ offset_custom + 14 ] = v4.z; customAttribute.array[ offset_custom + 15 ] = v4.w; offset_custom += 16; } } } _gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint ); } } if ( dispose ) { delete geometryGroup.__inittedArrays; delete geometryGroup.__colorArray; delete geometryGroup.__normalArray; delete geometryGroup.__tangentArray; delete geometryGroup.__uvArray; delete geometryGroup.__uv2Array; delete geometryGroup.__faceArray; delete geometryGroup.__vertexArray; delete geometryGroup.__lineArray; delete geometryGroup.__skinVertexAArray; delete geometryGroup.__skinVertexBArray; delete geometryGroup.__skinIndexArray; delete geometryGroup.__skinWeightArray; } }; // Buffer rendering this.renderBufferImmediate = function ( object, program, shading ) { if ( ! object.__webglVertexBuffer ) object.__webglVertexBuffer = _gl.createBuffer(); if ( ! object.__webglNormalBuffer ) object.__webglNormalBuffer = _gl.createBuffer(); if ( object.hasPos ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW ); _gl.enableVertexAttribArray( program.attributes.position ); _gl.vertexAttribPointer( program.attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasNormal ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglNormalBuffer ); if ( shading === THREE.FlatShading ) { var nx, ny, nz, nax, nbx, ncx, nay, nby, ncy, naz, nbz, ncz, normalArray, i, il = object.count * 3; for( i = 0; i < il; i += 9 ) { normalArray = object.normalArray; nax = normalArray[ i ]; nay = normalArray[ i + 1 ]; naz = normalArray[ i + 2 ]; nbx = normalArray[ i + 3 ]; nby = normalArray[ i + 4 ]; nbz = normalArray[ i + 5 ]; ncx = normalArray[ i + 6 ]; ncy = normalArray[ i + 7 ]; ncz = normalArray[ i + 8 ]; nx = ( nax + nbx + ncx ) / 3; ny = ( nay + nby + ncy ) / 3; nz = ( naz + nbz + ncz ) / 3; normalArray[ i ] = nx; normalArray[ i + 1 ] = ny; normalArray[ i + 2 ] = nz; normalArray[ i + 3 ] = nx; normalArray[ i + 4 ] = ny; normalArray[ i + 5 ] = nz; normalArray[ i + 6 ] = nx; normalArray[ i + 7 ] = ny; normalArray[ i + 8 ] = nz; } } _gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW ); _gl.enableVertexAttribArray( program.attributes.normal ); _gl.vertexAttribPointer( program.attributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } _gl.drawArrays( _gl.TRIANGLES, 0, object.count ); object.count = 0; }; this.renderBufferDirect = function ( camera, lights, fog, material, geometryGroup, object ) { if ( material.opacity === 0 ) return; var program, attributes, linewidth, primitives, a, attribute; program = setProgram( camera, lights, fog, material, object ); attributes = program.attributes; var updateBuffers = false, wireframeBit = material.wireframe ? 1 : 0, geometryGroupHash = ( geometryGroup.id * 0xffffff ) + ( program.id * 2 ) + wireframeBit; if ( geometryGroupHash !== _currentGeometryGroupHash ) { _currentGeometryGroupHash = geometryGroupHash; updateBuffers = true; } // render mesh if ( object instanceof THREE.Mesh ) { var offsets = geometryGroup.offsets; for ( var i = 0, il = offsets.length; i < il; ++ i ) { if ( updateBuffers ) { // vertices _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.vertexPositionBuffer ); _gl.vertexAttribPointer( attributes.position, geometryGroup.vertexPositionBuffer.itemSize, _gl.FLOAT, false, 0, offsets[ i ].index * 4 * 3 ); // normals if ( attributes.normal >= 0 && geometryGroup.vertexNormalBuffer ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.vertexNormalBuffer ); _gl.vertexAttribPointer( attributes.normal, geometryGroup.vertexNormalBuffer.itemSize, _gl.FLOAT, false, 0, offsets[ i ].index * 4 * 3 ); } // uvs if ( attributes.uv >= 0 && geometryGroup.vertexUvBuffer ) { if ( geometryGroup.vertexUvBuffer ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.vertexUvBuffer ); _gl.vertexAttribPointer( attributes.uv, geometryGroup.vertexUvBuffer.itemSize, _gl.FLOAT, false, 0, offsets[ i ].index * 4 * 2 ); _gl.enableVertexAttribArray( attributes.uv ); } else { _gl.disableVertexAttribArray( attributes.uv ); } } // colors if ( attributes.color >= 0 && geometryGroup.vertexColorBuffer ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.vertexColorBuffer ); _gl.vertexAttribPointer( attributes.color, geometryGroup.vertexColorBuffer.itemSize, _gl.FLOAT, false, 0, offsets[ i ].index * 4 * 4 ); } _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.vertexIndexBuffer ); } // render indexed triangles _gl.drawElements( _gl.TRIANGLES, offsets[ i ].count, _gl.UNSIGNED_SHORT, offsets[ i ].start * 2 ); // 2 = Uint16 _this.info.render.calls ++; _this.info.render.vertices += offsets[ i ].count; // not really true, here vertices can be shared _this.info.render.faces += offsets[ i ].count / 3; } } }; this.renderBuffer = function ( camera, lights, fog, material, geometryGroup, object ) { if ( material.opacity === 0 ) return; var program, attributes, linewidth, primitives, a, attribute, i, il; program = setProgram( camera, lights, fog, material, object ); attributes = program.attributes; var updateBuffers = false, wireframeBit = material.wireframe ? 1 : 0, geometryGroupHash = ( geometryGroup.id * 0xffffff ) + ( program.id * 2 ) + wireframeBit; if ( geometryGroupHash !== _currentGeometryGroupHash ) { _currentGeometryGroupHash = geometryGroupHash; updateBuffers = true; } // vertices if ( !material.morphTargets && attributes.position >= 0 ) { if ( updateBuffers ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } } else { if ( object.morphTargetBase ) { setupMorphTargets( material, geometryGroup, object ); } } if ( updateBuffers ) { // custom attributes // Use the per-geometryGroup custom attribute arrays which are setup in initMeshBuffers if ( geometryGroup.__webglCustomAttributesList ) { for ( i = 0, il = geometryGroup.__webglCustomAttributesList.length; i < il; i ++ ) { attribute = geometryGroup.__webglCustomAttributesList[ i ]; if( attributes[ attribute.buffer.belongsToAttribute ] >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, attribute.buffer ); _gl.vertexAttribPointer( attributes[ attribute.buffer.belongsToAttribute ], attribute.size, _gl.FLOAT, false, 0, 0 ); } } } // colors if ( attributes.color >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglColorBuffer ); _gl.vertexAttribPointer( attributes.color, 3, _gl.FLOAT, false, 0, 0 ); } // normals if ( attributes.normal >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglNormalBuffer ); _gl.vertexAttribPointer( attributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } // tangents if ( attributes.tangent >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglTangentBuffer ); _gl.vertexAttribPointer( attributes.tangent, 4, _gl.FLOAT, false, 0, 0 ); } // uvs if ( attributes.uv >= 0 ) { if ( geometryGroup.__webglUVBuffer ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUVBuffer ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 ); _gl.enableVertexAttribArray( attributes.uv ); } else { _gl.disableVertexAttribArray( attributes.uv ); } } if ( attributes.uv2 >= 0 ) { if ( geometryGroup.__webglUV2Buffer ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUV2Buffer ); _gl.vertexAttribPointer( attributes.uv2, 2, _gl.FLOAT, false, 0, 0 ); _gl.enableVertexAttribArray( attributes.uv2 ); } else { _gl.disableVertexAttribArray( attributes.uv2 ); } } if ( material.skinning && attributes.skinVertexA >= 0 && attributes.skinVertexB >= 0 && attributes.skinIndex >= 0 && attributes.skinWeight >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexABuffer ); _gl.vertexAttribPointer( attributes.skinVertexA, 4, _gl.FLOAT, false, 0, 0 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexBBuffer ); _gl.vertexAttribPointer( attributes.skinVertexB, 4, _gl.FLOAT, false, 0, 0 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinIndicesBuffer ); _gl.vertexAttribPointer( attributes.skinIndex, 4, _gl.FLOAT, false, 0, 0 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinWeightsBuffer ); _gl.vertexAttribPointer( attributes.skinWeight, 4, _gl.FLOAT, false, 0, 0 ); } } // render mesh if ( object instanceof THREE.Mesh ) { // wireframe if ( material.wireframe ) { setLineWidth( material.wireframeLinewidth ); if ( updateBuffers ) _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglLineBuffer ); _gl.drawElements( _gl.LINES, geometryGroup.__webglLineCount, _gl.UNSIGNED_SHORT, 0 ); // triangles } else { if ( updateBuffers ) _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglFaceBuffer ); _gl.drawElements( _gl.TRIANGLES, geometryGroup.__webglFaceCount, _gl.UNSIGNED_SHORT, 0 ); } _this.info.render.calls ++; _this.info.render.vertices += geometryGroup.__webglFaceCount; _this.info.render.faces += geometryGroup.__webglFaceCount / 3; // render lines } else if ( object instanceof THREE.Line ) { primitives = ( object.type === THREE.LineStrip ) ? _gl.LINE_STRIP : _gl.LINES; setLineWidth( material.linewidth ); _gl.drawArrays( primitives, 0, geometryGroup.__webglLineCount ); _this.info.render.calls ++; // render particles } else if ( object instanceof THREE.ParticleSystem ) { _gl.drawArrays( _gl.POINTS, 0, geometryGroup.__webglParticleCount ); _this.info.render.calls ++; _this.info.render.points += geometryGroup.__webglParticleCount; // render ribbon } else if ( object instanceof THREE.Ribbon ) { _gl.drawArrays( _gl.TRIANGLE_STRIP, 0, geometryGroup.__webglVertexCount ); _this.info.render.calls ++; } }; function setupMorphTargets ( material, geometryGroup, object ) { // set base var attributes = material.program.attributes; if ( object.morphTargetBase !== - 1 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ object.morphTargetBase ] ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } else if ( attributes.position >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.morphTargetForcedOrder.length ) { // set forced order var m = 0; var order = object.morphTargetForcedOrder; var influences = object.morphTargetInfluences; while ( m < material.numSupportedMorphTargets && m < order.length ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ order[ m ] ] ); _gl.vertexAttribPointer( attributes[ "morphTarget" + m ], 3, _gl.FLOAT, false, 0, 0 ); if ( material.morphNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ order[ m ] ] ); _gl.vertexAttribPointer( attributes[ "morphNormal" + m ], 3, _gl.FLOAT, false, 0, 0 ); } object.__webglMorphTargetInfluences[ m ] = influences[ order[ m ] ]; m ++; } } else { // find most influencing var used = []; var candidateInfluence = - 1; var candidate = 0; var influences = object.morphTargetInfluences; var i, il = influences.length; var m = 0; if ( object.morphTargetBase !== - 1 ) { used[ object.morphTargetBase ] = true; } while ( m < material.numSupportedMorphTargets ) { for ( i = 0; i < il; i ++ ) { if ( !used[ i ] && influences[ i ] > candidateInfluence ) { candidate = i; candidateInfluence = influences[ candidate ]; } } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ candidate ] ); _gl.vertexAttribPointer( attributes[ "morphTarget" + m ], 3, _gl.FLOAT, false, 0, 0 ); if ( material.morphNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ candidate ] ); _gl.vertexAttribPointer( attributes[ "morphNormal" + m ], 3, _gl.FLOAT, false, 0, 0 ); } object.__webglMorphTargetInfluences[ m ] = candidateInfluence; used[ candidate ] = 1; candidateInfluence = -1; m ++; } } // load updated influences uniform if( material.program.uniforms.morphTargetInfluences !== null ) { _gl.uniform1fv( material.program.uniforms.morphTargetInfluences, object.__webglMorphTargetInfluences ); } }; function painterSort ( a, b ) { return b.z - a.z; }; // Rendering this.render = function ( scene, camera, renderTarget, forceClear ) { var i, il, webglObject, object, renderList, lights = scene.__lights, fog = scene.fog; _currentMaterialId = -1; // update scene graph if ( camera.parent === undefined ) { console.warn( 'DEPRECATED: Camera hasn\'t been added to a Scene. Adding it...' ); scene.add( camera ); } if ( this.autoUpdateScene ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( ! camera._viewMatrixArray ) camera._viewMatrixArray = new Float32Array( 16 ); if ( ! camera._projectionMatrixArray ) camera._projectionMatrixArray = new Float32Array( 16 ); camera.matrixWorldInverse.getInverse( camera.matrixWorld ); camera.matrixWorldInverse.flattenToArray( camera._viewMatrixArray ); camera.projectionMatrix.flattenToArray( camera._projectionMatrixArray ); _projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // update WebGL objects if ( this.autoUpdateObjects ) this.initWebGLObjects( scene ); // custom render plugins (pre pass) renderPlugins( this.renderPluginsPre, scene, camera ); // _this.info.render.calls = 0; _this.info.render.vertices = 0; _this.info.render.faces = 0; _this.info.render.points = 0; this.setRenderTarget( renderTarget ); if ( this.autoClear || forceClear ) { this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil ); } // set matrices for regular objects (frustum culled) renderList = scene.__webglObjects; for ( i = 0, il = renderList.length; i < il; i ++ ) { webglObject = renderList[ i ]; object = webglObject.object; webglObject.render = false; if ( object.visible ) { if ( ! ( object instanceof THREE.Mesh || object instanceof THREE.ParticleSystem ) || ! ( object.frustumCulled ) || _frustum.contains( object ) ) { //object.matrixWorld.flattenToArray( object._objectMatrixArray ); setupMatrices( object, camera ); unrollBufferMaterial( webglObject ); webglObject.render = true; if ( this.sortObjects ) { if ( object.renderDepth ) { webglObject.z = object.renderDepth; } else { _vector3.copy( object.matrixWorld.getPosition() ); _projScreenMatrix.multiplyVector3( _vector3 ); webglObject.z = _vector3.z; } } } } } if ( this.sortObjects ) { renderList.sort( painterSort ); } // set matrices for immediate objects renderList = scene.__webglObjectsImmediate; for ( i = 0, il = renderList.length; i < il; i ++ ) { webglObject = renderList[ i ]; object = webglObject.object; if ( object.visible ) { if( object.matrixAutoUpdate ) { //object.matrixWorld.flattenToArray( object._objectMatrixArray ); } setupMatrices( object, camera ); unrollImmediateBufferMaterial( webglObject ); } } if ( scene.overrideMaterial ) { var material = scene.overrideMaterial; this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); this.setDepthTest( material.depthTest ); this.setDepthWrite( material.depthWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); renderObjects( scene.__webglObjects, false, "", camera, lights, fog, true, material ); renderObjectsImmediate( scene.__webglObjectsImmediate, "", camera, lights, fog, false, material ); } else { // opaque pass (front-to-back order) this.setBlending( THREE.NormalBlending ); renderObjects( scene.__webglObjects, true, "opaque", camera, lights, fog, false ); renderObjectsImmediate( scene.__webglObjectsImmediate, "opaque", camera, lights, fog, false ); // transparent pass (back-to-front order) renderObjects( scene.__webglObjects, false, "transparent", camera, lights, fog, true ); renderObjectsImmediate( scene.__webglObjectsImmediate, "transparent", camera, lights, fog, true ); } // custom render plugins (post pass) renderPlugins( this.renderPluginsPost, scene, camera ); // Generate mipmap if we're using any kind of mipmap filtering if ( renderTarget && renderTarget.generateMipmaps && renderTarget.minFilter !== THREE.NearestFilter && renderTarget.minFilter !== THREE.LinearFilter ) { updateRenderTargetMipmap( renderTarget ); } // Ensure depth buffer writing is enabled so it can be cleared on next render this.setDepthTest( true ); this.setDepthWrite( true ); // _gl.finish(); }; function renderPlugins( plugins, scene, camera ) { if ( ! plugins.length ) return; for ( var i = 0, il = plugins.length; i < il; i ++ ) { _currentProgram = null; _currentCamera = null; _oldBlending = -1; _oldDepthTest = -1; _oldDepthWrite = -1; _currentGeometryGroupHash = -1; _currentMaterialId = -1; plugins[ i ].render( scene, camera, _currentWidth, _currentHeight ); _currentProgram = null; _currentCamera = null; _oldBlending = -1; _oldDepthTest = -1; _oldDepthWrite = -1; _currentGeometryGroupHash = -1; _currentMaterialId = -1; } }; function renderObjects ( renderList, reverse, materialType, camera, lights, fog, useBlending, overrideMaterial ) { var webglObject, object, buffer, material, start, end, delta; if ( reverse ) { start = renderList.length - 1; end = -1; delta = -1; } else { start = 0; end = renderList.length; delta = 1; } for ( var i = start; i !== end; i += delta ) { webglObject = renderList[ i ]; if ( webglObject.render ) { object = webglObject.object; buffer = webglObject.buffer; if ( overrideMaterial ) { material = overrideMaterial; } else { material = webglObject[ materialType ]; if ( ! material ) continue; if ( useBlending ) _this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); _this.setDepthTest( material.depthTest ); _this.setDepthWrite( material.depthWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } _this.setObjectFaces( object ); if ( buffer instanceof THREE.BufferGeometry ) { _this.renderBufferDirect( camera, lights, fog, material, buffer, object ); } else { _this.renderBuffer( camera, lights, fog, material, buffer, object ); } } } }; function renderObjectsImmediate ( renderList, materialType, camera, lights, fog, useBlending, overrideMaterial ) { var webglObject, object, material, program; for ( var i = 0, il = renderList.length; i < il; i ++ ) { webglObject = renderList[ i ]; object = webglObject.object; if ( object.visible ) { if ( overrideMaterial ) { material = overrideMaterial; } else { material = webglObject[ materialType ]; if ( ! material ) continue; if ( useBlending ) _this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); _this.setDepthTest( material.depthTest ); _this.setDepthWrite( material.depthWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } _this.renderImmediateObject( camera, lights, fog, material, object ); } } }; this.renderImmediateObject = function ( camera, lights, fog, material, object ) { var program = setProgram( camera, lights, fog, material, object ); _currentGeometryGroupHash = -1; _this.setObjectFaces( object ); if ( object.immediateRenderCallback ) { object.immediateRenderCallback( program, _gl, _frustum ); } else { object.render( function( object ) { _this.renderBufferImmediate( object, program, material.shading ); } ); } }; function unrollImmediateBufferMaterial ( globject ) { var object = globject.object, material = object.material; if ( material.transparent ) { globject.transparent = material; globject.opaque = null; } else { globject.opaque = material; globject.transparent = null; } }; function unrollBufferMaterial ( globject ) { var object = globject.object, buffer = globject.buffer, material, materialIndex, meshMaterial; meshMaterial = object.material; if ( meshMaterial instanceof THREE.MeshFaceMaterial ) { materialIndex = buffer.materialIndex; if ( materialIndex >= 0 ) { material = object.geometry.materials[ materialIndex ]; if ( material.transparent ) { globject.transparent = material; globject.opaque = null; } else { globject.opaque = material; globject.transparent = null; } } } else { material = meshMaterial; if ( material ) { if ( material.transparent ) { globject.transparent = material; globject.opaque = null; } else { globject.opaque = material; globject.transparent = null; } } } }; // Geometry splitting function sortFacesByMaterial ( geometry ) { var f, fl, face, materialIndex, vertices, materialHash, groupHash, hash_map = {}; var numMorphTargets = geometry.morphTargets.length; var numMorphNormals = geometry.morphNormals.length; geometry.geometryGroups = {}; for ( f = 0, fl = geometry.faces.length; f < fl; f ++ ) { face = geometry.faces[ f ]; materialIndex = face.materialIndex; materialHash = ( materialIndex !== undefined ) ? materialIndex : -1; if ( hash_map[ materialHash ] === undefined ) { hash_map[ materialHash ] = { 'hash': materialHash, 'counter': 0 }; } groupHash = hash_map[ materialHash ].hash + '_' + hash_map[ materialHash ].counter; if ( geometry.geometryGroups[ groupHash ] === undefined ) { geometry.geometryGroups[ groupHash ] = { 'faces3': [], 'faces4': [], 'materialIndex': materialIndex, 'vertices': 0, 'numMorphTargets': numMorphTargets, 'numMorphNormals': numMorphNormals }; } vertices = face instanceof THREE.Face3 ? 3 : 4; if ( geometry.geometryGroups[ groupHash ].vertices + vertices > 65535 ) { hash_map[ materialHash ].counter += 1; groupHash = hash_map[ materialHash ].hash + '_' + hash_map[ materialHash ].counter; if ( geometry.geometryGroups[ groupHash ] === undefined ) { geometry.geometryGroups[ groupHash ] = { 'faces3': [], 'faces4': [], 'materialIndex': materialIndex, 'vertices': 0, 'numMorphTargets': numMorphTargets, 'numMorphNormals': numMorphNormals }; } } if ( face instanceof THREE.Face3 ) { geometry.geometryGroups[ groupHash ].faces3.push( f ); } else { geometry.geometryGroups[ groupHash ].faces4.push( f ); } geometry.geometryGroups[ groupHash ].vertices += vertices; } geometry.geometryGroupsList = []; for ( var g in geometry.geometryGroups ) { geometry.geometryGroups[ g ].id = _geometryGroupCounter ++; geometry.geometryGroupsList.push( geometry.geometryGroups[ g ] ); } }; // Objects refresh this.initWebGLObjects = function ( scene ) { if ( !scene.__webglObjects ) { scene.__webglObjects = []; scene.__webglObjectsImmediate = []; scene.__webglSprites = []; scene.__webglFlares = []; } while ( scene.__objectsAdded.length ) { addObject( scene.__objectsAdded[ 0 ], scene ); scene.__objectsAdded.splice( 0, 1 ); } while ( scene.__objectsRemoved.length ) { removeObject( scene.__objectsRemoved[ 0 ], scene ); scene.__objectsRemoved.splice( 0, 1 ); } // update must be called after objects adding / removal for ( var o = 0, ol = scene.__webglObjects.length; o < ol; o ++ ) { updateObject( scene.__webglObjects[ o ].object ); } }; // Objects adding function addObject ( object, scene ) { var g, geometry, geometryGroup; if ( ! object.__webglInit ) { object.__webglInit = true; object._modelViewMatrix = new THREE.Matrix4(); object._normalMatrix = new THREE.Matrix3(); object._normalMatrixArray = new Float32Array( 9 ); object._modelViewMatrixArray = new Float32Array( 16 ); object._objectMatrixArray = new Float32Array( 16 ); //object.matrixWorld.flattenToArray( object._objectMatrixArray ); if ( object instanceof THREE.Mesh ) { geometry = object.geometry; if ( geometry instanceof THREE.Geometry ) { if ( geometry.geometryGroups === undefined ) { sortFacesByMaterial( geometry ); } // create separate VBOs per geometry chunk for ( g in geometry.geometryGroups ) { geometryGroup = geometry.geometryGroups[ g ]; // initialise VBO on the first access if ( ! geometryGroup.__webglVertexBuffer ) { createMeshBuffers( geometryGroup ); initMeshBuffers( geometryGroup, object ); geometry.__dirtyVertices = true; geometry.__dirtyMorphTargets = true; geometry.__dirtyElements = true; geometry.__dirtyUvs = true; geometry.__dirtyNormals = true; geometry.__dirtyTangents = true; geometry.__dirtyColors = true; } } } } else if ( object instanceof THREE.Ribbon ) { geometry = object.geometry; if( ! geometry.__webglVertexBuffer ) { createRibbonBuffers( geometry ); initRibbonBuffers( geometry ); geometry.__dirtyVertices = true; geometry.__dirtyColors = true; } } else if ( object instanceof THREE.Line ) { geometry = object.geometry; if( ! geometry.__webglVertexBuffer ) { createLineBuffers( geometry ); initLineBuffers( geometry, object ); geometry.__dirtyVertices = true; geometry.__dirtyColors = true; } } else if ( object instanceof THREE.ParticleSystem ) { geometry = object.geometry; if ( ! geometry.__webglVertexBuffer ) { createParticleBuffers( geometry ); initParticleBuffers( geometry, object ); geometry.__dirtyVertices = true; geometry.__dirtyColors = true; } } } if ( ! object.__webglActive ) { if ( object instanceof THREE.Mesh ) { geometry = object.geometry; if ( geometry instanceof THREE.BufferGeometry ) { addBuffer( scene.__webglObjects, geometry, object ); } else { for ( g in geometry.geometryGroups ) { geometryGroup = geometry.geometryGroups[ g ]; addBuffer( scene.__webglObjects, geometryGroup, object ); } } } else if ( object instanceof THREE.Ribbon || object instanceof THREE.Line || object instanceof THREE.ParticleSystem ) { geometry = object.geometry; addBuffer( scene.__webglObjects, geometry, object ); } else if ( object instanceof THREE.ImmediateRenderObject || object.immediateRenderCallback ) { addBufferImmediate( scene.__webglObjectsImmediate, object ); } else if ( object instanceof THREE.Sprite ) { scene.__webglSprites.push( object ); } else if ( object instanceof THREE.LensFlare ) { scene.__webglFlares.push( object ); } object.__webglActive = true; } }; function addBuffer ( objlist, buffer, object ) { objlist.push( { buffer: buffer, object: object, opaque: null, transparent: null } ); }; function addBufferImmediate ( objlist, object ) { objlist.push( { object: object, opaque: null, transparent: null } ); }; // Objects updates function updateObject ( object ) { var geometry = object.geometry, geometryGroup, customAttributesDirty, material; if ( object instanceof THREE.Mesh ) { if ( geometry instanceof THREE.BufferGeometry ) { /* if ( geometry.__dirtyVertices || geometry.__dirtyElements || geometry.__dirtyUvs || geometry.__dirtyNormals || geometry.__dirtyColors ) { // TODO // set buffers from typed arrays } */ geometry.__dirtyVertices = false; geometry.__dirtyElements = false; geometry.__dirtyUvs = false; geometry.__dirtyNormals = false; geometry.__dirtyColors = false; } else { // check all geometry groups for( var i = 0, il = geometry.geometryGroupsList.length; i < il; i ++ ) { geometryGroup = geometry.geometryGroupsList[ i ]; material = getBufferMaterial( object, geometryGroup ); customAttributesDirty = material.attributes && areCustomAttributesDirty( material ); if ( geometry.__dirtyVertices || geometry.__dirtyMorphTargets || geometry.__dirtyElements || geometry.__dirtyUvs || geometry.__dirtyNormals || geometry.__dirtyColors || geometry.__dirtyTangents || customAttributesDirty ) { setMeshBuffers( geometryGroup, object, _gl.DYNAMIC_DRAW, !geometry.dynamic, material ); } } geometry.__dirtyVertices = false; geometry.__dirtyMorphTargets = false; geometry.__dirtyElements = false; geometry.__dirtyUvs = false; geometry.__dirtyNormals = false; geometry.__dirtyColors = false; geometry.__dirtyTangents = false; material.attributes && clearCustomAttributes( material ); } } else if ( object instanceof THREE.Ribbon ) { if ( geometry.__dirtyVertices || geometry.__dirtyColors ) { setRibbonBuffers( geometry, _gl.DYNAMIC_DRAW ); } geometry.__dirtyVertices = false; geometry.__dirtyColors = false; } else if ( object instanceof THREE.Line ) { material = getBufferMaterial( object, geometryGroup ); customAttributesDirty = material.attributes && areCustomAttributesDirty( material ); if ( geometry.__dirtyVertices || geometry.__dirtyColors || customAttributesDirty ) { setLineBuffers( geometry, _gl.DYNAMIC_DRAW ); } geometry.__dirtyVertices = false; geometry.__dirtyColors = false; material.attributes && clearCustomAttributes( material ); } else if ( object instanceof THREE.ParticleSystem ) { material = getBufferMaterial( object, geometryGroup ); customAttributesDirty = material.attributes && areCustomAttributesDirty( material ); if ( geometry.__dirtyVertices || geometry.__dirtyColors || object.sortParticles || customAttributesDirty ) { setParticleBuffers( geometry, _gl.DYNAMIC_DRAW, object ); } geometry.__dirtyVertices = false; geometry.__dirtyColors = false; material.attributes && clearCustomAttributes( material ); } }; // Objects updates - custom attributes check function areCustomAttributesDirty ( material ) { for ( var a in material.attributes ) { if ( material.attributes[ a ].needsUpdate ) return true; } return false; }; function clearCustomAttributes ( material ) { for ( var a in material.attributes ) { material.attributes[ a ].needsUpdate = false; } }; // Objects removal function removeObject ( object, scene ) { if ( object instanceof THREE.Mesh || object instanceof THREE.ParticleSystem || object instanceof THREE.Ribbon || object instanceof THREE.Line ) { removeInstances( scene.__webglObjects, object ); } else if ( object instanceof THREE.Sprite ) { removeInstancesDirect( scene.__webglSprites, object ); } else if ( object instanceof THREE.LensFlare ) { removeInstancesDirect( scene.__webglFlares, object ); } else if ( object instanceof THREE.ImmediateRenderObject || object.immediateRenderCallback ) { removeInstances( scene.__webglObjectsImmediate, object ); } object.__webglActive = false; }; function removeInstances ( objlist, object ) { for ( var o = objlist.length - 1; o >= 0; o -- ) { if ( objlist[ o ].object === object ) { objlist.splice( o, 1 ); } } }; function removeInstancesDirect ( objlist, object ) { for ( var o = objlist.length - 1; o >= 0; o -- ) { if ( objlist[ o ] === object ) { objlist.splice( o, 1 ); } } }; // Materials this.initMaterial = function ( material, lights, fog, object ) { var u, a, identifiers, i, parameters, maxLightCount, maxBones, maxShadows, shaderID; if ( material instanceof THREE.MeshDepthMaterial ) { shaderID = 'depth'; } else if ( material instanceof THREE.MeshNormalMaterial ) { shaderID = 'normal'; } else if ( material instanceof THREE.MeshBasicMaterial ) { shaderID = 'basic'; } else if ( material instanceof THREE.MeshLambertMaterial ) { shaderID = 'lambert'; } else if ( material instanceof THREE.MeshPhongMaterial ) { shaderID = 'phong'; } else if ( material instanceof THREE.LineBasicMaterial ) { shaderID = 'basic'; } else if ( material instanceof THREE.ParticleBasicMaterial ) { shaderID = 'particle_basic'; } if ( shaderID ) { setMaterialShaders( material, THREE.ShaderLib[ shaderID ] ); } // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) maxLightCount = allocateLights( lights ); maxShadows = allocateShadows( lights ); maxBones = allocateBones( object ); parameters = { map: !!material.map, envMap: !!material.envMap, lightMap: !!material.lightMap, vertexColors: material.vertexColors, fog: fog, useFog: material.fog, sizeAttenuation: material.sizeAttenuation, skinning: material.skinning, morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: this.maxMorphTargets, maxMorphNormals: this.maxMorphNormals, maxDirLights: maxLightCount.directional, maxPointLights: maxLightCount.point, maxBones: maxBones, shadowMapEnabled: this.shadowMapEnabled && object.receiveShadow, shadowMapSoft: this.shadowMapSoft, shadowMapDebug: this.shadowMapDebug, shadowMapCascade: this.shadowMapCascade, maxShadows: maxShadows, alphaTest: material.alphaTest, metal: material.metal, perPixel: material.perPixel, wrapAround: material.wrapAround, doubleSided: object && object.doubleSided }; material.program = buildProgram( shaderID, material.fragmentShader, material.vertexShader, material.uniforms, material.attributes, parameters ); var attributes = material.program.attributes; if ( attributes.position >= 0 ) _gl.enableVertexAttribArray( attributes.position ); if ( attributes.color >= 0 ) _gl.enableVertexAttribArray( attributes.color ); if ( attributes.normal >= 0 ) _gl.enableVertexAttribArray( attributes.normal ); if ( attributes.tangent >= 0 ) _gl.enableVertexAttribArray( attributes.tangent ); if ( material.skinning && attributes.skinVertexA >=0 && attributes.skinVertexB >= 0 && attributes.skinIndex >= 0 && attributes.skinWeight >= 0 ) { _gl.enableVertexAttribArray( attributes.skinVertexA ); _gl.enableVertexAttribArray( attributes.skinVertexB ); _gl.enableVertexAttribArray( attributes.skinIndex ); _gl.enableVertexAttribArray( attributes.skinWeight ); } if ( material.attributes ) { for ( a in material.attributes ) { if( attributes[ a ] !== undefined && attributes[ a ] >= 0 ) _gl.enableVertexAttribArray( attributes[ a ] ); } } if ( material.morphTargets ) { material.numSupportedMorphTargets = 0; var id, base = "morphTarget"; for ( i = 0; i < this.maxMorphTargets; i ++ ) { id = base + i; if ( attributes[ id ] >= 0 ) { _gl.enableVertexAttribArray( attributes[ id ] ); material.numSupportedMorphTargets ++; } } } if ( material.morphNormals ) { material.numSupportedMorphNormals = 0; var id, base = "morphNormal"; for ( i = 0; i < this.maxMorphNormals; i ++ ) { id = base + i; if ( attributes[ id ] >= 0 ) { _gl.enableVertexAttribArray( attributes[ id ] ); material.numSupportedMorphNormals ++; } } } material.uniformsList = []; for ( u in material.uniforms ) { material.uniformsList.push( [ material.uniforms[ u ], u ] ); } }; function setMaterialShaders( material, shaders ) { material.uniforms = THREE.UniformsUtils.clone( shaders.uniforms ); material.vertexShader = shaders.vertexShader; material.fragmentShader = shaders.fragmentShader; }; function setProgram( camera, lights, fog, material, object ) { if ( ! material.program || material.needsUpdate ) { _this.initMaterial( material, lights, fog, object ); material.needsUpdate = false; } if ( material.morphTargets ) { if ( ! object.__webglMorphTargetInfluences ) { object.__webglMorphTargetInfluences = new Float32Array( _this.maxMorphTargets ); for ( var i = 0, il = _this.maxMorphTargets; i < il; i ++ ) { object.__webglMorphTargetInfluences[ i ] = 0; } } } var refreshMaterial = false; var program = material.program, p_uniforms = program.uniforms, m_uniforms = material.uniforms; if ( program !== _currentProgram ) { _gl.useProgram( program ); _currentProgram = program; refreshMaterial = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshMaterial || camera !== _currentCamera ) { _gl.uniformMatrix4fv( p_uniforms.projectionMatrix, false, camera._projectionMatrixArray ); if ( camera !== _currentCamera ) _currentCamera = camera; } if ( refreshMaterial ) { // refresh uniforms common to several materials if ( fog && material.fog ) { refreshUniformsFog( m_uniforms, fog ); } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material.lights ) { setupLights( program, lights ); refreshUniformsLights( m_uniforms, _lights ); } if ( material instanceof THREE.MeshBasicMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshPhongMaterial ) { refreshUniformsCommon( m_uniforms, material ); } // refresh single material specific uniforms if ( material instanceof THREE.LineBasicMaterial ) { refreshUniformsLine( m_uniforms, material ); } else if ( material instanceof THREE.ParticleBasicMaterial ) { refreshUniformsParticle( m_uniforms, material ); } else if ( material instanceof THREE.MeshPhongMaterial ) { refreshUniformsPhong( m_uniforms, material ); } else if ( material instanceof THREE.MeshLambertMaterial ) { refreshUniformsLambert( m_uniforms, material ); } else if ( material instanceof THREE.MeshDepthMaterial ) { m_uniforms.mNear.value = camera.near; m_uniforms.mFar.value = camera.far; m_uniforms.opacity.value = material.opacity; } else if ( material instanceof THREE.MeshNormalMaterial ) { m_uniforms.opacity.value = material.opacity; } if ( object.receiveShadow && ! material._shadowPass ) { refreshUniformsShadow( m_uniforms, lights ); } // load common uniforms loadUniformsGeneric( program, material.uniformsList ); // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material instanceof THREE.ShaderMaterial || material instanceof THREE.MeshPhongMaterial || material.envMap ) { if ( p_uniforms.cameraPosition !== null ) { var position = camera.matrixWorld.getPosition(); _gl.uniform3f( p_uniforms.cameraPosition, position.x, position.y, position.z ); } } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.ShaderMaterial || material.skinning ) { if ( p_uniforms.viewMatrix !== null ) { _gl.uniformMatrix4fv( p_uniforms.viewMatrix, false, camera._viewMatrixArray ); } } if ( material.skinning ) { _gl.uniformMatrix4fv( p_uniforms.boneGlobalMatrices, false, object.boneMatrices ); } } loadUniformsMatrices( p_uniforms, object ); if ( material instanceof THREE.ShaderMaterial || material.envMap || material.skinning || object.receiveShadow ) { if ( p_uniforms.objectMatrix !== null ) { _gl.uniformMatrix4fv( p_uniforms.objectMatrix, false, object.matrixWorld.elements ); } } return program; }; // Uniforms (refresh uniforms objects) function refreshUniformsCommon ( uniforms, material ) { uniforms.opacity.value = material.opacity; if ( _this.gammaInput ) { uniforms.diffuse.value.copyGammaToLinear( material.color ); } else { uniforms.diffuse.value = material.color; } uniforms.map.texture = material.map; if ( material.map ) { uniforms.offsetRepeat.value.set( material.map.offset.x, material.map.offset.y, material.map.repeat.x, material.map.repeat.y ); } uniforms.lightMap.texture = material.lightMap; uniforms.envMap.texture = material.envMap; uniforms.flipEnvMap.value = ( material.envMap instanceof THREE.WebGLRenderTargetCube ) ? 1 : -1; if ( _this.gammaInput ) { //uniforms.reflectivity.value = material.reflectivity * material.reflectivity; uniforms.reflectivity.value = material.reflectivity; } else { uniforms.reflectivity.value = material.reflectivity; } uniforms.refractionRatio.value = material.refractionRatio; uniforms.combine.value = material.combine; uniforms.useRefract.value = material.envMap && material.envMap.mapping instanceof THREE.CubeRefractionMapping; }; function refreshUniformsLine ( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; }; function refreshUniformsParticle ( uniforms, material ) { uniforms.psColor.value = material.color; uniforms.opacity.value = material.opacity; uniforms.size.value = material.size; uniforms.scale.value = _canvas.height / 2.0; // TODO: Cache this. uniforms.map.texture = material.map; }; function refreshUniformsFog ( uniforms, fog ) { uniforms.fogColor.value = fog.color; if ( fog instanceof THREE.Fog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog instanceof THREE.FogExp2 ) { uniforms.fogDensity.value = fog.density; } }; function refreshUniformsPhong ( uniforms, material ) { uniforms.shininess.value = material.shininess; if ( _this.gammaInput ) { uniforms.ambient.value.copyGammaToLinear( material.ambient ); uniforms.emissive.value.copyGammaToLinear( material.emissive ); uniforms.specular.value.copyGammaToLinear( material.specular ); } else { uniforms.ambient.value = material.ambient; uniforms.emissive.value = material.emissive; uniforms.specular.value = material.specular; } if ( material.wrapAround ) { uniforms.wrapRGB.value.copy( material.wrapRGB ); } }; function refreshUniformsLambert ( uniforms, material ) { if ( _this.gammaInput ) { uniforms.ambient.value.copyGammaToLinear( material.ambient ); uniforms.emissive.value.copyGammaToLinear( material.emissive ); } else { uniforms.ambient.value = material.ambient; uniforms.emissive.value = material.emissive; } if ( material.wrapAround ) { uniforms.wrapRGB.value.copy( material.wrapRGB ); } }; function refreshUniformsLights ( uniforms, lights ) { uniforms.ambientLightColor.value = lights.ambient; uniforms.directionalLightColor.value = lights.directional.colors; uniforms.directionalLightDirection.value = lights.directional.positions; uniforms.pointLightColor.value = lights.point.colors; uniforms.pointLightPosition.value = lights.point.positions; uniforms.pointLightDistance.value = lights.point.distances; }; function refreshUniformsShadow ( uniforms, lights ) { if ( uniforms.shadowMatrix ) { var j = 0; for ( var i = 0, il = lights.length; i < il; i ++ ) { var light = lights[ i ]; if ( ! light.castShadow ) continue; if ( light instanceof THREE.SpotLight || ( light instanceof THREE.DirectionalLight && ! light.shadowCascade ) ) { uniforms.shadowMap.texture[ j ] = light.shadowMap; uniforms.shadowMapSize.value[ j ] = light.shadowMapSize; uniforms.shadowMatrix.value[ j ] = light.shadowMatrix; uniforms.shadowDarkness.value[ j ] = light.shadowDarkness; uniforms.shadowBias.value[ j ] = light.shadowBias; j ++; } } } }; // Uniforms (load to GPU) function loadUniformsMatrices ( uniforms, object ) { _gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, object._modelViewMatrix.elements ); if ( uniforms.normalMatrix ) { _gl.uniformMatrix3fv( uniforms.normalMatrix, false, object._normalMatrixArray ); } }; function loadUniformsGeneric ( program, uniforms ) { var uniform, value, type, location, texture, i, il, j, jl, offset; for( j = 0, jl = uniforms.length; j < jl; j ++ ) { location = program.uniforms[ uniforms[ j ][ 1 ] ]; if ( !location ) continue; uniform = uniforms[ j ][ 0 ]; type = uniform.type; value = uniform.value; // single integer if( type === "i" ) { _gl.uniform1i( location, value ); // single float } else if( type === "f" ) { _gl.uniform1f( location, value ); // single THREE.Vector2 } else if( type === "v2" ) { _gl.uniform2f( location, value.x, value.y ); // single THREE.Vector3 } else if( type === "v3" ) { _gl.uniform3f( location, value.x, value.y, value.z ); // single THREE.Vector4 } else if( type === "v4" ) { _gl.uniform4f( location, value.x, value.y, value.z, value.w ); // single THREE.Color } else if( type === "c" ) { _gl.uniform3f( location, value.r, value.g, value.b ); // flat array of floats (JS or typed array) } else if( type === "fv1" ) { _gl.uniform1fv( location, value ); // flat array of floats with 3 x N size (JS or typed array) } else if( type === "fv" ) { _gl.uniform3fv( location, value ); // array of THREE.Vector2 } else if( type === "v2v" ) { if ( ! uniform._array ) { uniform._array = new Float32Array( 2 * value.length ); } for ( i = 0, il = value.length; i < il; i ++ ) { offset = i * 2; uniform._array[ offset ] = value[ i ].x; uniform._array[ offset + 1 ] = value[ i ].y; } _gl.uniform2fv( location, uniform._array ); // array of THREE.Vector3 } else if( type === "v3v" ) { if ( ! uniform._array ) { uniform._array = new Float32Array( 3 * value.length ); } for ( i = 0, il = value.length; i < il; i ++ ) { offset = i * 3; uniform._array[ offset ] = value[ i ].x; uniform._array[ offset + 1 ] = value[ i ].y; uniform._array[ offset + 2 ] = value[ i ].z; } _gl.uniform3fv( location, uniform._array ); // array of THREE.Vector4 } else if( type == "v4v" ) { if ( ! uniform._array ) { uniform._array = new Float32Array( 4 * value.length ); } for ( i = 0, il = value.length; i < il; i ++ ) { offset = i * 4; uniform._array[ offset ] = value[ i ].x; uniform._array[ offset + 1 ] = value[ i ].y; uniform._array[ offset + 2 ] = value[ i ].z; uniform._array[ offset + 3 ] = value[ i ].w; } _gl.uniform4fv( location, uniform._array ); // single THREE.Matrix4 } else if( type === "m4" ) { if ( ! uniform._array ) { uniform._array = new Float32Array( 16 ); } value.flattenToArray( uniform._array ); _gl.uniformMatrix4fv( location, false, uniform._array ); // array of THREE.Matrix4 } else if( type === "m4v" ) { if ( ! uniform._array ) { uniform._array = new Float32Array( 16 * value.length ); } for ( i = 0, il = value.length; i < il; i ++ ) { value[ i ].flattenToArrayOffset( uniform._array, i * 16 ); } _gl.uniformMatrix4fv( location, false, uniform._array ); // single THREE.Texture (2d or cube) } else if( type === "t" ) { _gl.uniform1i( location, value ); texture = uniform.texture; if ( !texture ) continue; if ( texture.image instanceof Array && texture.image.length === 6 ) { setCubeTexture( texture, value ); } else if ( texture instanceof THREE.WebGLRenderTargetCube ) { setCubeTextureDynamic( texture, value ); } else { _this.setTexture( texture, value ); } // array of THREE.Texture (2d) } else if( type === "tv" ) { if ( ! uniform._array ) { uniform._array = []; for( i = 0, il = uniform.texture.length; i < il; i ++ ) { uniform._array[ i ] = value + i; } } _gl.uniform1iv( location, uniform._array ); for( i = 0, il = uniform.texture.length; i < il; i ++ ) { texture = uniform.texture[ i ]; if ( !texture ) continue; _this.setTexture( texture, uniform._array[ i ] ); } } } }; function setupMatrices ( object, camera ) { object._modelViewMatrix.multiply( camera.matrixWorldInverse, object.matrixWorld); object._normalMatrix.getInverse( object._modelViewMatrix ); object._normalMatrix.transposeIntoArray( object._normalMatrixArray ); }; function setupLights ( program, lights ) { var l, ll, light, n, r = 0, g = 0, b = 0, color, position, intensity, distance, zlights = _lights, dcolors = zlights.directional.colors, dpositions = zlights.directional.positions, pcolors = zlights.point.colors, ppositions = zlights.point.positions, pdistances = zlights.point.distances, dlength = 0, plength = 0, doffset = 0, poffset = 0; for ( l = 0, ll = lights.length; l < ll; l ++ ) { light = lights[ l ]; if ( light.onlyShadow ) continue; color = light.color; intensity = light.intensity; distance = light.distance; if ( light instanceof THREE.AmbientLight ) { if ( _this.gammaInput ) { r += color.r * color.r; g += color.g * color.g; b += color.b * color.b; } else { r += color.r; g += color.g; b += color.b; } } else if ( light instanceof THREE.DirectionalLight ) { doffset = dlength * 3; if ( _this.gammaInput ) { dcolors[ doffset ] = color.r * color.r * intensity * intensity; dcolors[ doffset + 1 ] = color.g * color.g * intensity * intensity; dcolors[ doffset + 2 ] = color.b * color.b * intensity * intensity; } else { dcolors[ doffset ] = color.r * intensity; dcolors[ doffset + 1 ] = color.g * intensity; dcolors[ doffset + 2 ] = color.b * intensity; } _direction.copy( light.matrixWorld.getPosition() ); _direction.subSelf( light.target.matrixWorld.getPosition() ); _direction.normalize(); dpositions[ doffset ] = _direction.x; dpositions[ doffset + 1 ] = _direction.y; dpositions[ doffset + 2 ] = _direction.z; dlength += 1; } else if( light instanceof THREE.PointLight || light instanceof THREE.SpotLight ) { poffset = plength * 3; if ( _this.gammaInput ) { pcolors[ poffset ] = color.r * color.r * intensity * intensity; pcolors[ poffset + 1 ] = color.g * color.g * intensity * intensity; pcolors[ poffset + 2 ] = color.b * color.b * intensity * intensity; } else { pcolors[ poffset ] = color.r * intensity; pcolors[ poffset + 1 ] = color.g * intensity; pcolors[ poffset + 2 ] = color.b * intensity; } position = light.matrixWorld.getPosition(); ppositions[ poffset ] = position.x; ppositions[ poffset + 1 ] = position.y; ppositions[ poffset + 2 ] = position.z; pdistances[ plength ] = distance; plength += 1; } } // null eventual remains from removed lights // (this is to avoid if in shader) for ( l = dlength * 3, ll = dcolors.length; l < ll; l ++ ) dcolors[ l ] = 0.0; for ( l = plength * 3, ll = pcolors.length; l < ll; l ++ ) pcolors[ l ] = 0.0; zlights.point.length = plength; zlights.directional.length = dlength; zlights.ambient[ 0 ] = r; zlights.ambient[ 1 ] = g; zlights.ambient[ 2 ] = b; }; // GL state setting this.setFaceCulling = function ( cullFace, frontFace ) { if ( cullFace ) { if ( !frontFace || frontFace === "ccw" ) { _gl.frontFace( _gl.CCW ); } else { _gl.frontFace( _gl.CW ); } if( cullFace === "back" ) { _gl.cullFace( _gl.BACK ); } else if( cullFace === "front" ) { _gl.cullFace( _gl.FRONT ); } else { _gl.cullFace( _gl.FRONT_AND_BACK ); } _gl.enable( _gl.CULL_FACE ); } else { _gl.disable( _gl.CULL_FACE ); } }; this.setObjectFaces = function ( object ) { if ( _oldDoubleSided !== object.doubleSided ) { if( object.doubleSided ) { _gl.disable( _gl.CULL_FACE ); } else { _gl.enable( _gl.CULL_FACE ); } _oldDoubleSided = object.doubleSided; } if ( _oldFlipSided !== object.flipSided ) { if( object.flipSided ) { _gl.frontFace( _gl.CW ); } else { _gl.frontFace( _gl.CCW ); } _oldFlipSided = object.flipSided; } }; this.setDepthTest = function ( depthTest ) { if ( _oldDepthTest !== depthTest ) { if ( depthTest ) { _gl.enable( _gl.DEPTH_TEST ); } else { _gl.disable( _gl.DEPTH_TEST ); } _oldDepthTest = depthTest; } }; this.setDepthWrite = function ( depthWrite ) { if ( _oldDepthWrite !== depthWrite ) { _gl.depthMask( depthWrite ); _oldDepthWrite = depthWrite; } }; function setLineWidth ( width ) { if ( width !== _oldLineWidth ) { _gl.lineWidth( width ); _oldLineWidth = width; } }; function setPolygonOffset ( polygonoffset, factor, units ) { if ( _oldPolygonOffset !== polygonoffset ) { if ( polygonoffset ) { _gl.enable( _gl.POLYGON_OFFSET_FILL ); } else { _gl.disable( _gl.POLYGON_OFFSET_FILL ); } _oldPolygonOffset = polygonoffset; } if ( polygonoffset && ( _oldPolygonOffsetFactor !== factor || _oldPolygonOffsetUnits !== units ) ) { _gl.polygonOffset( factor, units ); _oldPolygonOffsetFactor = factor; _oldPolygonOffsetUnits = units; } }; this.setBlending = function ( blending, blendEquation, blendSrc, blendDst ) { if ( blending !== _oldBlending ) { switch ( blending ) { case THREE.NoBlending: _gl.disable( _gl.BLEND ); break; case THREE.AdditiveBlending: _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.SRC_ALPHA, _gl.ONE ); break; case THREE.SubtractiveBlending: // TODO: Find blendFuncSeparate() combination _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.ZERO, _gl.ONE_MINUS_SRC_COLOR ); break; case THREE.MultiplyBlending: // TODO: Find blendFuncSeparate() combination _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.ZERO, _gl.SRC_COLOR ); break; case THREE.CustomBlending: _gl.enable( _gl.BLEND ); break; default: _gl.enable( _gl.BLEND ); _gl.blendEquationSeparate( _gl.FUNC_ADD, _gl.FUNC_ADD ); _gl.blendFuncSeparate( _gl.SRC_ALPHA, _gl.ONE_MINUS_SRC_ALPHA, _gl.ONE, _gl.ONE_MINUS_SRC_ALPHA ); break; } _oldBlending = blending; } if ( blending === THREE.CustomBlending ) { if ( blendEquation !== _oldBlendEquation ) { _gl.blendEquation( paramThreeToGL( blendEquation ) ); _oldBlendEquation = blendEquation; } if ( blendSrc !== _oldBlendSrc || blendDst !== _oldBlendDst ) { _gl.blendFunc( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ) ); _oldBlendSrc = blendSrc; _oldBlendDst = blendDst; } } else { _oldBlendEquation = null; _oldBlendSrc = null; _oldBlendDst = null; } }; // Shaders function buildProgram ( shaderID, fragmentShader, vertexShader, uniforms, attributes, parameters ) { var p, pl, program, code; var chunks = []; // Generate code if ( shaderID ) { chunks.push( shaderID ); } else { chunks.push( fragmentShader ); chunks.push( vertexShader ); } for ( p in parameters ) { chunks.push( p ); chunks.push( parameters[ p ] ); } code = chunks.join(); // Check if code has been already compiled for ( p = 0, pl = _programs.length; p < pl; p ++ ) { if ( _programs[ p ].code === code ) { // console.log( "Code already compiled." /*: \n\n" + code*/ ); return _programs[ p ].program; } } //console.log( "building new program " ); // program = _gl.createProgram(); var prefix_vertex = [ "precision " + _precision + " float;", ( _maxVertexTextures > 0 ) ? "#define VERTEX_TEXTURES" : "", _this.gammaInput ? "#define GAMMA_INPUT" : "", _this.gammaOutput ? "#define GAMMA_OUTPUT" : "", _this.physicallyBasedShading ? "#define PHYSICALLY_BASED_SHADING" : "", "#define MAX_DIR_LIGHTS " + parameters.maxDirLights, "#define MAX_POINT_LIGHTS " + parameters.maxPointLights, "#define MAX_SHADOWS " + parameters.maxShadows, "#define MAX_BONES " + parameters.maxBones, parameters.map ? "#define USE_MAP" : "", parameters.envMap ? "#define USE_ENVMAP" : "", parameters.lightMap ? "#define USE_LIGHTMAP" : "", parameters.vertexColors ? "#define USE_COLOR" : "", parameters.skinning ? "#define USE_SKINNING" : "", parameters.morphTargets ? "#define USE_MORPHTARGETS" : "", parameters.morphNormals ? "#define USE_MORPHNORMALS" : "", parameters.perPixel ? "#define PHONG_PER_PIXEL" : "", parameters.wrapAround ? "#define WRAP_AROUND" : "", parameters.doubleSided ? "#define DOUBLE_SIDED" : "", parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "", parameters.shadowMapSoft ? "#define SHADOWMAP_SOFT" : "", parameters.shadowMapDebug ? "#define SHADOWMAP_DEBUG" : "", parameters.shadowMapCascade ? "#define SHADOWMAP_CASCADE" : "", parameters.sizeAttenuation ? "#define USE_SIZEATTENUATION" : "", "uniform mat4 objectMatrix;", "uniform mat4 modelViewMatrix;", "uniform mat4 projectionMatrix;", "uniform mat4 viewMatrix;", "uniform mat3 normalMatrix;", "uniform vec3 cameraPosition;", "attribute vec3 position;", "attribute vec3 normal;", "attribute vec2 uv;", "attribute vec2 uv2;", "#ifdef USE_COLOR", "attribute vec3 color;", "#endif", "#ifdef USE_MORPHTARGETS", "attribute vec3 morphTarget0;", "attribute vec3 morphTarget1;", "attribute vec3 morphTarget2;", "attribute vec3 morphTarget3;", "#ifdef USE_MORPHNORMALS", "attribute vec3 morphNormal0;", "attribute vec3 morphNormal1;", "attribute vec3 morphNormal2;", "attribute vec3 morphNormal3;", "#else", "attribute vec3 morphTarget4;", "attribute vec3 morphTarget5;", "attribute vec3 morphTarget6;", "attribute vec3 morphTarget7;", "#endif", "#endif", "#ifdef USE_SKINNING", "attribute vec4 skinVertexA;", "attribute vec4 skinVertexB;", "attribute vec4 skinIndex;", "attribute vec4 skinWeight;", "#endif", "" ].join("\n"); var prefix_fragment = [ "precision " + _precision + " float;", "#define MAX_DIR_LIGHTS " + parameters.maxDirLights, "#define MAX_POINT_LIGHTS " + parameters.maxPointLights, "#define MAX_SHADOWS " + parameters.maxShadows, parameters.alphaTest ? "#define ALPHATEST " + parameters.alphaTest: "", _this.gammaInput ? "#define GAMMA_INPUT" : "", _this.gammaOutput ? "#define GAMMA_OUTPUT" : "", _this.physicallyBasedShading ? "#define PHYSICALLY_BASED_SHADING" : "", ( parameters.useFog && parameters.fog ) ? "#define USE_FOG" : "", ( parameters.useFog && parameters.fog instanceof THREE.FogExp2 ) ? "#define FOG_EXP2" : "", parameters.map ? "#define USE_MAP" : "", parameters.envMap ? "#define USE_ENVMAP" : "", parameters.lightMap ? "#define USE_LIGHTMAP" : "", parameters.vertexColors ? "#define USE_COLOR" : "", parameters.metal ? "#define METAL" : "", parameters.perPixel ? "#define PHONG_PER_PIXEL" : "", parameters.wrapAround ? "#define WRAP_AROUND" : "", parameters.doubleSided ? "#define DOUBLE_SIDED" : "", parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "", parameters.shadowMapSoft ? "#define SHADOWMAP_SOFT" : "", parameters.shadowMapDebug ? "#define SHADOWMAP_DEBUG" : "", parameters.shadowMapCascade ? "#define SHADOWMAP_CASCADE" : "", "uniform mat4 viewMatrix;", "uniform vec3 cameraPosition;", "" ].join("\n"); _gl.attachShader( program, getShader( "fragment", prefix_fragment + fragmentShader ) ); _gl.attachShader( program, getShader( "vertex", prefix_vertex + vertexShader ) ); _gl.linkProgram( program ); if ( !_gl.getProgramParameter( program, _gl.LINK_STATUS ) ) { console.error( "Could not initialise shader\n" + "VALIDATE_STATUS: " + _gl.getProgramParameter( program, _gl.VALIDATE_STATUS ) + ", gl error [" + _gl.getError() + "]" ); } //console.log( prefix_fragment + fragmentShader ); //console.log( prefix_vertex + vertexShader ); program.uniforms = {}; program.attributes = {}; var identifiers, u, a, i; // cache uniform locations identifiers = [ 'viewMatrix', 'modelViewMatrix', 'projectionMatrix', 'normalMatrix', 'objectMatrix', 'cameraPosition', 'boneGlobalMatrices', 'morphTargetInfluences' ]; for ( u in uniforms ) { identifiers.push( u ); } cacheUniformLocations( program, identifiers ); // cache attributes locations identifiers = [ "position", "normal", "uv", "uv2", "tangent", "color", "skinVertexA", "skinVertexB", "skinIndex", "skinWeight" ]; for ( i = 0; i < parameters.maxMorphTargets; i ++ ) { identifiers.push( "morphTarget" + i ); } for ( i = 0; i < parameters.maxMorphNormals; i ++ ) { identifiers.push( "morphNormal" + i ); } for ( a in attributes ) { identifiers.push( a ); } cacheAttributeLocations( program, identifiers ); program.id = _programs.length; _programs.push( { program: program, code: code } ); _this.info.memory.programs = _programs.length; return program; }; // Shader parameters cache function cacheUniformLocations ( program, identifiers ) { var i, l, id; for( i = 0, l = identifiers.length; i < l; i ++ ) { id = identifiers[ i ]; program.uniforms[ id ] = _gl.getUniformLocation( program, id ); } }; function cacheAttributeLocations ( program, identifiers ) { var i, l, id; for( i = 0, l = identifiers.length; i < l; i ++ ) { id = identifiers[ i ]; program.attributes[ id ] = _gl.getAttribLocation( program, id ); } }; function getShader ( type, string ) { var shader; if ( type === "fragment" ) { shader = _gl.createShader( _gl.FRAGMENT_SHADER ); } else if ( type === "vertex" ) { shader = _gl.createShader( _gl.VERTEX_SHADER ); } _gl.shaderSource( shader, string ); _gl.compileShader( shader ); if ( !_gl.getShaderParameter( shader, _gl.COMPILE_STATUS ) ) { console.error( _gl.getShaderInfoLog( shader ) ); console.error( string ); return null; } return shader; }; // Textures function isPowerOfTwo ( value ) { return ( value & ( value - 1 ) ) === 0; }; function setTextureParameters ( textureType, texture, isImagePowerOfTwo ) { if ( isImagePowerOfTwo ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) ); } else { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) ); } }; this.setTexture = function ( texture, slot ) { if ( texture.needsUpdate ) { if ( ! texture.__webglInit ) { texture.__webglInit = true; texture.__webglTexture = _gl.createTexture(); _this.info.memory.textures ++; } _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_2D, texture.__webglTexture ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); var image = texture.image, isImagePowerOfTwo = isPowerOfTwo( image.width ) && isPowerOfTwo( image.height ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_2D, texture, isImagePowerOfTwo ); if ( texture instanceof THREE.DataTexture ) { _gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data ); } else { _gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, texture.image ); } if ( texture.generateMipmaps && isImagePowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D ); texture.needsUpdate = false; if ( texture.onUpdate ) texture.onUpdate(); } else { _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_2D, texture.__webglTexture ); } }; function clampToMaxSize ( image, maxSize ) { if ( image.width <= maxSize && image.height <= maxSize ) { return image; } // Warning: Scaling through the canvas will only work with images that use // premultiplied alpha. var maxDimension = Math.max( image.width, image.height ); var newWidth = Math.floor( image.width * maxSize / maxDimension ); var newHeight = Math.floor( image.height * maxSize / maxDimension ); var canvas = document.createElement( 'canvas' ); canvas.width = newWidth; canvas.height = newHeight; var ctx = canvas.getContext( "2d" ); ctx.drawImage( image, 0, 0, image.width, image.height, 0, 0, newWidth, newHeight ); return canvas; } function setCubeTexture ( texture, slot ) { if ( texture.image.length === 6 ) { if ( texture.needsUpdate ) { if ( ! texture.image.__webglTextureCube ) { texture.image.__webglTextureCube = _gl.createTexture(); } _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.image.__webglTextureCube ); var cubeImage = []; for ( var i = 0; i < 6; i ++ ) { if ( _this.autoScaleCubemaps ) { cubeImage[ i ] = clampToMaxSize( texture.image[ i ], _maxCubemapSize ); } else { cubeImage[ i ] = texture.image[ i ]; } } var image = cubeImage[ 0 ], isImagePowerOfTwo = isPowerOfTwo( image.width ) && isPowerOfTwo( image.height ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isImagePowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { _gl.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] ); } if ( texture.generateMipmaps && isImagePowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); texture.needsUpdate = false; if ( texture.onUpdate ) texture.onUpdate(); } else { _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.image.__webglTextureCube ); } } }; function setCubeTextureDynamic ( texture, slot ) { _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.__webglTexture ); }; // Render targets function setupFrameBuffer ( framebuffer, renderTarget, textureTarget ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureTarget, renderTarget.__webglTexture, 0 ); }; function setupRenderBuffer ( renderbuffer, renderTarget ) { _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); /* For some reason this is not working. Defaulting to RGBA4. } else if( ! renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.STENCIL_INDEX8, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); */ } else if( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height ); } }; this.setRenderTarget = function ( renderTarget ) { var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube ); if ( renderTarget && ! renderTarget.__webglFramebuffer ) { if( renderTarget.depthBuffer === undefined ) renderTarget.depthBuffer = true; if( renderTarget.stencilBuffer === undefined ) renderTarget.stencilBuffer = true; renderTarget.__webglTexture = _gl.createTexture(); // Setup texture, create render and frame buffers var isTargetPowerOfTwo = isPowerOfTwo( renderTarget.width ) && isPowerOfTwo( renderTarget.height ), glFormat = paramThreeToGL( renderTarget.format ), glType = paramThreeToGL( renderTarget.type ); if ( isCube ) { renderTarget.__webglFramebuffer = []; renderTarget.__webglRenderbuffer = []; _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, renderTarget.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget, isTargetPowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { renderTarget.__webglFramebuffer[ i ] = _gl.createFramebuffer(); renderTarget.__webglRenderbuffer[ i ] = _gl.createRenderbuffer(); _gl.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); setupFrameBuffer( renderTarget.__webglFramebuffer[ i ], renderTarget, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i ); setupRenderBuffer( renderTarget.__webglRenderbuffer[ i ], renderTarget ); } if ( isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); } else { renderTarget.__webglFramebuffer = _gl.createFramebuffer(); renderTarget.__webglRenderbuffer = _gl.createRenderbuffer(); _gl.bindTexture( _gl.TEXTURE_2D, renderTarget.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, renderTarget, isTargetPowerOfTwo ); _gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); setupFrameBuffer( renderTarget.__webglFramebuffer, renderTarget, _gl.TEXTURE_2D ); setupRenderBuffer( renderTarget.__webglRenderbuffer, renderTarget ); if ( isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D ); } // Release everything if ( isCube ) { _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { _gl.bindTexture( _gl.TEXTURE_2D, null ); } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, null); } var framebuffer, width, height, vx, vy; if ( renderTarget ) { if ( isCube ) { framebuffer = renderTarget.__webglFramebuffer[ renderTarget.activeCubeFace ]; } else { framebuffer = renderTarget.__webglFramebuffer; } width = renderTarget.width; height = renderTarget.height; vx = 0; vy = 0; } else { framebuffer = null; width = _viewportWidth; height = _viewportHeight; vx = _viewportX; vy = _viewportY; } if ( framebuffer !== _currentFramebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.viewport( vx, vy, width, height ); _currentFramebuffer = framebuffer; } _currentWidth = width; _currentHeight = height; }; function updateRenderTargetMipmap ( renderTarget ) { if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) { _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, renderTarget.__webglTexture ); _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { _gl.bindTexture( _gl.TEXTURE_2D, renderTarget.__webglTexture ); _gl.generateMipmap( _gl.TEXTURE_2D ); _gl.bindTexture( _gl.TEXTURE_2D, null ); } }; // Fallback filters for non-power-of-2 textures function filterFallback ( f ) { switch ( f ) { case THREE.NearestFilter: case THREE.NearestMipMapNearestFilter: case THREE.NearestMipMapLinearFilter: return _gl.NEAREST; break; case THREE.LinearFilter: case THREE.LinearMipMapNearestFilter: case THREE.LinearMipMapLinearFilter: default: return _gl.LINEAR; break; } }; // Map three.js constants to WebGL constants function paramThreeToGL ( p ) { switch ( p ) { case THREE.RepeatWrapping: return _gl.REPEAT; break; case THREE.ClampToEdgeWrapping: return _gl.CLAMP_TO_EDGE; break; case THREE.MirroredRepeatWrapping: return _gl.MIRRORED_REPEAT; break; case THREE.NearestFilter: return _gl.NEAREST; break; case THREE.NearestMipMapNearestFilter: return _gl.NEAREST_MIPMAP_NEAREST; break; case THREE.NearestMipMapLinearFilter: return _gl.NEAREST_MIPMAP_LINEAR; break; case THREE.LinearFilter: return _gl.LINEAR; break; case THREE.LinearMipMapNearestFilter: return _gl.LINEAR_MIPMAP_NEAREST; break; case THREE.LinearMipMapLinearFilter: return _gl.LINEAR_MIPMAP_LINEAR; break; case THREE.ByteType: return _gl.BYTE; break; case THREE.UnsignedByteType: return _gl.UNSIGNED_BYTE; break; case THREE.ShortType: return _gl.SHORT; break; case THREE.UnsignedShortType: return _gl.UNSIGNED_SHORT; break; case THREE.IntType: return _gl.INT; break; case THREE.UnsignedIntType: return _gl.UNSIGNED_INT; break; case THREE.FloatType: return _gl.FLOAT; break; case THREE.AlphaFormat: return _gl.ALPHA; break; case THREE.RGBFormat: return _gl.RGB; break; case THREE.RGBAFormat: return _gl.RGBA; break; case THREE.LuminanceFormat: return _gl.LUMINANCE; break; case THREE.LuminanceAlphaFormat: return _gl.LUMINANCE_ALPHA; break; case THREE.AddEquation: return _gl.FUNC_ADD; break; case THREE.SubtractEquation: return _gl.FUNC_SUBTRACT; break; case THREE.ReverseSubtractEquation: return _gl.FUNC_REVERSE_SUBTRACT; break; case THREE.ZeroFactor: return _gl.ZERO; break; case THREE.OneFactor: return _gl.ONE; break; case THREE.SrcColorFactor: return _gl.SRC_COLOR; break; case THREE.OneMinusSrcColorFactor: return _gl.ONE_MINUS_SRC_COLOR; break; case THREE.SrcAlphaFactor: return _gl.SRC_ALPHA; break; case THREE.OneMinusSrcAlphaFactor: return _gl.ONE_MINUS_SRC_ALPHA; break; case THREE.DstAlphaFactor: return _gl.DST_ALPHA; break; case THREE.OneMinusDstAlphaFactor: return _gl.ONE_MINUS_DST_ALPHA; break; case THREE.DstColorFactor: return _gl.DST_COLOR; break; case THREE.OneMinusDstColorFactor: return _gl.ONE_MINUS_DST_COLOR; break; case THREE.SrcAlphaSaturateFactor: return _gl.SRC_ALPHA_SATURATE; break; } return 0; }; // Allocations function allocateBones ( object ) { // default for when object is not specified // ( for example when prebuilding shader // to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) var maxBones = 50; if ( object !== undefined && object instanceof THREE.SkinnedMesh ) { maxBones = object.bones.length; } return maxBones; }; function allocateLights ( lights ) { var l, ll, light, dirLights, pointLights, maxDirLights, maxPointLights; dirLights = pointLights = maxDirLights = maxPointLights = 0; for ( l = 0, ll = lights.length; l < ll; l++ ) { light = lights[ l ]; if ( light.onlyShadow ) continue; if ( light instanceof THREE.DirectionalLight ) dirLights ++; if ( light instanceof THREE.PointLight ) pointLights ++; if ( light instanceof THREE.SpotLight ) pointLights ++; } if ( ( pointLights + dirLights ) <= _maxLights ) { maxDirLights = dirLights; maxPointLights = pointLights; } else { maxDirLights = Math.ceil( _maxLights * dirLights / ( pointLights + dirLights ) ); maxPointLights = _maxLights - maxDirLights; } return { 'directional' : maxDirLights, 'point' : maxPointLights }; }; function allocateShadows ( lights ) { var l, ll, light, maxShadows = 0; for ( l = 0, ll = lights.length; l < ll; l++ ) { light = lights[ l ]; if ( ! light.castShadow ) continue; if ( light instanceof THREE.SpotLight ) maxShadows ++; if ( light instanceof THREE.DirectionalLight && ! light.shadowCascade ) maxShadows ++; } return maxShadows; }; // Initialization function initGL () { var gl; try { if ( ! ( gl = _canvas.getContext( 'experimental-webgl', { alpha: _alpha, premultipliedAlpha: _premultipliedAlpha, antialias: _antialias, stencil: _stencil, preserveDrawingBuffer: _preserveDrawingBuffer } ) ) ) { throw 'Error creating WebGL context.'; } console.log( navigator.userAgent + " | " + gl.getParameter( gl.VERSION ) + " | " + gl.getParameter( gl.VENDOR ) + " | " + gl.getParameter( gl.RENDERER ) + " | " + gl.getParameter( gl.SHADING_LANGUAGE_VERSION ) ); } catch ( error ) { console.error( error ); } return gl; }; function setDefaultGLState () { _gl.clearColor( 0, 0, 0, 1 ); _gl.clearDepth( 1 ); _gl.clearStencil( 0 ); _gl.enable( _gl.DEPTH_TEST ); _gl.depthFunc( _gl.LEQUAL ); _gl.frontFace( _gl.CCW ); _gl.cullFace( _gl.BACK ); _gl.enable( _gl.CULL_FACE ); _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.SRC_ALPHA, _gl.ONE_MINUS_SRC_ALPHA ); _gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; // default plugins (order is important) this.shadowMapPlugin = new THREE.ShadowMapPlugin(); this.addPrePlugin( this.shadowMapPlugin ); this.addPostPlugin( new THREE.SpritePlugin() ); this.addPostPlugin( new THREE.LensFlarePlugin() ); }; /** * @author szimek / https://github.com/szimek/ */ THREE.WebGLRenderTarget = function ( width, height, options ) { this.width = width; this.height = height; options = options || {}; this.wrapS = options.wrapS !== undefined ? options.wrapS : THREE.ClampToEdgeWrapping; this.wrapT = options.wrapT !== undefined ? options.wrapT : THREE.ClampToEdgeWrapping; this.magFilter = options.magFilter !== undefined ? options.magFilter : THREE.LinearFilter; this.minFilter = options.minFilter !== undefined ? options.minFilter : THREE.LinearMipMapLinearFilter; this.offset = new THREE.Vector2( 0, 0 ); this.repeat = new THREE.Vector2( 1, 1 ); this.format = options.format !== undefined ? options.format : THREE.RGBAFormat; this.type = options.type !== undefined ? options.type : THREE.UnsignedByteType; this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true; this.generateMipmaps = true; }; THREE.WebGLRenderTarget.prototype.clone = function() { var tmp = new THREE.WebGLRenderTarget( this.width, this.height ); tmp.wrapS = this.wrapS; tmp.wrapT = this.wrapT; tmp.magFilter = this.magFilter; tmp.minFilter = this.minFilter; tmp.offset.copy( this.offset ); tmp.repeat.copy( this.repeat ); tmp.format = this.format; tmp.type = this.type; tmp.depthBuffer = this.depthBuffer; tmp.stencilBuffer = this.stencilBuffer; return tmp; }; /** * @author alteredq / http://alteredqualia.com */ THREE.WebGLRenderTargetCube = function ( width, height, options ) { THREE.WebGLRenderTarget.call( this, width, height, options ); this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5 }; THREE.WebGLRenderTargetCube.prototype = new THREE.WebGLRenderTarget(); THREE.WebGLRenderTargetCube.prototype.constructor = THREE.WebGLRenderTargetCube; /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableVertex = function () { this.positionWorld = new THREE.Vector3(); this.positionScreen = new THREE.Vector4(); this.visible = true; }; THREE.RenderableVertex.prototype.copy = function ( vertex ) { this.positionWorld.copy( vertex.positionWorld ); this.positionScreen.copy( vertex.positionScreen ); } /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableFace3 = function () { this.v1 = new THREE.RenderableVertex(); this.v2 = new THREE.RenderableVertex(); this.v3 = new THREE.RenderableVertex(); this.centroidWorld = new THREE.Vector3(); this.centroidScreen = new THREE.Vector3(); this.normalWorld = new THREE.Vector3(); this.vertexNormalsWorld = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; this.material = null; this.faceMaterial = null; this.uvs = [[]]; this.z = null; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableFace4 = function () { this.v1 = new THREE.RenderableVertex(); this.v2 = new THREE.RenderableVertex(); this.v3 = new THREE.RenderableVertex(); this.v4 = new THREE.RenderableVertex(); this.centroidWorld = new THREE.Vector3(); this.centroidScreen = new THREE.Vector3(); this.normalWorld = new THREE.Vector3(); this.vertexNormalsWorld = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; this.material = null; this.faceMaterial = null; this.uvs = [[]]; this.z = null; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableObject = function () { this.object = null; this.z = null; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableParticle = function () { this.x = null; this.y = null; this.z = null; this.rotation = null; this.scale = new THREE.Vector2(); this.material = null; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableLine = function () { this.z = null; this.v1 = new THREE.RenderableVertex(); this.v2 = new THREE.RenderableVertex(); this.material = null; }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.BufferGeometry = function () { this.id = THREE.GeometryCount ++; // GL buffers this.vertexIndexBuffer = null; this.vertexPositionBuffer = null; this.vertexNormalBuffer = null; this.vertexUvBuffer = null; this.vertexColorBuffer = null; // typed arrays (kept only if dynamic flag is set) this.vertexIndexArray = null; this.vertexPositionArray = null; this.vertexNormalArray = null; this.vertexUvArray = null; this.vertexColorArray = null; this.dynamic = false; // boundings this.boundingBox = null; this.boundingSphere = null; // for compatibility this.morphTargets = []; }; THREE.BufferGeometry.prototype = { constructor : THREE.BufferGeometry, // for compatibility computeBoundingBox: function () { }, // for compatibility computeBoundingSphere: function () { } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.Gyroscope = function () { THREE.Object3D.call( this ); }; THREE.Gyroscope.prototype = new THREE.Object3D(); THREE.Gyroscope.prototype.constructor = THREE.Gyroscope; THREE.Gyroscope.prototype.updateMatrixWorld = function ( force ) { this.matrixAutoUpdate && this.updateMatrix(); // update matrixWorld if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent ) { this.matrixWorld.multiply( this.parent.matrixWorld, this.matrix ); this.matrixWorld.decompose( this.translationWorld, this.rotationWorld, this.scaleWorld ); this.matrix.decompose( this.translationObject, this.rotationObject, this.scaleObject ); this.matrixWorld.compose( this.translationWorld, this.rotationObject, this.scaleWorld ); } else { this.matrixWorld.copy( this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].updateMatrixWorld( force ); } }; THREE.Gyroscope.prototype.translationWorld = new THREE.Vector3(); THREE.Gyroscope.prototype.translationObject = new THREE.Vector3(); THREE.Gyroscope.prototype.rotationWorld = new THREE.Quaternion(); THREE.Gyroscope.prototype.rotationObject = new THREE.Quaternion(); THREE.Gyroscope.prototype.scaleWorld = new THREE.Vector3(); THREE.Gyroscope.prototype.scaleObject = new THREE.Vector3(); /** * @author alteredq / http://alteredqualia.com/ * * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ THREE.CameraHelper = function ( camera ) { THREE.Object3D.call( this ); var _this = this; this.lineGeometry = new THREE.Geometry(); this.lineMaterial = new THREE.LineBasicMaterial( { color: 0xffffff, vertexColors: THREE.FaceColors } ); this.pointMap = {}; // colors var hexFrustum = 0xffaa00, hexCone = 0xff0000, hexUp = 0x00aaff, hexTarget = 0xffffff, hexCross = 0x333333; // near addLine( "n1", "n2", hexFrustum ); addLine( "n2", "n4", hexFrustum ); addLine( "n4", "n3", hexFrustum ); addLine( "n3", "n1", hexFrustum ); // far addLine( "f1", "f2", hexFrustum ); addLine( "f2", "f4", hexFrustum ); addLine( "f4", "f3", hexFrustum ); addLine( "f3", "f1", hexFrustum ); // sides addLine( "n1", "f1", hexFrustum ); addLine( "n2", "f2", hexFrustum ); addLine( "n3", "f3", hexFrustum ); addLine( "n4", "f4", hexFrustum ); // cone addLine( "p", "n1", hexCone ); addLine( "p", "n2", hexCone ); addLine( "p", "n3", hexCone ); addLine( "p", "n4", hexCone ); // up addLine( "u1", "u2", hexUp ); addLine( "u2", "u3", hexUp ); addLine( "u3", "u1", hexUp ); // target addLine( "c", "t", hexTarget ); addLine( "p", "c", hexCross ); // cross addLine( "cn1", "cn2", hexCross ); addLine( "cn3", "cn4", hexCross ); addLine( "cf1", "cf2", hexCross ); addLine( "cf3", "cf4", hexCross ); this.camera = camera; function addLine( a, b, hex ) { addPoint( a, hex ); addPoint( b, hex ); } function addPoint( id, hex ) { _this.lineGeometry.vertices.push( new THREE.Vertex( new THREE.Vector3() ) ); _this.lineGeometry.colors.push( new THREE.Color( hex ) ); if ( _this.pointMap[ id ] === undefined ) _this.pointMap[ id ] = []; _this.pointMap[ id ].push( _this.lineGeometry.vertices.length - 1 ); } this.update( camera ); this.lines = new THREE.Line( this.lineGeometry, this.lineMaterial, THREE.LinePieces ); this.add( this.lines ); }; THREE.CameraHelper.prototype = new THREE.Object3D(); THREE.CameraHelper.prototype.constructor = THREE.CameraHelper; THREE.CameraHelper.prototype.update = function () { var camera = this.camera; var w = 1; var h = 1; var _this = this; // we need just camera projection matrix // world matrix must be identity THREE.CameraHelper.__c.projectionMatrix.copy( camera.projectionMatrix ); // center / target setPoint( "c", 0, 0, -1 ); setPoint( "t", 0, 0, 1 ); // near setPoint( "n1", -w, -h, -1 ); setPoint( "n2", w, -h, -1 ); setPoint( "n3", -w, h, -1 ); setPoint( "n4", w, h, -1 ); // far setPoint( "f1", -w, -h, 1 ); setPoint( "f2", w, -h, 1 ); setPoint( "f3", -w, h, 1 ); setPoint( "f4", w, h, 1 ); // up setPoint( "u1", w * 0.7, h * 1.1, -1 ); setPoint( "u2", -w * 0.7, h * 1.1, -1 ); setPoint( "u3", 0, h * 2, -1 ); // cross setPoint( "cf1", -w, 0, 1 ); setPoint( "cf2", w, 0, 1 ); setPoint( "cf3", 0, -h, 1 ); setPoint( "cf4", 0, h, 1 ); setPoint( "cn1", -w, 0, -1 ); setPoint( "cn2", w, 0, -1 ); setPoint( "cn3", 0, -h, -1 ); setPoint( "cn4", 0, h, -1 ); function setPoint( point, x, y, z ) { THREE.CameraHelper.__v.set( x, y, z ); THREE.CameraHelper.__projector.unprojectVector( THREE.CameraHelper.__v, THREE.CameraHelper.__c ); var points = _this.pointMap[ point ]; if ( points !== undefined ) { for ( var i = 0, il = points.length; i < il; i ++ ) { var j = points[ i ]; _this.lineGeometry.vertices[ j ].position.copy( THREE.CameraHelper.__v ); } } } this.lineGeometry.__dirtyVertices = true; }; THREE.CameraHelper.__projector = new THREE.Projector(); THREE.CameraHelper.__v = new THREE.Vector3(); THREE.CameraHelper.__c = new THREE.Camera(); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlare = function ( texture, size, distance, blending, color ) { THREE.Object3D.call( this ); this.lensFlares = []; this.positionScreen = new THREE.Vector3(); this.customUpdateCallback = undefined; if( texture !== undefined ) { this.add( texture, size, distance, blending, color ); } }; THREE.LensFlare.prototype = new THREE.Object3D(); THREE.LensFlare.prototype.constructor = THREE.LensFlare; THREE.LensFlare.prototype.supr = THREE.Object3D.prototype; /* * Add: adds another flare */ THREE.LensFlare.prototype.add = function ( texture, size, distance, blending, color, opacity ) { if( size === undefined ) size = -1; if( distance === undefined ) distance = 0; if( opacity === undefined ) opacity = 1; if( color === undefined ) color = new THREE.Color( 0xffffff ); if( blending === undefined ) blending = THREE.NormalBlending; distance = Math.min( distance, Math.max( 0, distance ) ); this.lensFlares.push( { texture: texture, // THREE.Texture size: size, // size in pixels (-1 = use texture.width) distance: distance, // distance (0-1) from light source (0=at light source) x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is ontop z = 1 is back scale: 1, // scale rotation: 1, // rotation opacity: opacity, // opacity color: color, // color blending: blending } ); // blending }; /* * Update lens flares update positions on all flares based on the screen position * Set myLensFlare.customUpdateCallback to alter the flares in your project specific way. */ THREE.LensFlare.prototype.updateLensFlares = function () { var f, fl = this.lensFlares.length; var flare; var vecX = -this.positionScreen.x * 2; var vecY = -this.positionScreen.y * 2; for( f = 0; f < fl; f ++ ) { flare = this.lensFlares[ f ]; flare.x = this.positionScreen.x + vecX * flare.distance; flare.y = this.positionScreen.y + vecY * flare.distance; flare.wantedRotation = flare.x * Math.PI * 0.25; flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25; } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.ImmediateRenderObject = function ( ) { THREE.Object3D.call( this ); this.render = function( renderCallback ) { }; }; THREE.ImmediateRenderObject.prototype = new THREE.Object3D(); THREE.ImmediateRenderObject.prototype.constructor = THREE.ImmediateRenderObject; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlarePlugin = function ( ) { var _gl, _renderer, _lensFlare = {}; this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; _lensFlare.vertices = new Float32Array( 8 + 8 ); _lensFlare.faces = new Uint16Array( 6 ); var i = 0; _lensFlare.vertices[ i++ ] = -1; _lensFlare.vertices[ i++ ] = -1; // vertex _lensFlare.vertices[ i++ ] = 0; _lensFlare.vertices[ i++ ] = 0; // uv... etc. _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = -1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 0; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = -1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 0; _lensFlare.vertices[ i++ ] = 1; i = 0; _lensFlare.faces[ i++ ] = 0; _lensFlare.faces[ i++ ] = 1; _lensFlare.faces[ i++ ] = 2; _lensFlare.faces[ i++ ] = 0; _lensFlare.faces[ i++ ] = 2; _lensFlare.faces[ i++ ] = 3; // buffers _lensFlare.vertexBuffer = _gl.createBuffer(); _lensFlare.elementBuffer = _gl.createBuffer(); _gl.bindBuffer( _gl.ARRAY_BUFFER, _lensFlare.vertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, _lensFlare.vertices, _gl.STATIC_DRAW ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.elementBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.faces, _gl.STATIC_DRAW ); // textures _lensFlare.tempTexture = _gl.createTexture(); _lensFlare.occlusionTexture = _gl.createTexture(); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture ); _gl.texImage2D( _gl.TEXTURE_2D, 0, _gl.RGB, 16, 16, 0, _gl.RGB, _gl.UNSIGNED_BYTE, null ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MAG_FILTER, _gl.NEAREST ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MIN_FILTER, _gl.NEAREST ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.occlusionTexture ); _gl.texImage2D( _gl.TEXTURE_2D, 0, _gl.RGBA, 16, 16, 0, _gl.RGBA, _gl.UNSIGNED_BYTE, null ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MAG_FILTER, _gl.NEAREST ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MIN_FILTER, _gl.NEAREST ); if ( _gl.getParameter( _gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ) <= 0 ) { _lensFlare.hasVertexTexture = false; _lensFlare.program = createProgram( THREE.ShaderFlares[ "lensFlare" ] ); } else { _lensFlare.hasVertexTexture = true; _lensFlare.program = createProgram( THREE.ShaderFlares[ "lensFlareVertexTexture" ] ); } _lensFlare.attributes = {}; _lensFlare.uniforms = {}; _lensFlare.attributes.vertex = _gl.getAttribLocation ( _lensFlare.program, "position" ); _lensFlare.attributes.uv = _gl.getAttribLocation ( _lensFlare.program, "uv" ); _lensFlare.uniforms.renderType = _gl.getUniformLocation( _lensFlare.program, "renderType" ); _lensFlare.uniforms.map = _gl.getUniformLocation( _lensFlare.program, "map" ); _lensFlare.uniforms.occlusionMap = _gl.getUniformLocation( _lensFlare.program, "occlusionMap" ); _lensFlare.uniforms.opacity = _gl.getUniformLocation( _lensFlare.program, "opacity" ); _lensFlare.uniforms.color = _gl.getUniformLocation( _lensFlare.program, "color" ); _lensFlare.uniforms.scale = _gl.getUniformLocation( _lensFlare.program, "scale" ); _lensFlare.uniforms.rotation = _gl.getUniformLocation( _lensFlare.program, "rotation" ); _lensFlare.uniforms.screenPosition = _gl.getUniformLocation( _lensFlare.program, "screenPosition" ); _lensFlare.attributesEnabled = false; }; /* * Render lens flares * Method: renders 16x16 0xff00ff-colored points scattered over the light source area, * reads these back and calculates occlusion. * Then _lensFlare.update_lensFlares() is called to re-position and * update transparency of flares. Then they are rendered. * */ this.render = function ( scene, camera, viewportWidth, viewportHeight ) { var flares = scene.__webglFlares, nFlares = flares.length; if ( ! nFlares ) return; var tempPosition = new THREE.Vector3(); var invAspect = viewportHeight / viewportWidth, halfViewportWidth = viewportWidth * 0.5, halfViewportHeight = viewportHeight * 0.5; var size = 16 / viewportHeight, scale = new THREE.Vector2( size * invAspect, size ); var screenPosition = new THREE.Vector3( 1, 1, 0 ), screenPositionPixels = new THREE.Vector2( 1, 1 ); var uniforms = _lensFlare.uniforms, attributes = _lensFlare.attributes; // set _lensFlare program and reset blending _gl.useProgram( _lensFlare.program ); if ( ! _lensFlare.attributesEnabled ) { _gl.enableVertexAttribArray( _lensFlare.attributes.vertex ); _gl.enableVertexAttribArray( _lensFlare.attributes.uv ); _lensFlare.attributesEnabled = true; } // loop through all lens flares to update their occlusion and positions // setup gl and common used attribs/unforms _gl.uniform1i( uniforms.occlusionMap, 0 ); _gl.uniform1i( uniforms.map, 1 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, _lensFlare.vertexBuffer ); _gl.vertexAttribPointer( attributes.vertex, 2, _gl.FLOAT, false, 2 * 8, 0 ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 2 * 8, 8 ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.elementBuffer ); _gl.disable( _gl.CULL_FACE ); _gl.depthMask( false ); var i, j, jl, flare, sprite; for ( i = 0; i < nFlares; i ++ ) { size = 16 / viewportHeight; scale.set( size * invAspect, size ); // calc object screen position flare = flares[ i ]; tempPosition.set( flare.matrixWorld.elements[12], flare.matrixWorld.elements[13], flare.matrixWorld.elements[14] ); camera.matrixWorldInverse.multiplyVector3( tempPosition ); camera.projectionMatrix.multiplyVector3( tempPosition ); // setup arrays for gl programs screenPosition.copy( tempPosition ) screenPositionPixels.x = screenPosition.x * halfViewportWidth + halfViewportWidth; screenPositionPixels.y = screenPosition.y * halfViewportHeight + halfViewportHeight; // screen cull if ( _lensFlare.hasVertexTexture || ( screenPositionPixels.x > 0 && screenPositionPixels.x < viewportWidth && screenPositionPixels.y > 0 && screenPositionPixels.y < viewportHeight ) ) { // save current RGB to temp texture _gl.activeTexture( _gl.TEXTURE1 ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture ); _gl.copyTexImage2D( _gl.TEXTURE_2D, 0, _gl.RGB, screenPositionPixels.x - 8, screenPositionPixels.y - 8, 16, 16, 0 ); // render pink quad _gl.uniform1i( uniforms.renderType, 0 ); _gl.uniform2f( uniforms.scale, scale.x, scale.y ); _gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); _gl.disable( _gl.BLEND ); _gl.enable( _gl.DEPTH_TEST ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); // copy result to occlusionMap _gl.activeTexture( _gl.TEXTURE0 ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.occlusionTexture ); _gl.copyTexImage2D( _gl.TEXTURE_2D, 0, _gl.RGBA, screenPositionPixels.x - 8, screenPositionPixels.y - 8, 16, 16, 0 ); // restore graphics _gl.uniform1i( uniforms.renderType, 1 ); _gl.disable( _gl.DEPTH_TEST ); _gl.activeTexture( _gl.TEXTURE1 ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); // update object positions flare.positionScreen.copy( screenPosition ) if ( flare.customUpdateCallback ) { flare.customUpdateCallback( flare ); } else { flare.updateLensFlares(); } // render flares _gl.uniform1i( uniforms.renderType, 2 ); _gl.enable( _gl.BLEND ); for ( j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) { sprite = flare.lensFlares[ j ]; if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) { screenPosition.x = sprite.x; screenPosition.y = sprite.y; screenPosition.z = sprite.z; size = sprite.size * sprite.scale / viewportHeight; scale.x = size * invAspect; scale.y = size; _gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); _gl.uniform2f( uniforms.scale, scale.x, scale.y ); _gl.uniform1f( uniforms.rotation, sprite.rotation ); _gl.uniform1f( uniforms.opacity, sprite.opacity ); _gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b ); _renderer.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst ); _renderer.setTexture( sprite.texture, 1 ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); } } } } // restore gl _gl.enable( _gl.CULL_FACE ); _gl.enable( _gl.DEPTH_TEST ); _gl.depthMask( true ); }; function createProgram ( shader ) { var program = _gl.createProgram(); var fragmentShader = _gl.createShader( _gl.FRAGMENT_SHADER ); var vertexShader = _gl.createShader( _gl.VERTEX_SHADER ); _gl.shaderSource( fragmentShader, shader.fragmentShader ); _gl.shaderSource( vertexShader, shader.vertexShader ); _gl.compileShader( fragmentShader ); _gl.compileShader( vertexShader ); _gl.attachShader( program, fragmentShader ); _gl.attachShader( program, vertexShader ); _gl.linkProgram( program ); return program; }; };/** * @author alteredq / http://alteredqualia.com/ */ THREE.ShadowMapPlugin = function ( ) { var _gl, _renderer, _depthMaterial, _depthMaterialMorph, _frustum = new THREE.Frustum(), _projScreenMatrix = new THREE.Matrix4(), _min = new THREE.Vector3(), _max = new THREE.Vector3(); this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; var depthShader = THREE.ShaderLib[ "depthRGBA" ]; var depthUniforms = THREE.UniformsUtils.clone( depthShader.uniforms ); _depthMaterial = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms } ); _depthMaterialMorph = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, morphTargets: true } ); _depthMaterial._shadowPass = true; _depthMaterialMorph._shadowPass = true; }; this.render = function ( scene, camera ) { if ( ! ( _renderer.shadowMapEnabled && _renderer.shadowMapAutoUpdate ) ) return; this.update( scene, camera ); }; this.update = function ( scene, camera ) { var i, il, j, jl, n, shadowMap, shadowMatrix, shadowCamera, program, buffer, material, webglObject, object, light, renderList, lights = [], k = 0, fog = null; // set GL state for depth map _gl.clearColor( 1, 1, 1, 1 ); _gl.disable( _gl.BLEND ); if ( _renderer.shadowMapCullFrontFaces ) _gl.cullFace( _gl.FRONT ); _renderer.setDepthTest( true ); // preprocess lights // - skip lights that are not casting shadows // - create virtual lights for cascaded shadow maps for ( i = 0, il = scene.__lights.length; i < il; i ++ ) { light = scene.__lights[ i ]; if ( ! light.castShadow ) continue; if ( ( light instanceof THREE.DirectionalLight ) && light.shadowCascade ) { for ( n = 0; n < light.shadowCascadeCount; n ++ ) { var virtualLight; if ( ! light.shadowCascadeArray[ n ] ) { virtualLight = createVirtualLight( light, n ); virtualLight.originalCamera = camera; var gyro = new THREE.Gyroscope(); gyro.position = light.shadowCascadeOffset; gyro.add( virtualLight ); gyro.add( virtualLight.target ); camera.add( gyro ); light.shadowCascadeArray[ n ] = virtualLight; console.log( "Created virtualLight", virtualLight ); } else { virtualLight = light.shadowCascadeArray[ n ]; } updateVirtualLight( light, n ); lights[ k ] = virtualLight; k ++; } } else { lights[ k ] = light; k ++; } } // render depth map for ( i = 0, il = lights.length; i < il; i ++ ) { light = lights[ i ]; if ( ! light.shadowMap ) { var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat }; light.shadowMap = new THREE.WebGLRenderTarget( light.shadowMapWidth, light.shadowMapHeight, pars ); light.shadowMapSize = new THREE.Vector2( light.shadowMapWidth, light.shadowMapHeight ); light.shadowMatrix = new THREE.Matrix4(); } if ( ! light.shadowCamera ) { if ( light instanceof THREE.SpotLight ) { light.shadowCamera = new THREE.PerspectiveCamera( light.shadowCameraFov, light.shadowMapWidth / light.shadowMapHeight, light.shadowCameraNear, light.shadowCameraFar ); } else if ( light instanceof THREE.DirectionalLight ) { light.shadowCamera = new THREE.OrthographicCamera( light.shadowCameraLeft, light.shadowCameraRight, light.shadowCameraTop, light.shadowCameraBottom, light.shadowCameraNear, light.shadowCameraFar ); } else { console.error( "Unsupported light type for shadow" ); continue; } scene.add( light.shadowCamera ); if ( _renderer.autoUpdateScene ) scene.updateMatrixWorld(); } if ( light.shadowCameraVisible && ! light.cameraHelper ) { light.cameraHelper = new THREE.CameraHelper( light.shadowCamera ); light.shadowCamera.add( light.cameraHelper ); } if ( light.isVirtual && virtualLight.originalCamera == camera ) { updateShadowCamera( camera, light ); } shadowMap = light.shadowMap; shadowMatrix = light.shadowMatrix; shadowCamera = light.shadowCamera; shadowCamera.position.copy( light.matrixWorld.getPosition() ); shadowCamera.lookAt( light.target.matrixWorld.getPosition() ); shadowCamera.updateMatrixWorld(); shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld ); if ( light.cameraHelper ) light.cameraHelper.lines.visible = light.shadowCameraVisible; if ( light.shadowCameraVisible ) light.cameraHelper.update(); // compute shadow matrix shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiplySelf( shadowCamera.projectionMatrix ); shadowMatrix.multiplySelf( shadowCamera.matrixWorldInverse ); // update camera matrices and frustum if ( ! shadowCamera._viewMatrixArray ) shadowCamera._viewMatrixArray = new Float32Array( 16 ); if ( ! shadowCamera._projectionMatrixArray ) shadowCamera._projectionMatrixArray = new Float32Array( 16 ); shadowCamera.matrixWorldInverse.flattenToArray( shadowCamera._viewMatrixArray ); shadowCamera.projectionMatrix.flattenToArray( shadowCamera._projectionMatrixArray ); _projScreenMatrix.multiply( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // render shadow map _renderer.setRenderTarget( shadowMap ); _renderer.clear(); // set object matrices & frustum culling renderList = scene.__webglObjects; for ( j = 0, jl = renderList.length; j < jl; j ++ ) { webglObject = renderList[ j ]; object = webglObject.object; webglObject.render = false; if ( object.visible && object.castShadow ) { if ( ! ( object instanceof THREE.Mesh ) || ! ( object.frustumCulled ) || _frustum.contains( object ) ) { //object.matrixWorld.flattenToArray( object._objectMatrixArray ); object._modelViewMatrix.multiply( shadowCamera.matrixWorldInverse, object.matrixWorld); webglObject.render = true; } } } // render regular objects for ( j = 0, jl = renderList.length; j < jl; j ++ ) { webglObject = renderList[ j ]; if ( webglObject.render ) { object = webglObject.object; buffer = webglObject.buffer; _renderer.setObjectFaces( object ); if ( object.customDepthMaterial ) { material = object.customDepthMaterial; } else if ( object.geometry.morphTargets.length ) { material = _depthMaterialMorph; } else { material = _depthMaterial; } if ( buffer instanceof THREE.BufferGeometry ) { _renderer.renderBufferDirect( shadowCamera, scene.__lights, fog, material, buffer, object ); } else { _renderer.renderBuffer( shadowCamera, scene.__lights, fog, material, buffer, object ); } } } // set matrices and render immediate objects renderList = scene.__webglObjectsImmediate; for ( j = 0, jl = renderList.length; j < jl; j ++ ) { webglObject = renderList[ j ]; object = webglObject.object; if ( object.visible && object.castShadow ) { if( object.matrixAutoUpdate ) { //object.matrixWorld.flattenToArray( object._objectMatrixArray ); } object._modelViewMatrix.multiply( shadowCamera.matrixWorldInverse, object.matrixWorld); _renderer.renderImmediateObject( shadowCamera, scene.__lights, fog, _depthMaterial, object ); } } } // restore GL state var clearColor = _renderer.getClearColor(), clearAlpha = _renderer.getClearAlpha(); _gl.clearColor( clearColor.r, clearColor.g, clearColor.b, clearAlpha ); _gl.enable( _gl.BLEND ); if ( _renderer.shadowMapCullFrontFaces ) _gl.cullFace( _gl.BACK ); }; function createVirtualLight( light, cascade ) { var virtualLight = new THREE.DirectionalLight(); virtualLight.isVirtual = true; virtualLight.onlyShadow = true; virtualLight.castShadow = true; virtualLight.shadowCameraNear = light.shadowCameraNear; virtualLight.shadowCameraFar = light.shadowCameraFar; virtualLight.shadowCameraLeft = light.shadowCameraLeft; virtualLight.shadowCameraRight = light.shadowCameraRight; virtualLight.shadowCameraBottom = light.shadowCameraBottom; virtualLight.shadowCameraTop = light.shadowCameraTop; virtualLight.shadowCameraVisible = light.shadowCameraVisible; virtualLight.shadowDarkness = light.shadowDarkness; virtualLight.shadowBias = light.shadowCascadeBias[ cascade ]; virtualLight.shadowMapWidth = light.shadowCascadeWidth[ cascade ]; virtualLight.shadowMapHeight = light.shadowCascadeHeight[ cascade ]; virtualLight.pointsWorld = []; virtualLight.pointsFrustum = []; var pointsWorld = virtualLight.pointsWorld, pointsFrustum = virtualLight.pointsFrustum; for ( var i = 0; i < 8; i ++ ) { pointsWorld[ i ] = new THREE.Vector3(); pointsFrustum[ i ] = new THREE.Vector3(); } var nearZ = light.shadowCascadeNearZ[ cascade ]; var farZ = light.shadowCascadeFarZ[ cascade ]; pointsFrustum[ 0 ].set( -1, -1, nearZ ); pointsFrustum[ 1 ].set( 1, -1, nearZ ); pointsFrustum[ 2 ].set( -1, 1, nearZ ); pointsFrustum[ 3 ].set( 1, 1, nearZ ); pointsFrustum[ 4 ].set( -1, -1, farZ ); pointsFrustum[ 5 ].set( 1, -1, farZ ); pointsFrustum[ 6 ].set( -1, 1, farZ ); pointsFrustum[ 7 ].set( 1, 1, farZ ); return virtualLight; } // Synchronize virtual light with the original light function updateVirtualLight( light, cascade ) { var virtualLight = light.shadowCascadeArray[ cascade ]; virtualLight.position.copy( light.position ); virtualLight.target.position.copy( light.target.position ); virtualLight.lookAt( virtualLight.target ); virtualLight.shadowCameraVisible = light.shadowCameraVisible; virtualLight.shadowDarkness = light.shadowDarkness; virtualLight.shadowBias = light.shadowCascadeBias[ cascade ]; var nearZ = light.shadowCascadeNearZ[ cascade ]; var farZ = light.shadowCascadeFarZ[ cascade ]; var pointsFrustum = virtualLight.pointsFrustum; pointsFrustum[ 0 ].z = nearZ; pointsFrustum[ 1 ].z = nearZ; pointsFrustum[ 2 ].z = nearZ; pointsFrustum[ 3 ].z = nearZ; pointsFrustum[ 4 ].z = farZ; pointsFrustum[ 5 ].z = farZ; pointsFrustum[ 6 ].z = farZ; pointsFrustum[ 7 ].z = farZ; } // Fit shadow camera's ortho frustum to camera frustum function updateShadowCamera( camera, light ) { var shadowCamera = light.shadowCamera, pointsFrustum = light.pointsFrustum, pointsWorld = light.pointsWorld; _min.set( Infinity, Infinity, Infinity ); _max.set( -Infinity, -Infinity, -Infinity ); for ( var i = 0; i < 8; i ++ ) { var p = pointsWorld[ i ]; p.copy( pointsFrustum[ i ] ); THREE.ShadowMapPlugin.__projector.unprojectVector( p, camera ); shadowCamera.matrixWorldInverse.multiplyVector3( p ); if ( p.x < _min.x ) _min.x = p.x; if ( p.x > _max.x ) _max.x = p.x; if ( p.y < _min.y ) _min.y = p.y; if ( p.y > _max.y ) _max.y = p.y; if ( p.z < _min.z ) _min.z = p.z; if ( p.z > _max.z ) _max.z = p.z; } shadowCamera.left = _min.x; shadowCamera.right = _max.x; shadowCamera.top = _max.y; shadowCamera.bottom = _min.y; // can't really fit near/far //shadowCamera.near = _min.z; //shadowCamera.far = _max.z; shadowCamera.updateProjectionMatrix(); } }; THREE.ShadowMapPlugin.__projector = new THREE.Projector(); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.SpritePlugin = function ( ) { var _gl, _renderer, _sprite = {}; this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; _sprite.vertices = new Float32Array( 8 + 8 ); _sprite.faces = new Uint16Array( 6 ); var i = 0; _sprite.vertices[ i++ ] = -1; _sprite.vertices[ i++ ] = -1; // vertex 0 _sprite.vertices[ i++ ] = 0; _sprite.vertices[ i++ ] = 1; // uv 0 _sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = -1; // vertex 1 _sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = 1; // uv 1 _sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = 1; // vertex 2 _sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = 0; // uv 2 _sprite.vertices[ i++ ] = -1; _sprite.vertices[ i++ ] = 1; // vertex 3 _sprite.vertices[ i++ ] = 0; _sprite.vertices[ i++ ] = 0; // uv 3 i = 0; _sprite.faces[ i++ ] = 0; _sprite.faces[ i++ ] = 1; _sprite.faces[ i++ ] = 2; _sprite.faces[ i++ ] = 0; _sprite.faces[ i++ ] = 2; _sprite.faces[ i++ ] = 3; _sprite.vertexBuffer = _gl.createBuffer(); _sprite.elementBuffer = _gl.createBuffer(); _gl.bindBuffer( _gl.ARRAY_BUFFER, _sprite.vertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, _sprite.vertices, _gl.STATIC_DRAW ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _sprite.elementBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, _sprite.faces, _gl.STATIC_DRAW ); _sprite.program = createProgram( THREE.ShaderSprite[ "sprite" ] ); _sprite.attributes = {}; _sprite.uniforms = {}; _sprite.attributes.position = _gl.getAttribLocation ( _sprite.program, "position" ); _sprite.attributes.uv = _gl.getAttribLocation ( _sprite.program, "uv" ); _sprite.uniforms.uvOffset = _gl.getUniformLocation( _sprite.program, "uvOffset" ); _sprite.uniforms.uvScale = _gl.getUniformLocation( _sprite.program, "uvScale" ); _sprite.uniforms.rotation = _gl.getUniformLocation( _sprite.program, "rotation" ); _sprite.uniforms.scale = _gl.getUniformLocation( _sprite.program, "scale" ); _sprite.uniforms.alignment = _gl.getUniformLocation( _sprite.program, "alignment" ); _sprite.uniforms.color = _gl.getUniformLocation( _sprite.program, "color" ); _sprite.uniforms.map = _gl.getUniformLocation( _sprite.program, "map" ); _sprite.uniforms.opacity = _gl.getUniformLocation( _sprite.program, "opacity" ); _sprite.uniforms.useScreenCoordinates = _gl.getUniformLocation( _sprite.program, "useScreenCoordinates" ); _sprite.uniforms.affectedByDistance = _gl.getUniformLocation( _sprite.program, "affectedByDistance" ); _sprite.uniforms.screenPosition = _gl.getUniformLocation( _sprite.program, "screenPosition" ); _sprite.uniforms.modelViewMatrix = _gl.getUniformLocation( _sprite.program, "modelViewMatrix" ); _sprite.uniforms.projectionMatrix = _gl.getUniformLocation( _sprite.program, "projectionMatrix" ); _sprite.attributesEnabled = false; }; this.render = function ( scene, camera, viewportWidth, viewportHeight ) { var sprites = scene.__webglSprites, nSprites = sprites.length; if ( ! nSprites ) return; var attributes = _sprite.attributes, uniforms = _sprite.uniforms; var invAspect = viewportHeight / viewportWidth; var halfViewportWidth = viewportWidth * 0.5, halfViewportHeight = viewportHeight * 0.5; var mergeWith3D = true; // setup gl _gl.useProgram( _sprite.program ); if ( ! _sprite.attributesEnabled ) { _gl.enableVertexAttribArray( attributes.position ); _gl.enableVertexAttribArray( attributes.uv ); _sprite.attributesEnabled = true; } _gl.disable( _gl.CULL_FACE ); _gl.enable( _gl.BLEND ); _gl.depthMask( true ); _gl.bindBuffer( _gl.ARRAY_BUFFER, _sprite.vertexBuffer ); _gl.vertexAttribPointer( attributes.position, 2, _gl.FLOAT, false, 2 * 8, 0 ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 2 * 8, 8 ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _sprite.elementBuffer ); _gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera._projectionMatrixArray ); _gl.activeTexture( _gl.TEXTURE0 ); _gl.uniform1i( uniforms.map, 0 ); // update positions and sort var i, sprite, screenPosition, size, scale = []; for( i = 0; i < nSprites; i ++ ) { sprite = sprites[ i ]; if ( ! sprite.visible || sprite.opacity === 0 ) continue; if( ! sprite.useScreenCoordinates ) { sprite._modelViewMatrix.multiply( camera.matrixWorldInverse, sprite.matrixWorld); sprite.z = - sprite._modelViewMatrix.elements[14]; } else { sprite.z = - sprite.position.z; } } sprites.sort( painterSort ); // render all sprites for( i = 0; i < nSprites; i ++ ) { sprite = sprites[ i ]; if ( ! sprite.visible || sprite.opacity === 0 ) continue; if ( sprite.map && sprite.map.image && sprite.map.image.width ) { if ( sprite.useScreenCoordinates ) { _gl.uniform1i( uniforms.useScreenCoordinates, 1 ); _gl.uniform3f( uniforms.screenPosition, ( sprite.position.x - halfViewportWidth ) / halfViewportWidth, ( halfViewportHeight - sprite.position.y ) / halfViewportHeight, Math.max( 0, Math.min( 1, sprite.position.z ) ) ); } else { _gl.uniform1i( uniforms.useScreenCoordinates, 0 ); _gl.uniform1i( uniforms.affectedByDistance, sprite.affectedByDistance ? 1 : 0 ); _gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite._modelViewMatrix.elements); } size = sprite.map.image.width / ( sprite.scaleByViewport ? viewportHeight : 1 ); scale[ 0 ] = size * invAspect * sprite.scale.x; scale[ 1 ] = size * sprite.scale.y; _gl.uniform2f( uniforms.uvScale, sprite.uvScale.x, sprite.uvScale.y ); _gl.uniform2f( uniforms.uvOffset, sprite.uvOffset.x, sprite.uvOffset.y ); _gl.uniform2f( uniforms.alignment, sprite.alignment.x, sprite.alignment.y ); _gl.uniform1f( uniforms.opacity, sprite.opacity ); _gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b ); _gl.uniform1f( uniforms.rotation, sprite.rotation ); _gl.uniform2fv( uniforms.scale, scale ); if ( sprite.mergeWith3D && !mergeWith3D ) { _gl.enable( _gl.DEPTH_TEST ); mergeWith3D = true; } else if ( ! sprite.mergeWith3D && mergeWith3D ) { _gl.disable( _gl.DEPTH_TEST ); mergeWith3D = false; } _renderer.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst ); _renderer.setTexture( sprite.map, 0 ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); } } // restore gl _gl.enable( _gl.CULL_FACE ); _gl.enable( _gl.DEPTH_TEST ); _gl.depthMask( true ); }; function createProgram ( shader ) { var program = _gl.createProgram(); var fragmentShader = _gl.createShader( _gl.FRAGMENT_SHADER ); var vertexShader = _gl.createShader( _gl.VERTEX_SHADER ); _gl.shaderSource( fragmentShader, shader.fragmentShader ); _gl.shaderSource( vertexShader, shader.vertexShader ); _gl.compileShader( fragmentShader ); _gl.compileShader( vertexShader ); _gl.attachShader( program, fragmentShader ); _gl.attachShader( program, vertexShader ); _gl.linkProgram( program ); return program; }; function painterSort ( a, b ) { return b.z - a.z; }; };/** * @author mikael emtinger / http://gomo.se/ * */ THREE.ShaderFlares = { 'lensFlareVertexTexture': { vertexShader: [ "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "uniform int renderType;", "uniform sampler2D occlusionMap;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if( renderType == 2 ) {", "vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) ) +", "texture2D( occlusionMap, vec2( 0.5, 0.1 ) ) +", "texture2D( occlusionMap, vec2( 0.9, 0.1 ) ) +", "texture2D( occlusionMap, vec2( 0.9, 0.5 ) ) +", "texture2D( occlusionMap, vec2( 0.9, 0.9 ) ) +", "texture2D( occlusionMap, vec2( 0.5, 0.9 ) ) +", "texture2D( occlusionMap, vec2( 0.1, 0.9 ) ) +", "texture2D( occlusionMap, vec2( 0.1, 0.5 ) ) +", "texture2D( occlusionMap, vec2( 0.5, 0.5 ) );", "vVisibility = ( visibility.r / 9.0 ) *", "( 1.0 - visibility.g / 9.0 ) *", "( visibility.b / 9.0 ) *", "( 1.0 - visibility.a / 9.0 );", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "precision mediump float;", "uniform sampler2D map;", "uniform float opacity;", "uniform int renderType;", "uniform vec3 color;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", // pink square "if( renderType == 0 ) {", "gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );", // restore "} else if( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * vVisibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) }, 'lensFlare': { vertexShader: [ "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "uniform int renderType;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if( renderType == 2 ) {", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "precision mediump float;", "uniform sampler2D map;", "uniform sampler2D occlusionMap;", "uniform float opacity;", "uniform int renderType;", "uniform vec3 color;", "varying vec2 vUV;", "void main() {", // pink square "if( renderType == 0 ) {", "gl_FragColor = vec4( texture2D( map, vUV ).rgb, 0.0 );", // restore "} else if( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "float visibility = texture2D( occlusionMap, vec2( 0.5, 0.1 ) ).a +", "texture2D( occlusionMap, vec2( 0.9, 0.5 ) ).a +", "texture2D( occlusionMap, vec2( 0.5, 0.9 ) ).a +", "texture2D( occlusionMap, vec2( 0.1, 0.5 ) ).a;", "visibility = ( 1.0 - visibility / 4.0 );", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * visibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) } }; /** * @author mikael emtinger / http://gomo.se/ * */ THREE.ShaderSprite = { 'sprite': { vertexShader: [ "uniform int useScreenCoordinates;", "uniform int affectedByDistance;", "uniform vec3 screenPosition;", "uniform mat4 modelViewMatrix;", "uniform mat4 projectionMatrix;", "uniform float rotation;", "uniform vec2 scale;", "uniform vec2 alignment;", "uniform vec2 uvOffset;", "uniform vec2 uvScale;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "void main() {", "vUV = uvOffset + uv * uvScale;", "vec2 alignedPosition = position + alignment;", "vec2 rotatedPosition;", "rotatedPosition.x = ( cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y ) * scale.x;", "rotatedPosition.y = ( sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y ) * scale.y;", "vec4 finalPosition;", "if( useScreenCoordinates != 0 ) {", "finalPosition = vec4( screenPosition.xy + rotatedPosition, screenPosition.z, 1.0 );", "} else {", "finalPosition = projectionMatrix * modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );", "finalPosition.xy += rotatedPosition * ( affectedByDistance == 1 ? 1.0 : finalPosition.z );", "}", "gl_Position = finalPosition;", "}" ].join( "\n" ), fragmentShader: [ "precision mediump float;", "uniform vec3 color;", "uniform sampler2D map;", "uniform float opacity;", "varying vec2 vUV;", "void main() {", "vec4 texture = texture2D( map, vUV );", "gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );", "}" ].join( "\n" ) } };