(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o Util.MAX_TIMESTEP) { console.warn('Invalid timestamps detected. Time step between successive ' + 'gyroscope sensor samples is very small or not monotonic'); this.previousTimestampS = timestampS; return; } this.accelerometer.set(-accGravity.x, -accGravity.y, -accGravity.z); this.gyroscope.set(rotRate.alpha, rotRate.beta, rotRate.gamma); // With iOS and Firefox Android, rotationRate is reported in degrees, // so we first convert to radians. if (this.isIOS || this.isFirefoxAndroid) { this.gyroscope.multiplyScalar(Math.PI / 180); } this.filter.addAccelMeasurement(this.accelerometer, timestampS); this.filter.addGyroMeasurement(this.gyroscope, timestampS); this.previousTimestampS = timestampS; }; FusionPositionSensorVRDevice.prototype.onScreenOrientationChange_ = function(screenOrientation) { this.setScreenTransform_(); }; FusionPositionSensorVRDevice.prototype.setScreenTransform_ = function() { this.worldToScreenQ.set(0, 0, 0, 1); switch (window.orientation) { case 0: break; case 90: this.worldToScreenQ.setFromAxisAngle(new THREE.Vector3(0, 0, 1), -Math.PI/2); break; case -90: this.worldToScreenQ.setFromAxisAngle(new THREE.Vector3(0, 0, 1), Math.PI/2); break; case 180: // TODO. break; } }; module.exports = FusionPositionSensorVRDevice; },{"./base.js":1,"./complementary-filter.js":3,"./pose-predictor.js":7,"./three-math.js":9,"./touch-panner.js":10,"./util.js":11}],5:[function(_dereq_,module,exports){ /* * Copyright 2015 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ var WebVRPolyfill = _dereq_('./webvr-polyfill.js'); // Initialize a WebVRConfig just in case. window.WebVRConfig = window.WebVRConfig || {}; new WebVRPolyfill(); },{"./webvr-polyfill.js":12}],6:[function(_dereq_,module,exports){ /* * Copyright 2015 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ var PositionSensorVRDevice = _dereq_('./base.js').PositionSensorVRDevice; var THREE = _dereq_('./three-math.js'); var Util = _dereq_('./util.js'); // How much to rotate per key stroke. var KEY_SPEED = 0.15; var KEY_ANIMATION_DURATION = 80; // How much to rotate for mouse events. var MOUSE_SPEED_X = 0.5; var MOUSE_SPEED_Y = 0.3; /** * A virtual position sensor, implemented using keyboard and * mouse APIs. This is designed as for desktops/laptops where no Device* * events work. */ function MouseKeyboardPositionSensorVRDevice() { this.deviceId = 'webvr-polyfill:mouse-keyboard'; this.deviceName = 'VR Position Device (webvr-polyfill:mouse-keyboard)'; // Attach to mouse and keyboard events. window.addEventListener('keydown', this.onKeyDown_.bind(this)); window.addEventListener('mousemove', this.onMouseMove_.bind(this)); window.addEventListener('mousedown', this.onMouseDown_.bind(this)); window.addEventListener('mouseup', this.onMouseUp_.bind(this)); this.phi = 0; this.theta = 0; // Variables for keyboard-based rotation animation. this.targetAngle = null; // State variables for calculations. this.euler = new THREE.Euler(); this.orientation = new THREE.Quaternion(); // Variables for mouse-based rotation. this.rotateStart = new THREE.Vector2(); this.rotateEnd = new THREE.Vector2(); this.rotateDelta = new THREE.Vector2(); } MouseKeyboardPositionSensorVRDevice.prototype = new PositionSensorVRDevice(); /** * Returns {orientation: {x,y,z,w}, position: null}. * Position is not supported for parity with other PositionSensors. */ MouseKeyboardPositionSensorVRDevice.prototype.getState = function() { this.euler.set(this.phi, this.theta, 0, 'YXZ'); this.orientation.setFromEuler(this.euler); return { hasOrientation: true, orientation: this.orientation, hasPosition: false, position: null } }; MouseKeyboardPositionSensorVRDevice.prototype.onKeyDown_ = function(e) { // Track WASD and arrow keys. if (e.keyCode == 38) { // Up key. this.animatePhi_(this.phi + KEY_SPEED); } else if (e.keyCode == 39) { // Right key. this.animateTheta_(this.theta - KEY_SPEED); } else if (e.keyCode == 40) { // Down key. this.animatePhi_(this.phi - KEY_SPEED); } else if (e.keyCode == 37) { // Left key. this.animateTheta_(this.theta + KEY_SPEED); } }; MouseKeyboardPositionSensorVRDevice.prototype.animateTheta_ = function(targetAngle) { this.animateKeyTransitions_('theta', targetAngle); }; MouseKeyboardPositionSensorVRDevice.prototype.animatePhi_ = function(targetAngle) { // Prevent looking too far up or down. targetAngle = Util.clamp(targetAngle, -Math.PI/2, Math.PI/2); this.animateKeyTransitions_('phi', targetAngle); }; /** * Start an animation to transition an angle from one value to another. */ MouseKeyboardPositionSensorVRDevice.prototype.animateKeyTransitions_ = function(angleName, targetAngle) { // If an animation is currently running, cancel it. if (this.angleAnimation) { clearInterval(this.angleAnimation); } var startAngle = this[angleName]; var startTime = new Date(); // Set up an interval timer to perform the animation. this.angleAnimation = setInterval(function() { // Once we're finished the animation, we're done. var elapsed = new Date() - startTime; if (elapsed >= KEY_ANIMATION_DURATION) { this[angleName] = targetAngle; clearInterval(this.angleAnimation); return; } // Linearly interpolate the angle some amount. var percent = elapsed / KEY_ANIMATION_DURATION; this[angleName] = startAngle + (targetAngle - startAngle) * percent; }.bind(this), 1000/60); }; MouseKeyboardPositionSensorVRDevice.prototype.onMouseDown_ = function(e) { this.rotateStart.set(e.clientX, e.clientY); this.isDragging = true; }; // Very similar to https://gist.github.com/mrflix/8351020 MouseKeyboardPositionSensorVRDevice.prototype.onMouseMove_ = function(e) { if (!this.isDragging && !this.isPointerLocked_()) { return; } // Support pointer lock API. if (this.isPointerLocked_()) { var movementX = e.movementX || e.mozMovementX || 0; var movementY = e.movementY || e.mozMovementY || 0; this.rotateEnd.set(this.rotateStart.x - movementX, this.rotateStart.y - movementY); } else { this.rotateEnd.set(e.clientX, e.clientY); } // Calculate how much we moved in mouse space. this.rotateDelta.subVectors(this.rotateEnd, this.rotateStart); this.rotateStart.copy(this.rotateEnd); // Keep track of the cumulative euler angles. var element = document.body; this.phi += 2 * Math.PI * this.rotateDelta.y / element.clientHeight * MOUSE_SPEED_Y; this.theta += 2 * Math.PI * this.rotateDelta.x / element.clientWidth * MOUSE_SPEED_X; // Prevent looking too far up or down. this.phi = Util.clamp(this.phi, -Math.PI/2, Math.PI/2); }; MouseKeyboardPositionSensorVRDevice.prototype.onMouseUp_ = function(e) { this.isDragging = false; }; MouseKeyboardPositionSensorVRDevice.prototype.isPointerLocked_ = function() { var el = document.pointerLockElement || document.mozPointerLockElement || document.webkitPointerLockElement; return el !== undefined; }; MouseKeyboardPositionSensorVRDevice.prototype.resetSensor = function() { console.error('Not implemented yet.'); }; module.exports = MouseKeyboardPositionSensorVRDevice; },{"./base.js":1,"./three-math.js":9,"./util.js":11}],7:[function(_dereq_,module,exports){ /* * Copyright 2015 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ var THREE = _dereq_('./three-math.js'); var DEBUG = false; /** * Given an orientation and the gyroscope data, predicts the future orientation * of the head. This makes rendering appear faster. * * Also see: http://msl.cs.uiuc.edu/~lavalle/papers/LavYerKatAnt14.pdf * * @param {Number} predictionTimeS time from head movement to the appearance of * the corresponding image. */ function PosePredictor(predictionTimeS) { this.predictionTimeS = predictionTimeS; // The quaternion corresponding to the previous state. this.previousQ = new THREE.Quaternion(); // Previous time a prediction occurred. this.previousTimestampS = null; // The delta quaternion that adjusts the current pose. this.deltaQ = new THREE.Quaternion(); // The output quaternion. this.outQ = new THREE.Quaternion(); } PosePredictor.prototype.getPrediction = function(currentQ, gyro, timestampS) { if (!this.previousTimestampS) { this.previousQ.copy(currentQ); this.previousTimestampS = timestampS; return currentQ; } // Calculate axis and angle based on gyroscope rotation rate data. var axis = new THREE.Vector3(); axis.copy(gyro); axis.normalize(); var angularSpeed = gyro.length(); // If we're rotating slowly, don't do prediction. if (angularSpeed < THREE.Math.degToRad(20)) { if (DEBUG) { console.log('Moving slowly, at %s deg/s: no prediction', THREE.Math.radToDeg(angularSpeed).toFixed(1)); } this.outQ.copy(currentQ); this.previousQ.copy(currentQ); return this.outQ; } // Get the predicted angle based on the time delta and latency. var deltaT = timestampS - this.previousTimestampS; var predictAngle = angularSpeed * this.predictionTimeS; this.deltaQ.setFromAxisAngle(axis, predictAngle); this.outQ.copy(this.previousQ); this.outQ.multiply(this.deltaQ); this.previousQ.copy(currentQ); return this.outQ; }; module.exports = PosePredictor; },{"./three-math.js":9}],8:[function(_dereq_,module,exports){ function SensorSample(sample, timestampS) { this.set(sample, timestampS); }; SensorSample.prototype.set = function(sample, timestampS) { this.sample = sample; this.timestampS = timestampS; }; SensorSample.prototype.copy = function(sensorSample) { this.set(sensorSample.sample, sensorSample.timestampS); }; module.exports = SensorSample; },{}],9:[function(_dereq_,module,exports){ /* * A subset of THREE.js, providing mostly quaternion and euler-related * operations, manually lifted from * https://github.com/mrdoob/three.js/tree/master/src/math, as of 9c30286b38df039fca389989ff06ea1c15d6bad1 */ // Only use if the real THREE is not provided. var THREE = window.THREE || {}; // If some piece of THREE is missing, fill it in here. if (!THREE.Quaternion || !THREE.Vector3 || !THREE.Vector2 || !THREE.Euler || !THREE.Math) { console.log('No THREE.js found.'); /*** START Quaternion ***/ /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://exocortex.com */ THREE.Quaternion = function ( x, y, z, w ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._w = ( w !== undefined ) ? w : 1; }; THREE.Quaternion.prototype = { constructor: THREE.Quaternion, _x: 0,_y: 0, _z: 0, _w: 0, get x () { return this._x; }, set x ( value ) { this._x = value; this.onChangeCallback(); }, get y () { return this._y; }, set y ( value ) { this._y = value; this.onChangeCallback(); }, get z () { return this._z; }, set z ( value ) { this._z = value; this.onChangeCallback(); }, get w () { return this._w; }, set w ( value ) { this._w = value; this.onChangeCallback(); }, set: function ( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this.onChangeCallback(); return this; }, copy: function ( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this.onChangeCallback(); return this; }, setFromEuler: function ( euler, update ) { if ( euler instanceof THREE.Euler === false ) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m var c1 = Math.cos( euler._x / 2 ); var c2 = Math.cos( euler._y / 2 ); var c3 = Math.cos( euler._z / 2 ); var s1 = Math.sin( euler._x / 2 ); var s2 = Math.sin( euler._y / 2 ); var s3 = Math.sin( euler._z / 2 ); if ( euler.order === 'XYZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( euler.order === 'YXZ' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( euler.order === 'ZXY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( euler.order === 'ZYX' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( euler.order === 'YZX' ) { this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( euler.order === 'XZY' ) { this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; } if ( update !== false ) this.onChangeCallback(); return this; }, setFromAxisAngle: function ( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33, s; if ( trace > 0 ) { s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this.onChangeCallback(); return this; }, setFromUnitVectors: function () { // http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final // assumes direction vectors vFrom and vTo are normalized var v1, r; var EPS = 0.000001; return function ( vFrom, vTo ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); r = vFrom.dot( vTo ) + 1; if ( r < EPS ) { r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { v1.set( - vFrom.y, vFrom.x, 0 ); } else { v1.set( 0, - vFrom.z, vFrom.y ); } } else { v1.crossVectors( vFrom, vTo ); } this._x = v1.x; this._y = v1.y; this._z = v1.z; this._w = r; this.normalize(); return this; } }(), inverse: function () { this.conjugate().normalize(); return this; }, conjugate: function () { this._x *= - 1; this._y *= - 1; this._z *= - 1; this.onChangeCallback(); return this; }, dot: function ( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; }, lengthSq: function () { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; }, length: function () { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); }, normalize: function () { var l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this.onChangeCallback(); return this; }, multiply: function ( q, p ) { if ( p !== undefined ) { console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); return this.multiplyQuaternions( q, p ); } return this.multiplyQuaternions( this, q ); }, multiplyQuaternions: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this.onChangeCallback(); return this; }, multiplyVector3: function ( vector ) { console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); return vector.applyQuaternion( this ); }, slerp: function ( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); var x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } var halfTheta = Math.acos( cosHalfTheta ); var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { this._w = 0.5 * ( w + this._w ); this._x = 0.5 * ( x + this._x ); this._y = 0.5 * ( y + this._y ); this._z = 0.5 * ( z + this._z ); return this; } var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this.onChangeCallback(); return this; }, equals: function ( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this.onChangeCallback(); return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {}, clone: function () { return new THREE.Quaternion( this._x, this._y, this._z, this._w ); } }; THREE.Quaternion.slerp = function ( qa, qb, qm, t ) { return qm.copy( qa ).slerp( qb, t ); } /*** END Quaternion ***/ /*** START Vector2 ***/ /** * @author mrdoob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.Vector2 = function ( x, y ) { this.x = x || 0; this.y = y || 0; }; THREE.Vector2.prototype = { constructor: THREE.Vector2, set: function ( x, y ) { this.x = x; this.y = y; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } }, copy: function ( v ) { this.x = v.x; this.y = v.y; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; }, multiply: function ( v ) { this.x *= v.x; this.y *= v.y; return this; }, multiplyScalar: function ( s ) { this.x *= s; this.y *= s; return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; return this; }, divideScalar: function ( scalar ) { if ( scalar !== 0 ) { var invScalar = 1 / scalar; this.x *= invScalar; this.y *= invScalar; } else { this.x = 0; this.y = 0; } return this; }, min: function ( v ) { if ( this.x > v.x ) { this.x = v.x; } if ( this.y > v.y ) { this.y = v.y; } return this; }, max: function ( v ) { if ( this.x < v.x ) { this.x = v.x; } if ( this.y < v.y ) { this.y = v.y; } return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly if ( this.x < min.x ) { this.x = min.x; } else if ( this.x > max.x ) { this.x = max.x; } if ( this.y < min.y ) { this.y = min.y; } else if ( this.y > max.y ) { this.y = max.y; } return this; }, clampScalar: ( function () { var min, max; return function ( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector2(); max = new THREE.Vector2(); } min.set( minVal, minVal ); max.set( maxVal, maxVal ); return this.clamp( min, max ); }; } )(), floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y; }, lengthSq: function () { return this.x * this.x + this.y * this.y; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y ); }, normalize: function () { return this.divideScalar( this.length() ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; }, setLength: function ( l ) { var oldLength = this.length(); if ( oldLength !== 0 && l !== oldLength ) { this.multiplyScalar( l / oldLength ); } return this; }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; return this; }, clone: function () { return new THREE.Vector2( this.x, this.y ); } }; /*** END Vector2 ***/ /*** START Vector3 ***/ /** * @author mrdoob / http://mrdoob.com/ * @author *kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Vector3 = function ( x, y, z ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; }; THREE.Vector3.prototype = { constructor: THREE.Vector3, set: function ( x, y, z ) { this.x = x; this.y = y; this.z = z; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, setComponent: function ( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } }, getComponent: function ( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; }, add: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); return this.addVectors( v, w ); } this.x += v.x; this.y += v.y; this.z += v.z; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; return this; }, addVectors: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; }, sub: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); return this.subVectors( v, w ); } this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; }, subVectors: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; }, multiply: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); return this.multiplyVectors( v, w ); } this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; }, multiplyScalar: function ( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; }, multiplyVectors: function ( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; }, applyEuler: function () { var quaternion; return function ( euler ) { if ( euler instanceof THREE.Euler === false ) { console.error( 'THREE.Vector3: .applyEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } if ( quaternion === undefined ) quaternion = new THREE.Quaternion(); this.applyQuaternion( quaternion.setFromEuler( euler ) ); return this; }; }(), applyAxisAngle: function () { var quaternion; return function ( axis, angle ) { if ( quaternion === undefined ) quaternion = new THREE.Quaternion(); this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) ); return this; }; }(), applyMatrix3: function ( m ) { var x = this.x; var y = this.y; var z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; }, applyMatrix4: function ( m ) { // input: THREE.Matrix4 affine matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ]; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ]; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ]; return this; }, applyProjection: function ( m ) { // input: THREE.Matrix4 projection matrix var x = this.x, y = this.y, z = this.z; var e = m.elements; var d = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); // perspective divide this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * d; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * d; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * d; return this; }, applyQuaternion: function ( q ) { var x = this.x; var y = this.y; var z = this.z; var qx = q.x; var qy = q.y; var qz = q.z; var qw = q.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y; var iy = qw * y + qz * x - qx * z; var iz = qw * z + qx * y - qy * x; var iw = - qx * x - qy * y - qz * z; // calculate result * inverse quat this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; return this; }, project: function () { var matrix; return function ( camera ) { if ( matrix === undefined ) matrix = new THREE.Matrix4(); matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) ); return this.applyProjection( matrix ); }; }(), unproject: function () { var matrix; return function ( camera ) { if ( matrix === undefined ) matrix = new THREE.Matrix4(); matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) ); return this.applyProjection( matrix ); }; }(), transformDirection: function ( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction var x = this.x, y = this.y, z = this.z; var e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; this.normalize(); return this; }, divide: function ( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; }, divideScalar: function ( scalar ) { if ( scalar !== 0 ) { var invScalar = 1 / scalar; this.x *= invScalar; this.y *= invScalar; this.z *= invScalar; } else { this.x = 0; this.y = 0; this.z = 0; } return this; }, min: function ( v ) { if ( this.x > v.x ) { this.x = v.x; } if ( this.y > v.y ) { this.y = v.y; } if ( this.z > v.z ) { this.z = v.z; } return this; }, max: function ( v ) { if ( this.x < v.x ) { this.x = v.x; } if ( this.y < v.y ) { this.y = v.y; } if ( this.z < v.z ) { this.z = v.z; } return this; }, clamp: function ( min, max ) { // This function assumes min < max, if this assumption isn't true it will not operate correctly if ( this.x < min.x ) { this.x = min.x; } else if ( this.x > max.x ) { this.x = max.x; } if ( this.y < min.y ) { this.y = min.y; } else if ( this.y > max.y ) { this.y = max.y; } if ( this.z < min.z ) { this.z = min.z; } else if ( this.z > max.z ) { this.z = max.z; } return this; }, clampScalar: ( function () { var min, max; return function ( minVal, maxVal ) { if ( min === undefined ) { min = new THREE.Vector3(); max = new THREE.Vector3(); } min.set( minVal, minVal, minVal ); max.set( maxVal, maxVal, maxVal ); return this.clamp( min, max ); }; } )(), floor: function () { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; }, ceil: function () { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; }, round: function () { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; }, roundToZero: function () { this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); return this; }, negate: function () { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( l ) { var oldLength = this.length(); if ( oldLength !== 0 && l !== oldLength ) { this.multiplyScalar( l / oldLength ); } return this; }, lerp: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; }, cross: function ( v, w ) { if ( w !== undefined ) { console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); return this.crossVectors( v, w ); } var x = this.x, y = this.y, z = this.z; this.x = y * v.z - z * v.y; this.y = z * v.x - x * v.z; this.z = x * v.y - y * v.x; return this; }, crossVectors: function ( a, b ) { var ax = a.x, ay = a.y, az = a.z; var bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; }, projectOnVector: function () { var v1, dot; return function ( vector ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); v1.copy( vector ).normalize(); dot = this.dot( v1 ); return this.copy( v1 ).multiplyScalar( dot ); }; }(), projectOnPlane: function () { var v1; return function ( planeNormal ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); v1.copy( this ).projectOnVector( planeNormal ); return this.sub( v1 ); } }(), reflect: function () { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length var v1; return function ( normal ) { if ( v1 === undefined ) v1 = new THREE.Vector3(); return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); } }(), angleTo: function ( v ) { var theta = this.dot( v ) / ( this.length() * v.length() ); // clamp, to handle numerical problems return Math.acos( THREE.Math.clamp( theta, - 1, 1 ) ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x; var dy = this.y - v.y; var dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; }, setEulerFromRotationMatrix: function ( m, order ) { console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ); }, setEulerFromQuaternion: function ( q, order ) { console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ); }, getPositionFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); return this.setFromMatrixPosition( m ); }, getScaleFromMatrix: function ( m ) { console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); return this.setFromMatrixScale( m ); }, getColumnFromMatrix: function ( index, matrix ) { console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); return this.setFromMatrixColumn( index, matrix ); }, setFromMatrixPosition: function ( m ) { this.x = m.elements[ 12 ]; this.y = m.elements[ 13 ]; this.z = m.elements[ 14 ]; return this; }, setFromMatrixScale: function ( m ) { var sx = this.set( m.elements[ 0 ], m.elements[ 1 ], m.elements[ 2 ] ).length(); var sy = this.set( m.elements[ 4 ], m.elements[ 5 ], m.elements[ 6 ] ).length(); var sz = this.set( m.elements[ 8 ], m.elements[ 9 ], m.elements[ 10 ] ).length(); this.x = sx; this.y = sy; this.z = sz; return this; }, setFromMatrixColumn: function ( index, matrix ) { var offset = index * 4; var me = matrix.elements; this.x = me[ offset ]; this.y = me[ offset + 1 ]; this.z = me[ offset + 2 ]; return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); }, fromArray: function ( array, offset ) { if ( offset === undefined ) offset = 0; this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; }, toArray: function ( array, offset ) { if ( array === undefined ) array = []; if ( offset === undefined ) offset = 0; array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; }, fromAttribute: function ( attribute, index, offset ) { if ( offset === undefined ) offset = 0; index = index * attribute.itemSize + offset; this.x = attribute.array[ index ]; this.y = attribute.array[ index + 1 ]; this.z = attribute.array[ index + 2 ]; return this; }, clone: function () { return new THREE.Vector3( this.x, this.y, this.z ); } }; /*** END Vector3 ***/ /*** START Euler ***/ /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://exocortex.com */ THREE.Euler = function ( x, y, z, order ) { this._x = x || 0; this._y = y || 0; this._z = z || 0; this._order = order || THREE.Euler.DefaultOrder; }; THREE.Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; THREE.Euler.DefaultOrder = 'XYZ'; THREE.Euler.prototype = { constructor: THREE.Euler, _x: 0, _y: 0, _z: 0, _order: THREE.Euler.DefaultOrder, get x () { return this._x; }, set x ( value ) { this._x = value; this.onChangeCallback(); }, get y () { return this._y; }, set y ( value ) { this._y = value; this.onChangeCallback(); }, get z () { return this._z; }, set z ( value ) { this._z = value; this.onChangeCallback(); }, get order () { return this._order; }, set order ( value ) { this._order = value; this.onChangeCallback(); }, set: function ( x, y, z, order ) { this._x = x; this._y = y; this._z = z; this._order = order || this._order; this.onChangeCallback(); return this; }, copy: function ( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this.onChangeCallback(); return this; }, setFromRotationMatrix: function ( m, order, update ) { var clamp = THREE.Math.clamp; // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements; var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; order = order || this._order; if ( order === 'XYZ' ) { this._y = Math.asin( clamp( m13, - 1, 1 ) ); if ( Math.abs( m13 ) < 0.99999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } } else if ( order === 'YXZ' ) { this._x = Math.asin( - clamp( m23, - 1, 1 ) ); if ( Math.abs( m23 ) < 0.99999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } } else if ( order === 'ZXY' ) { this._x = Math.asin( clamp( m32, - 1, 1 ) ); if ( Math.abs( m32 ) < 0.99999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } } else if ( order === 'ZYX' ) { this._y = Math.asin( - clamp( m31, - 1, 1 ) ); if ( Math.abs( m31 ) < 0.99999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } } else if ( order === 'YZX' ) { this._z = Math.asin( clamp( m21, - 1, 1 ) ); if ( Math.abs( m21 ) < 0.99999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } } else if ( order === 'XZY' ) { this._z = Math.asin( - clamp( m12, - 1, 1 ) ); if ( Math.abs( m12 ) < 0.99999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } } else { console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order ) } this._order = order; if ( update !== false ) this.onChangeCallback(); return this; }, setFromQuaternion: function () { var matrix; return function ( q, order, update ) { if ( matrix === undefined ) matrix = new THREE.Matrix4(); matrix.makeRotationFromQuaternion( q ); this.setFromRotationMatrix( matrix, order, update ); return this; }; }(), setFromVector3: function ( v, order ) { return this.set( v.x, v.y, v.z, order || this._order ); }, reorder: function () { // WARNING: this discards revolution information -bhouston var q = new THREE.Quaternion(); return function ( newOrder ) { q.setFromEuler( this ); this.setFromQuaternion( q, newOrder ); }; }(), equals: function ( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); }, fromArray: function ( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this.onChangeCallback(); return this; }, toArray: function () { return [ this._x, this._y, this._z, this._order ]; }, toVector3: function ( optionalResult ) { if ( optionalResult ) { return optionalResult.set( this._x, this._y, this._z ); } else { return new THREE.Vector3( this._x, this._y, this._z ); } }, onChange: function ( callback ) { this.onChangeCallback = callback; return this; }, onChangeCallback: function () {}, clone: function () { return new THREE.Euler( this._x, this._y, this._z, this._order ); } }; /*** END Euler ***/ /*** START Math ***/ /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ THREE.Math = { generateUUID: function () { // http://www.broofa.com/Tools/Math.uuid.htm var chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'.split( '' ); var uuid = new Array( 36 ); var rnd = 0, r; return function () { for ( var i = 0; i < 36; i ++ ) { if ( i == 8 || i == 13 || i == 18 || i == 23 ) { uuid[ i ] = '-'; } else if ( i == 14 ) { uuid[ i ] = '4'; } else { if ( rnd <= 0x02 ) rnd = 0x2000000 + ( Math.random() * 0x1000000 ) | 0; r = rnd & 0xf; rnd = rnd >> 4; uuid[ i ] = chars[ ( i == 19 ) ? ( r & 0x3 ) | 0x8 : r ]; } } return uuid.join( '' ); }; }(), // Clamp value to range clamp: function ( x, a, b ) { return ( x < a ) ? a : ( ( x > b ) ? b : x ); }, // Clamp value to range to range mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, // http://en.wikipedia.org/wiki/Smoothstep smoothstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); }, smootherstep: function ( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); }, // Random float from <0, 1> with 16 bits of randomness // (standard Math.random() creates repetitive patterns when applied over larger space) random16: function () { return ( 65280 * Math.random() + 255 * Math.random() ) / 65535; }, // Random integer from interval randInt: function ( low, high ) { return Math.floor( this.randFloat( low, high ) ); }, // Random float from interval randFloat: function ( low, high ) { return low + Math.random() * ( high - low ); }, // Random float from <-range/2, range/2> interval randFloatSpread: function ( range ) { return range * ( 0.5 - Math.random() ); }, degToRad: function () { var degreeToRadiansFactor = Math.PI / 180; return function ( degrees ) { return degrees * degreeToRadiansFactor; }; }(), radToDeg: function () { var radianToDegreesFactor = 180 / Math.PI; return function ( radians ) { return radians * radianToDegreesFactor; }; }(), isPowerOfTwo: function ( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; }, nextPowerOfTwo: function ( value ) { value --; value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; value ++; return value; } }; /*** END Math ***/ } module.exports = THREE; },{}],10:[function(_dereq_,module,exports){ /* * Copyright 2015 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ var THREE = _dereq_('./three-math.js'); var Util = _dereq_('./util.js'); var ROTATE_SPEED = 0.5; /** * Provides a quaternion responsible for pre-panning the scene before further * transformations due to device sensors. */ function TouchPanner() { window.addEventListener('touchstart', this.onTouchStart_.bind(this)); window.addEventListener('touchmove', this.onTouchMove_.bind(this)); window.addEventListener('touchend', this.onTouchEnd_.bind(this)); this.isTouching = false; this.rotateStart = new THREE.Vector2(); this.rotateEnd = new THREE.Vector2(); this.rotateDelta = new THREE.Vector2(); this.theta = 0; this.orientation = new THREE.Quaternion(); } TouchPanner.prototype.getOrientation = function() { this.orientation.setFromEuler(new THREE.Euler(0, 0, this.theta)); return this.orientation; }; TouchPanner.prototype.resetSensor = function() { this.theta = 0; }; TouchPanner.prototype.onTouchStart_ = function(e) { // Only respond if there is exactly one touch. if (e.touches.length != 1) { return; } this.rotateStart.set(e.touches[0].pageX, e.touches[0].pageY); this.isTouching = true; }; TouchPanner.prototype.onTouchMove_ = function(e) { if (!this.isTouching) { return; } this.rotateEnd.set(e.touches[0].pageX, e.touches[0].pageY); this.rotateDelta.subVectors(this.rotateEnd, this.rotateStart); this.rotateStart.copy(this.rotateEnd); // On iOS, direction is inverted. if (Util.isIOS()) { this.rotateDelta.x *= -1; } var element = document.body; this.theta += 2 * Math.PI * this.rotateDelta.x / element.clientWidth * ROTATE_SPEED; }; TouchPanner.prototype.onTouchEnd_ = function(e) { this.isTouching = false; }; module.exports = TouchPanner; },{"./three-math.js":9,"./util.js":11}],11:[function(_dereq_,module,exports){ /* * Copyright 2015 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ var Util = window.Util || {}; Util.MIN_TIMESTEP = 0.001; Util.MAX_TIMESTEP = 1; Util.clamp = function(value, min, max) { return Math.min(Math.max(min, value), max); }; Util.isIOS = function() { return /iPad|iPhone|iPod/.test(navigator.platform); }; Util.isFirefoxAndroid = function() { return navigator.userAgent.indexOf('Firefox') !== -1 && navigator.userAgent.indexOf('Android') !== -1; } // Helper method to validate the time steps of sensor timestamps. Util.isTimestampDeltaValid = function(timestampDeltaS) { if (isNaN(timestampDeltaS)) { return false; } if (timestampDeltaS <= Util.MIN_TIMESTEP) { return false; } if (timestampDeltaS > Util.MAX_TIMESTEP) { return false; } return true; } module.exports = Util; },{}],12:[function(_dereq_,module,exports){ /* * Copyright 2015 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ var CardboardHMDVRDevice = _dereq_('./cardboard-hmd-vr-device.js'); //var OrientationPositionSensorVRDevice = require('./orientation-position-sensor-vr-device.js'); var FusionPositionSensorVRDevice = _dereq_('./fusion-position-sensor-vr-device.js'); var MouseKeyboardPositionSensorVRDevice = _dereq_('./mouse-keyboard-position-sensor-vr-device.js'); // Uncomment to add positional tracking via webcam. //var WebcamPositionSensorVRDevice = require('./webcam-position-sensor-vr-device.js'); var HMDVRDevice = _dereq_('./base.js').HMDVRDevice; var PositionSensorVRDevice = _dereq_('./base.js').PositionSensorVRDevice; function WebVRPolyfill() { this.devices = []; if (!this.isWebVRAvailable()) { this.enablePolyfill(); } } WebVRPolyfill.prototype.isWebVRAvailable = function() { return ('getVRDevices' in navigator) || ('mozGetVRDevices' in navigator); }; WebVRPolyfill.prototype.enablePolyfill = function() { // Initialize our virtual VR devices. if (this.isCardboardCompatible()) { this.devices.push(new CardboardHMDVRDevice()); } // Polyfill using the right position sensor. if (this.isMobile()) { //this.devices.push(new OrientationPositionSensorVRDevice()); this.devices.push(new FusionPositionSensorVRDevice()); } else { if (!WebVRConfig.MOUSE_KEYBOARD_CONTROLS_DISABLED) { this.devices.push(new MouseKeyboardPositionSensorVRDevice()); } // Uncomment to add positional tracking via webcam. //this.devices.push(new WebcamPositionSensorVRDevice()); } // Provide navigator.getVRDevices. navigator.getVRDevices = this.getVRDevices.bind(this); // Provide the CardboardHMDVRDevice and PositionSensorVRDevice objects. window.HMDVRDevice = HMDVRDevice; window.PositionSensorVRDevice = PositionSensorVRDevice; }; WebVRPolyfill.prototype.getVRDevices = function() { var devices = this.devices; return new Promise(function(resolve, reject) { try { resolve(devices); } catch (e) { reject(e); } }); }; /** * Determine if a device is mobile. */ WebVRPolyfill.prototype.isMobile = function() { return /Android/i.test(navigator.userAgent) || /iPhone|iPad|iPod/i.test(navigator.userAgent); }; WebVRPolyfill.prototype.isCardboardCompatible = function() { // For now, support all iOS and Android devices. // Also enable the WebVRConfig.FORCE_VR flag for debugging. return this.isMobile() || WebVRConfig.FORCE_ENABLE_VR; }; module.exports = WebVRPolyfill; },{"./base.js":1,"./cardboard-hmd-vr-device.js":2,"./fusion-position-sensor-vr-device.js":4,"./mouse-keyboard-position-sensor-vr-device.js":6}]},{},[5]);