// ThreeWebGL.js - http://github.com/mrdoob/three.js /** * @author mr.doob / http://mrdoob.com/ */ var THREE = THREE || { REVISION: '50dev' }; if ( ! self.console ) { self.console = { info: function () {}, log: function () {}, debug: function () {}, warn: function () {}, error: function () {} }; } if ( ! self.Int32Array ) { self.Int32Array = Array; self.Float32Array = Array; } // http://paulirish.com/2011/requestanimationframe-for-smart-animating/ // http://my.opera.com/emoller/blog/2011/12/20/requestanimationframe-for-smart-er-animating // requestAnimationFrame polyfill by Erik Möller // fixes from Paul Irish and Tino Zijdel ( function () { var lastTime = 0; var vendors = [ 'ms', 'moz', 'webkit', 'o' ]; for ( var x = 0; x < vendors.length && !window.requestAnimationFrame; ++ x ) { window.requestAnimationFrame = window[ vendors[ x ] + 'RequestAnimationFrame' ]; window.cancelAnimationFrame = window[ vendors[ x ] + 'CancelAnimationFrame' ] || window[ vendors[ x ] + 'CancelRequestAnimationFrame' ]; } if ( !window.requestAnimationFrame ) { window.requestAnimationFrame = function ( callback, element ) { var currTime = Date.now(), timeToCall = Math.max( 0, 16 - ( currTime - lastTime ) ); var id = window.setTimeout( function() { callback( currTime + timeToCall ); }, timeToCall ); lastTime = currTime + timeToCall; return id; }; } if ( !window.cancelAnimationFrame ) { window.cancelAnimationFrame = function ( id ) { clearTimeout( id ); }; } }() ); // MATERIAL CONSTANTS // shading THREE.NoShading = 0; THREE.FlatShading = 1; THREE.SmoothShading = 2; // colors THREE.NoColors = 0; THREE.FaceColors = 1; THREE.VertexColors = 2; // blending modes THREE.NoBlending = 0; THREE.NormalBlending = 1; THREE.AdditiveBlending = 2; THREE.SubtractiveBlending = 3; THREE.MultiplyBlending = 4; THREE.CustomBlending = 5; // custom blending equations // (numbers start from 100 not to clash with other // mappings to OpenGL constants defined in Texture.js) THREE.AddEquation = 100; THREE.SubtractEquation = 101; THREE.ReverseSubtractEquation = 102; // custom blending destination factors THREE.ZeroFactor = 200; THREE.OneFactor = 201; THREE.SrcColorFactor = 202; THREE.OneMinusSrcColorFactor = 203; THREE.SrcAlphaFactor = 204; THREE.OneMinusSrcAlphaFactor = 205; THREE.DstAlphaFactor = 206; THREE.OneMinusDstAlphaFactor = 207; // custom blending source factors //THREE.ZeroFactor = 200; //THREE.OneFactor = 201; //THREE.SrcAlphaFactor = 204; //THREE.OneMinusSrcAlphaFactor = 205; //THREE.DstAlphaFactor = 206; //THREE.OneMinusDstAlphaFactor = 207; THREE.DstColorFactor = 208; THREE.OneMinusDstColorFactor = 209; THREE.SrcAlphaSaturateFactor = 210; // TEXTURE CONSTANTS THREE.MultiplyOperation = 0; THREE.MixOperation = 1; // Mapping modes THREE.UVMapping = function () {}; THREE.CubeReflectionMapping = function () {}; THREE.CubeRefractionMapping = function () {}; THREE.SphericalReflectionMapping = function () {}; THREE.SphericalRefractionMapping = function () {}; // Wrapping modes THREE.RepeatWrapping = 1000; THREE.ClampToEdgeWrapping = 1001; THREE.MirroredRepeatWrapping = 1002; // Filters THREE.NearestFilter = 1003; THREE.NearestMipMapNearestFilter = 1004; THREE.NearestMipMapLinearFilter = 1005; THREE.LinearFilter = 1006; THREE.LinearMipMapNearestFilter = 1007; THREE.LinearMipMapLinearFilter = 1008; // Data types THREE.UnsignedByteType = 1009; THREE.ByteType = 1010; THREE.ShortType = 1011; THREE.UnsignedShortType = 1012; THREE.IntType = 1013; THREE.UnsignedIntType = 1014; THREE.FloatType = 1015; // Pixel types //THREE.UnsignedByteType = 1009; THREE.UnsignedShort4444Type = 1016; THREE.UnsignedShort5551Type = 1017; THREE.UnsignedShort565Type = 1018; // Pixel formats THREE.AlphaFormat = 1019; THREE.RGBFormat = 1020; THREE.RGBAFormat = 1021; THREE.LuminanceFormat = 1022; THREE.LuminanceAlphaFormat = 1023; /** * @author mr.doob / http://mrdoob.com/ */ THREE.Color = function ( hex ) { if ( hex !== undefined ) this.setHex( hex ); return this; }; THREE.Color.prototype = { constructor: THREE.Color, r: 1, g: 1, b: 1, copy: function ( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; }, copyGammaToLinear: function ( color ) { this.r = color.r * color.r; this.g = color.g * color.g; this.b = color.b * color.b; return this; }, copyLinearToGamma: function ( color ) { this.r = Math.sqrt( color.r ); this.g = Math.sqrt( color.g ); this.b = Math.sqrt( color.b ); return this; }, convertGammaToLinear: function () { var r = this.r, g = this.g, b = this.b; this.r = r * r; this.g = g * g; this.b = b * b; return this; }, convertLinearToGamma: function () { this.r = Math.sqrt( this.r ); this.g = Math.sqrt( this.g ); this.b = Math.sqrt( this.b ); return this; }, setRGB: function ( r, g, b ) { this.r = r; this.g = g; this.b = b; return this; }, setHSV: function ( h, s, v ) { // based on MochiKit implementation by Bob Ippolito // h,s,v ranges are < 0.0 - 1.0 > var i, f, p, q, t; if ( v === 0 ) { this.r = this.g = this.b = 0; } else { i = Math.floor( h * 6 ); f = ( h * 6 ) - i; p = v * ( 1 - s ); q = v * ( 1 - ( s * f ) ); t = v * ( 1 - ( s * ( 1 - f ) ) ); if ( i === 0 ) { this.r = v; this.g = t; this.b = p; } else if ( i === 1 ) { this.r = q; this.g = v; this.b = p; } else if ( i === 2 ) { this.r = p; this.g = v; this.b = t; } else if ( i === 3 ) { this.r = p; this.g = q; this.b = v; } else if ( i === 4 ) { this.r = t; this.g = p; this.b = v; } else if ( i === 5 ) { this.r = v; this.g = p; this.b = q; } } return this; }, setHex: function ( hex ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; return this; }, lerpSelf: function ( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; }, getHex: function () { return Math.floor( this.r * 255 ) << 16 ^ Math.floor( this.g * 255 ) << 8 ^ Math.floor( this.b * 255 ); }, getContextStyle: function () { return 'rgb(' + Math.floor( this.r * 255 ) + ',' + Math.floor( this.g * 255 ) + ',' + Math.floor( this.b * 255 ) + ')'; }, clone: function () { return new THREE.Color().setRGB( this.r, this.g, this.b ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.Vector2 = function ( x, y ) { this.x = x || 0; this.y = y || 0; }; THREE.Vector2.prototype = { constructor: THREE.Vector2, set: function ( x, y ) { this.x = x; this.y = y; return this; }, copy: function ( v ) { this.x = v.x; this.y = v.y; return this; }, add: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; }, addSelf: function ( v ) { this.x += v.x; this.y += v.y; return this; }, sub: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; }, subSelf: function ( v ) { this.x -= v.x; this.y -= v.y; return this; }, multiplyScalar: function ( s ) { this.x *= s; this.y *= s; return this; }, divideScalar: function ( s ) { if ( s ) { this.x /= s; this.y /= s; } else { this.set( 0, 0 ); } return this; }, negate: function() { return this.multiplyScalar( - 1 ); }, dot: function ( v ) { return this.x * v.x + this.y * v.y; }, lengthSq: function () { return this.x * this.x + this.y * this.y; }, length: function () { return Math.sqrt( this.lengthSq() ); }, normalize: function () { return this.divideScalar( this.length() ); }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { var dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; }, setLength: function ( l ) { return this.normalize().multiplyScalar( l ); }, lerpSelf: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; }, equals: function( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); }, isZero: function () { return ( this.lengthSq() < 0.0001 /* almostZero */ ); }, clone: function () { return new THREE.Vector2( this.x, this.y ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Vector3 = function ( x, y, z ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; }; THREE.Vector3.prototype = { constructor: THREE.Vector3, set: function ( x, y, z ) { this.x = x; this.y = y; this.z = z; return this; }, setX: function ( x ) { this.x = x; return this; }, setY: function ( y ) { this.y = y; return this; }, setZ: function ( z ) { this.z = z; return this; }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; }, add: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; }, addSelf: function ( v ) { this.x += v.x; this.y += v.y; this.z += v.z; return this; }, addScalar: function ( s ) { this.x += s; this.y += s; this.z += s; return this; }, sub: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; }, subSelf: function ( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; }, multiply: function ( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; }, multiplySelf: function ( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; }, multiplyScalar: function ( s ) { this.x *= s; this.y *= s; this.z *= s; return this; }, divideSelf: function ( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; }, divideScalar: function ( s ) { if ( s ) { this.x /= s; this.y /= s; this.z /= s; } else { this.x = 0; this.y = 0; this.z = 0; } return this; }, negate: function() { return this.multiplyScalar( - 1 ); }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z; }, length: function () { return Math.sqrt( this.lengthSq() ); }, lengthManhattan: function () { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( l ) { return this.normalize().multiplyScalar( l ); }, lerpSelf: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; }, cross: function ( a, b ) { this.x = a.y * b.z - a.z * b.y; this.y = a.z * b.x - a.x * b.z; this.z = a.x * b.y - a.y * b.x; return this; }, crossSelf: function ( v ) { var x = this.x, y = this.y, z = this.z; this.x = y * v.z - z * v.y; this.y = z * v.x - x * v.z; this.z = x * v.y - y * v.x; return this; }, distanceTo: function ( v ) { return Math.sqrt( this.distanceToSquared( v ) ); }, distanceToSquared: function ( v ) { return new THREE.Vector3().sub( this, v ).lengthSq(); }, getPositionFromMatrix: function ( m ) { this.x = m.elements[12]; this.y = m.elements[13]; this.z = m.elements[14]; return this; }, setEulerFromRotationMatrix: function ( m, order ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) // clamp, to handle numerical problems function clamp( x ) { return Math.min( Math.max( x, -1 ), 1 ); } var te = m.elements; var m11 = te[0], m12 = te[4], m13 = te[8]; var m21 = te[1], m22 = te[5], m23 = te[9]; var m31 = te[2], m32 = te[6], m33 = te[10]; if ( order === undefined || order === 'XYZ' ) { this.y = Math.asin( clamp( m13 ) ); if ( Math.abs( m13 ) < 0.99999 ) { this.x = Math.atan2( - m23, m33 ); this.z = Math.atan2( - m12, m11 ); } else { this.x = Math.atan2( m21, m22 ); this.z = 0; } } else if ( order === 'YXZ' ) { this.x = Math.asin( - clamp( m23 ) ); if ( Math.abs( m23 ) < 0.99999 ) { this.y = Math.atan2( m13, m33 ); this.z = Math.atan2( m21, m22 ); } else { this.y = Math.atan2( - m31, m11 ); this.z = 0; } } else if ( order === 'ZXY' ) { this.x = Math.asin( clamp( m32 ) ); if ( Math.abs( m32 ) < 0.99999 ) { this.y = Math.atan2( - m31, m33 ); this.z = Math.atan2( - m12, m22 ); } else { this.y = 0; this.z = Math.atan2( m13, m11 ); } } else if ( order === 'ZYX' ) { this.y = Math.asin( - clamp( m31 ) ); if ( Math.abs( m31 ) < 0.99999 ) { this.x = Math.atan2( m32, m33 ); this.z = Math.atan2( m21, m11 ); } else { this.x = 0; this.z = Math.atan2( - m12, m22 ); } } else if ( order === 'YZX' ) { this.z = Math.asin( clamp( m21 ) ); if ( Math.abs( m21 ) < 0.99999 ) { this.x = Math.atan2( - m23, m22 ); this.y = Math.atan2( - m31, m11 ); } else { this.x = 0; this.y = Math.atan2( m31, m33 ); } } else if ( order === 'XZY' ) { this.z = Math.asin( - clamp( m12 ) ); if ( Math.abs( m12 ) < 0.99999 ) { this.x = Math.atan2( m32, m22 ); this.y = Math.atan2( m13, m11 ); } else { this.x = Math.atan2( - m13, m33 ); this.y = 0; } } return this; }, setEulerFromQuaternion: function ( q, order ) { // q is assumed to be normalized // clamp, to handle numerical problems function clamp( x ) { return Math.min( Math.max( x, -1 ), 1 ); } // http://www.mathworks.com/matlabcentral/fileexchange/20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/content/SpinCalc.m var sqx = q.x * q.x; var sqy = q.y * q.y; var sqz = q.z * q.z; var sqw = q.w * q.w; if ( order === undefined || order === 'XYZ' ) { this.x = Math.atan2( 2 * ( q.x * q.w - q.y * q.z ), ( sqw - sqx - sqy + sqz ) ); this.y = Math.asin( clamp( 2 * ( q.x * q.z + q.y * q.w ) ) ); this.z = Math.atan2( 2 * ( q.z * q.w - q.x * q.y ), ( sqw + sqx - sqy - sqz ) ); } else if ( order === 'YXZ' ) { this.x = Math.asin( clamp( 2 * ( q.x * q.w - q.y * q.z ) ) ); this.y = Math.atan2( 2 * ( q.x * q.z + q.y * q.w ), ( sqw - sqx - sqy + sqz ) ); this.z = Math.atan2( 2 * ( q.x * q.y + q.z * q.w ), ( sqw - sqx + sqy - sqz ) ); } else if ( order === 'ZXY' ) { this.x = Math.asin( clamp( 2 * ( q.x * q.w + q.y * q.z ) ) ); this.y = Math.atan2( 2 * ( q.y * q.w - q.z * q.x ), ( sqw - sqx - sqy + sqz ) ); this.z = Math.atan2( 2 * ( q.z * q.w - q.x * q.y ), ( sqw - sqx + sqy - sqz ) ); } else if ( order === 'ZYX' ) { this.x = Math.atan2( 2 * ( q.x * q.w + q.z * q.y ), ( sqw - sqx - sqy + sqz ) ); this.y = Math.asin( clamp( 2 * ( q.y * q.w - q.x * q.z ) ) ); this.z = Math.atan2( 2 * ( q.x * q.y + q.z * q.w ), ( sqw + sqx - sqy - sqz ) ); } else if ( order === 'YZX' ) { this.x = Math.atan2( 2 * ( q.x * q.w - q.z * q.y ), ( sqw - sqx + sqy - sqz ) ); this.y = Math.atan2( 2 * ( q.y * q.w - q.x * q.z ), ( sqw + sqx - sqy - sqz ) ); this.z = Math.asin( clamp( 2 * ( q.x * q.y + q.z * q.w ) ) ); } else if ( order === 'XZY' ) { this.x = Math.atan2( 2 * ( q.x * q.w + q.y * q.z ), ( sqw - sqx + sqy - sqz ) ); this.y = Math.atan2( 2 * ( q.x * q.z + q.y * q.w ), ( sqw + sqx - sqy - sqz ) ); this.z = Math.asin( clamp( 2 * ( q.z * q.w - q.x * q.y ) ) ); } return this; }, getScaleFromMatrix: function ( m ) { var sx = this.set( m.elements[0], m.elements[1], m.elements[2] ).length(); var sy = this.set( m.elements[4], m.elements[5], m.elements[6] ).length(); var sz = this.set( m.elements[8], m.elements[9], m.elements[10] ).length(); this.x = sx; this.y = sy; this.z = sz; return this; }, equals: function ( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); }, isZero: function () { return ( this.lengthSq() < 0.0001 /* almostZero */ ); }, clone: function () { return new THREE.Vector3( this.x, this.y, this.z ); } }; /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Vector4 = function ( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; }; THREE.Vector4.prototype = { constructor: THREE.Vector4, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, copy: function ( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; }, add: function ( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; }, addSelf: function ( v ) { this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; }, sub: function ( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; }, subSelf: function ( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; }, multiplyScalar: function ( s ) { this.x *= s; this.y *= s; this.z *= s; this.w *= s; return this; }, divideScalar: function ( s ) { if ( s ) { this.x /= s; this.y /= s; this.z /= s; this.w /= s; } else { this.x = 0; this.y = 0; this.z = 0; this.w = 1; } return this; }, negate: function() { return this.multiplyScalar( -1 ); }, dot: function ( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; }, lengthSq: function () { return this.dot( this ); }, length: function () { return Math.sqrt( this.lengthSq() ); }, normalize: function () { return this.divideScalar( this.length() ); }, setLength: function ( l ) { return this.normalize().multiplyScalar( l ); }, lerpSelf: function ( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; }, clone: function () { return new THREE.Vector4( this.x, this.y, this.z, this.w ); }, setAxisAngleFromQuaternion: function ( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); var s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; }, setAxisAngleFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var angle, x, y, z, // variables for result epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; var xx = ( m11 + 1 ) / 2; var yy = ( m22 + 1 ) / 2; var zz = ( m33 + 1 ) / 2; var xy = ( m12 + m21 ) / 4; var xz = ( m13 + m31 ) / 4; var yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; } }; /** * https://github.com/mrdoob/eventtarget.js/ */ THREE.EventTarget = function () { var listeners = {}; this.addEventListener = function ( type, listener ) { if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === - 1 ) { listeners[ type ].push( listener ); } }; this.dispatchEvent = function ( event ) { for ( var listener in listeners[ event.type ] ) { listeners[ event.type ][ listener ]( event ); } }; this.removeEventListener = function ( type, listener ) { var index = listeners[ type ].indexOf( listener ); if ( index !== - 1 ) { listeners[ type ].splice( index, 1 ); } }; }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Frustum = function ( ) { this.planes = [ new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4(), new THREE.Vector4() ]; }; THREE.Frustum.prototype.setFromMatrix = function ( m ) { var plane; var planes = this.planes; var me = m.elements; var me0 = me[0], me1 = me[1], me2 = me[2], me3 = me[3]; var me4 = me[4], me5 = me[5], me6 = me[6], me7 = me[7]; var me8 = me[8], me9 = me[9], me10 = me[10], me11 = me[11]; var me12 = me[12], me13 = me[13], me14 = me[14], me15 = me[15]; planes[ 0 ].set( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ); planes[ 1 ].set( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ); planes[ 2 ].set( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ); planes[ 3 ].set( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ); planes[ 4 ].set( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ); planes[ 5 ].set( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ); for ( var i = 0; i < 6; i ++ ) { plane = planes[ i ]; plane.divideScalar( Math.sqrt( plane.x * plane.x + plane.y * plane.y + plane.z * plane.z ) ); } }; THREE.Frustum.prototype.contains = function ( object ) { var distance = 0.0; var planes = this.planes; var matrix = object.matrixWorld; var me = matrix.elements; var radius = - object.geometry.boundingSphere.radius * matrix.getMaxScaleOnAxis(); for ( var i = 0; i < 6; i ++ ) { distance = planes[ i ].x * me[12] + planes[ i ].y * me[13] + planes[ i ].z * me[14] + planes[ i ].w; if ( distance <= radius ) return false; } return true; }; THREE.Frustum.__v1 = new THREE.Vector3(); /** * @author mr.doob / http://mrdoob.com/ */ THREE.Ray = function ( origin, direction, near, far ) { this.origin = origin || new THREE.Vector3(); this.direction = direction || new THREE.Vector3(); this.near = near || 0; this.far = far || Infinity; // var a = new THREE.Vector3(); var b = new THREE.Vector3(); var c = new THREE.Vector3(); var d = new THREE.Vector3(); var originCopy = new THREE.Vector3(); var directionCopy = new THREE.Vector3(); var vector = new THREE.Vector3(); var normal = new THREE.Vector3(); var intersectPoint = new THREE.Vector3(); var descSort = function ( a, b ) { return a.distance - b.distance; }; // var v0 = new THREE.Vector3(), v1 = new THREE.Vector3(), v2 = new THREE.Vector3(); var dot, intersect, distance; var distanceFromIntersection = function ( origin, direction, position ) { v0.sub( position, origin ); dot = v0.dot( direction ); intersect = v1.add( origin, v2.copy( direction ).multiplyScalar( dot ) ); distance = position.distanceTo( intersect ); return distance; } // http://www.blackpawn.com/texts/pointinpoly/default.html var dot00, dot01, dot02, dot11, dot12, invDenom, u, v; var pointInFace3 = function ( p, a, b, c ) { v0.sub( c, a ); v1.sub( b, a ); v2.sub( p, a ); dot00 = v0.dot( v0 ); dot01 = v0.dot( v1 ); dot02 = v0.dot( v2 ); dot11 = v1.dot( v1 ); dot12 = v1.dot( v2 ); invDenom = 1 / ( dot00 * dot11 - dot01 * dot01 ); u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; return ( u >= 0 ) && ( v >= 0 ) && ( u + v < 1 ); } // var precision = 0.0001; this.setPrecision = function ( value ) { precision = value; }; this.intersectObject = function ( object, recursive ) { var intersect, intersects = []; if ( recursive === true ) { for ( var i = 0, l = object.children.length; i < l; i ++ ) { Array.prototype.push.apply( intersects, this.intersectObject( object.children[ i ], recursive ) ); } } if ( object instanceof THREE.Particle ) { distance = distanceFromIntersection( this.origin, this.direction, object.matrixWorld.getPosition() ); if ( distance > object.scale.x ) { return []; } intersect = { distance: distance, point: object.position, face: null, object: object }; intersects.push( intersect ); } else if ( object instanceof THREE.Mesh ) { // Checking boundingSphere var scale = THREE.Frustum.__v1.set( object.matrixWorld.getColumnX().length(), object.matrixWorld.getColumnY().length(), object.matrixWorld.getColumnZ().length() ); var scaledRadius = object.geometry.boundingSphere.radius * Math.max( scale.x, Math.max( scale.y, scale.z ) ); // Checking distance to ray distance = distanceFromIntersection( this.origin, this.direction, object.matrixWorld.getPosition() ); if ( distance > scaledRadius) { return intersects; } // Checking faces var f, fl, face, dot, scalar, rangeSq = this.range * this.range, geometry = object.geometry, vertices = geometry.vertices, objMatrix; object.matrixRotationWorld.extractRotation( object.matrixWorld ); for ( f = 0, fl = geometry.faces.length; f < fl; f ++ ) { face = geometry.faces[ f ]; originCopy.copy( this.origin ); directionCopy.copy( this.direction ); objMatrix = object.matrixWorld; // determine if ray intersects the plane of the face // note: this works regardless of the direction of the face normal vector = objMatrix.multiplyVector3( vector.copy( face.centroid ) ).subSelf( originCopy ); normal = object.matrixRotationWorld.multiplyVector3( normal.copy( face.normal ) ); dot = directionCopy.dot( normal ); // bail if ray and plane are parallel if ( Math.abs( dot ) < precision ) continue; // calc distance to plane scalar = normal.dot( vector ) / dot; // if negative distance, then plane is behind ray if ( scalar < 0 ) continue; if ( object.doubleSided || ( object.flipSided ? dot > 0 : dot < 0 ) ) { intersectPoint.add( originCopy, directionCopy.multiplyScalar( scalar ) ); distance = originCopy.distanceTo( intersectPoint ); if ( distance < this.near ) continue; if ( distance > this.far ) continue; if ( face instanceof THREE.Face3 ) { a = objMatrix.multiplyVector3( a.copy( vertices[ face.a ] ) ); b = objMatrix.multiplyVector3( b.copy( vertices[ face.b ] ) ); c = objMatrix.multiplyVector3( c.copy( vertices[ face.c ] ) ); if ( pointInFace3( intersectPoint, a, b, c ) ) { intersect = { distance: distance, point: intersectPoint.clone(), face: face, object: object }; intersects.push( intersect ); } } else if ( face instanceof THREE.Face4 ) { a = objMatrix.multiplyVector3( a.copy( vertices[ face.a ] ) ); b = objMatrix.multiplyVector3( b.copy( vertices[ face.b ] ) ); c = objMatrix.multiplyVector3( c.copy( vertices[ face.c ] ) ); d = objMatrix.multiplyVector3( d.copy( vertices[ face.d ] ) ); if ( pointInFace3( intersectPoint, a, b, d ) || pointInFace3( intersectPoint, b, c, d ) ) { intersect = { distance: distance, point: intersectPoint.clone(), face: face, object: object }; intersects.push( intersect ); } } } } } intersects.sort( descSort ); return intersects; }; this.intersectObjects = function ( objects, recursive ) { var intersects = []; for ( var i = 0, l = objects.length; i < l; i ++ ) { Array.prototype.push.apply( intersects, this.intersectObject( objects[ i ], recursive ) ); } intersects.sort( descSort ); return intersects; }; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.Rectangle = function () { var _left = 0; var _top = 0; var _right = 0; var _bottom = 0; var _width = 0; var _height = 0; var _isEmpty = true; function resize() { _width = _right - _left; _height = _bottom - _top; } this.getX = function () { return _left; }; this.getY = function () { return _top; }; this.getWidth = function () { return _width; }; this.getHeight = function () { return _height; }; this.getLeft = function() { return _left; }; this.getTop = function() { return _top; }; this.getRight = function() { return _right; }; this.getBottom = function() { return _bottom; }; this.set = function ( left, top, right, bottom ) { _isEmpty = false; _left = left; _top = top; _right = right; _bottom = bottom; resize(); }; this.addPoint = function ( x, y ) { if ( _isEmpty === true ) { _isEmpty = false; _left = x; _top = y; _right = x; _bottom = y; resize(); } else { _left = _left < x ? _left : x; // Math.min( _left, x ); _top = _top < y ? _top : y; // Math.min( _top, y ); _right = _right > x ? _right : x; // Math.max( _right, x ); _bottom = _bottom > y ? _bottom : y; // Math.max( _bottom, y ); resize(); } }; this.add3Points = function ( x1, y1, x2, y2, x3, y3 ) { if ( _isEmpty === true ) { _isEmpty = false; _left = x1 < x2 ? ( x1 < x3 ? x1 : x3 ) : ( x2 < x3 ? x2 : x3 ); _top = y1 < y2 ? ( y1 < y3 ? y1 : y3 ) : ( y2 < y3 ? y2 : y3 ); _right = x1 > x2 ? ( x1 > x3 ? x1 : x3 ) : ( x2 > x3 ? x2 : x3 ); _bottom = y1 > y2 ? ( y1 > y3 ? y1 : y3 ) : ( y2 > y3 ? y2 : y3 ); resize(); } else { _left = x1 < x2 ? ( x1 < x3 ? ( x1 < _left ? x1 : _left ) : ( x3 < _left ? x3 : _left ) ) : ( x2 < x3 ? ( x2 < _left ? x2 : _left ) : ( x3 < _left ? x3 : _left ) ); _top = y1 < y2 ? ( y1 < y3 ? ( y1 < _top ? y1 : _top ) : ( y3 < _top ? y3 : _top ) ) : ( y2 < y3 ? ( y2 < _top ? y2 : _top ) : ( y3 < _top ? y3 : _top ) ); _right = x1 > x2 ? ( x1 > x3 ? ( x1 > _right ? x1 : _right ) : ( x3 > _right ? x3 : _right ) ) : ( x2 > x3 ? ( x2 > _right ? x2 : _right ) : ( x3 > _right ? x3 : _right ) ); _bottom = y1 > y2 ? ( y1 > y3 ? ( y1 > _bottom ? y1 : _bottom ) : ( y3 > _bottom ? y3 : _bottom ) ) : ( y2 > y3 ? ( y2 > _bottom ? y2 : _bottom ) : ( y3 > _bottom ? y3 : _bottom ) ); resize(); }; }; this.addRectangle = function ( r ) { if ( _isEmpty === true ) { _isEmpty = false; _left = r.getLeft(); _top = r.getTop(); _right = r.getRight(); _bottom = r.getBottom(); resize(); } else { _left = _left < r.getLeft() ? _left : r.getLeft(); // Math.min(_left, r.getLeft() ); _top = _top < r.getTop() ? _top : r.getTop(); // Math.min(_top, r.getTop() ); _right = _right > r.getRight() ? _right : r.getRight(); // Math.max(_right, r.getRight() ); _bottom = _bottom > r.getBottom() ? _bottom : r.getBottom(); // Math.max(_bottom, r.getBottom() ); resize(); } }; this.inflate = function ( v ) { _left -= v; _top -= v; _right += v; _bottom += v; resize(); }; this.minSelf = function ( r ) { _left = _left > r.getLeft() ? _left : r.getLeft(); // Math.max( _left, r.getLeft() ); _top = _top > r.getTop() ? _top : r.getTop(); // Math.max( _top, r.getTop() ); _right = _right < r.getRight() ? _right : r.getRight(); // Math.min( _right, r.getRight() ); _bottom = _bottom < r.getBottom() ? _bottom : r.getBottom(); // Math.min( _bottom, r.getBottom() ); resize(); }; this.intersects = function ( r ) { // http://gamemath.com/2011/09/detecting-whether-two-boxes-overlap/ if ( _right < r.getLeft() ) return false; if ( _left > r.getRight() ) return false; if ( _bottom < r.getTop() ) return false; if ( _top > r.getBottom() ) return false; return true; }; this.empty = function () { _isEmpty = true; _left = 0; _top = 0; _right = 0; _bottom = 0; resize(); }; this.isEmpty = function () { return _isEmpty; }; }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.Math = { // Clamp value to range clamp: function ( x, a, b ) { return ( x < a ) ? a : ( ( x > b ) ? b : x ); }, // Clamp value to range to range mapLinear: function ( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); }, // Random float from <0, 1> with 16 bits of randomness // (standard Math.random() creates repetitive patterns when applied over larger space) random16: function () { return ( 65280 * Math.random() + 255 * Math.random() ) / 65535; }, // Random integer from interval randInt: function ( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); }, // Random float from interval randFloat: function ( low, high ) { return low + Math.random() * ( high - low ); }, // Random float from <-range/2, range/2> interval randFloatSpread: function ( range ) { return range * ( 0.5 - Math.random() ); }, sign: function ( x ) { return ( x < 0 ) ? -1 : ( ( x > 0 ) ? 1 : 0 ); } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.Matrix3 = function () { this.elements = new Float32Array(9); }; THREE.Matrix3.prototype = { constructor: THREE.Matrix3, getInverse: function ( matrix ) { // input: THREE.Matrix4 // ( based on http://code.google.com/p/webgl-mjs/ ) var me = matrix.elements; var a11 = me[10] * me[5] - me[6] * me[9]; var a21 = - me[10] * me[1] + me[2] * me[9]; var a31 = me[6] * me[1] - me[2] * me[5]; var a12 = - me[10] * me[4] + me[6] * me[8]; var a22 = me[10] * me[0] - me[2] * me[8]; var a32 = - me[6] * me[0] + me[2] * me[4]; var a13 = me[9] * me[4] - me[5] * me[8]; var a23 = - me[9] * me[0] + me[1] * me[8]; var a33 = me[5] * me[0] - me[1] * me[4]; var det = me[0] * a11 + me[1] * a12 + me[2] * a13; // no inverse if ( det === 0 ) { console.warn( "Matrix3.getInverse(): determinant == 0" ); } var idet = 1.0 / det; var m = this.elements; m[ 0 ] = idet * a11; m[ 1 ] = idet * a21; m[ 2 ] = idet * a31; m[ 3 ] = idet * a12; m[ 4 ] = idet * a22; m[ 5 ] = idet * a32; m[ 6 ] = idet * a13; m[ 7 ] = idet * a23; m[ 8 ] = idet * a33; return this; }, transpose: function () { var tmp, m = this.elements; tmp = m[1]; m[1] = m[3]; m[3] = tmp; tmp = m[2]; m[2] = m[6]; m[6] = tmp; tmp = m[5]; m[5] = m[7]; m[7] = tmp; return this; }, transposeIntoArray: function ( r ) { var m = this.m; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; } }; /** * @author mr.doob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author jordi_ros / http://plattsoft.com * @author D1plo1d / http://github.com/D1plo1d * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author timknip / http://www.floorplanner.com/ */ THREE.Matrix4 = function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { this.elements = new Float32Array( 16 ); this.set( ( n11 !== undefined ) ? n11 : 1, n12 || 0, n13 || 0, n14 || 0, n21 || 0, ( n22 !== undefined ) ? n22 : 1, n23 || 0, n24 || 0, n31 || 0, n32 || 0, ( n33 !== undefined ) ? n33 : 1, n34 || 0, n41 || 0, n42 || 0, n43 || 0, ( n44 !== undefined ) ? n44 : 1 ); }; THREE.Matrix4.prototype = { constructor: THREE.Matrix4, set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { var te = this.elements; te[0] = n11; te[4] = n12; te[8] = n13; te[12] = n14; te[1] = n21; te[5] = n22; te[9] = n23; te[13] = n24; te[2] = n31; te[6] = n32; te[10] = n33; te[14] = n34; te[3] = n41; te[7] = n42; te[11] = n43; te[15] = n44; return this; }, identity: function () { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, copy: function ( m ) { var me = m.elements; this.set( me[0], me[4], me[8], me[12], me[1], me[5], me[9], me[13], me[2], me[6], me[10], me[14], me[3], me[7], me[11], me[15] ); return this; }, lookAt: function ( eye, target, up ) { var te = this.elements; var x = THREE.Matrix4.__v1; var y = THREE.Matrix4.__v2; var z = THREE.Matrix4.__v3; z.sub( eye, target ).normalize(); if ( z.length() === 0 ) { z.z = 1; } x.cross( up, z ).normalize(); if ( x.length() === 0 ) { z.x += 0.0001; x.cross( up, z ).normalize(); } y.cross( z, x ); te[0] = x.x; te[4] = y.x; te[8] = z.x; te[1] = x.y; te[5] = y.y; te[9] = z.y; te[2] = x.z; te[6] = y.z; te[10] = z.z; return this; }, multiply: function ( a, b ) { var ae = a.elements; var be = b.elements; var te = this.elements; var a11 = ae[0], a12 = ae[4], a13 = ae[8], a14 = ae[12]; var a21 = ae[1], a22 = ae[5], a23 = ae[9], a24 = ae[13]; var a31 = ae[2], a32 = ae[6], a33 = ae[10], a34 = ae[14]; var a41 = ae[3], a42 = ae[7], a43 = ae[11], a44 = ae[15]; var b11 = be[0], b12 = be[4], b13 = be[8], b14 = be[12]; var b21 = be[1], b22 = be[5], b23 = be[9], b24 = be[13]; var b31 = be[2], b32 = be[6], b33 = be[10], b34 = be[14]; var b41 = be[3], b42 = be[7], b43 = be[11], b44 = be[15]; te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; }, multiplySelf: function ( m ) { return this.multiply( this, m ); }, multiplyToArray: function ( a, b, r ) { var te = this.elements; this.multiply( a, b ); r[ 0 ] = te[0]; r[ 1 ] = te[1]; r[ 2 ] = te[2]; r[ 3 ] = te[3]; r[ 4 ] = te[4]; r[ 5 ] = te[5]; r[ 6 ] = te[6]; r[ 7 ] = te[7]; r[ 8 ] = te[8]; r[ 9 ] = te[9]; r[ 10 ] = te[10]; r[ 11 ] = te[11]; r[ 12 ] = te[12]; r[ 13 ] = te[13]; r[ 14 ] = te[14]; r[ 15 ] = te[15]; return this; }, multiplyScalar: function ( s ) { var te = this.elements; te[0] *= s; te[4] *= s; te[8] *= s; te[12] *= s; te[1] *= s; te[5] *= s; te[9] *= s; te[13] *= s; te[2] *= s; te[6] *= s; te[10] *= s; te[14] *= s; te[3] *= s; te[7] *= s; te[11] *= s; te[15] *= s; return this; }, multiplyVector3: function ( v ) { var te = this.elements; var vx = v.x, vy = v.y, vz = v.z; var d = 1 / ( te[3] * vx + te[7] * vy + te[11] * vz + te[15] ); v.x = ( te[0] * vx + te[4] * vy + te[8] * vz + te[12] ) * d; v.y = ( te[1] * vx + te[5] * vy + te[9] * vz + te[13] ) * d; v.z = ( te[2] * vx + te[6] * vy + te[10] * vz + te[14] ) * d; return v; }, multiplyVector4: function ( v ) { var te = this.elements; var vx = v.x, vy = v.y, vz = v.z, vw = v.w; v.x = te[0] * vx + te[4] * vy + te[8] * vz + te[12] * vw; v.y = te[1] * vx + te[5] * vy + te[9] * vz + te[13] * vw; v.z = te[2] * vx + te[6] * vy + te[10] * vz + te[14] * vw; v.w = te[3] * vx + te[7] * vy + te[11] * vz + te[15] * vw; return v; }, multiplyVector3Array: function ( a ) { var tmp = THREE.Matrix4.__v1; for ( var i = 0, il = a.length; i < il; i += 3 ) { tmp.x = a[ i ]; tmp.y = a[ i + 1 ]; tmp.z = a[ i + 2 ]; this.multiplyVector3( tmp ); a[ i ] = tmp.x; a[ i + 1 ] = tmp.y; a[ i + 2 ] = tmp.z; } return a; }, rotateAxis: function ( v ) { var te = this.elements; var vx = v.x, vy = v.y, vz = v.z; v.x = vx * te[0] + vy * te[4] + vz * te[8]; v.y = vx * te[1] + vy * te[5] + vz * te[9]; v.z = vx * te[2] + vy * te[6] + vz * te[10]; v.normalize(); return v; }, crossVector: function ( a ) { var te = this.elements; var v = new THREE.Vector4(); v.x = te[0] * a.x + te[4] * a.y + te[8] * a.z + te[12] * a.w; v.y = te[1] * a.x + te[5] * a.y + te[9] * a.z + te[13] * a.w; v.z = te[2] * a.x + te[6] * a.y + te[10] * a.z + te[14] * a.w; v.w = ( a.w ) ? te[3] * a.x + te[7] * a.y + te[11] * a.z + te[15] * a.w : 1; return v; }, determinant: function () { var te = this.elements; var n11 = te[0], n12 = te[4], n13 = te[8], n14 = te[12]; var n21 = te[1], n22 = te[5], n23 = te[9], n24 = te[13]; var n31 = te[2], n32 = te[6], n33 = te[10], n34 = te[14]; var n41 = te[3], n42 = te[7], n43 = te[11], n44 = te[15]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n14 * n23 * n32 * n41- n13 * n24 * n32 * n41- n14 * n22 * n33 * n41+ n12 * n24 * n33 * n41+ n13 * n22 * n34 * n41- n12 * n23 * n34 * n41- n14 * n23 * n31 * n42+ n13 * n24 * n31 * n42+ n14 * n21 * n33 * n42- n11 * n24 * n33 * n42- n13 * n21 * n34 * n42+ n11 * n23 * n34 * n42+ n14 * n22 * n31 * n43- n12 * n24 * n31 * n43- n14 * n21 * n32 * n43+ n11 * n24 * n32 * n43+ n12 * n21 * n34 * n43- n11 * n22 * n34 * n43- n13 * n22 * n31 * n44+ n12 * n23 * n31 * n44+ n13 * n21 * n32 * n44- n11 * n23 * n32 * n44- n12 * n21 * n33 * n44+ n11 * n22 * n33 * n44 ); }, transpose: function () { var te = this.elements; var tmp; tmp = te[1]; te[1] = te[4]; te[4] = tmp; tmp = te[2]; te[2] = te[8]; te[8] = tmp; tmp = te[6]; te[6] = te[9]; te[9] = tmp; tmp = te[3]; te[3] = te[12]; te[12] = tmp; tmp = te[7]; te[7] = te[13]; te[13] = tmp; tmp = te[11]; te[11] = te[14]; te[14] = tmp; return this; }, flattenToArray: function ( flat ) { var te = this.elements; flat[ 0 ] = te[0]; flat[ 1 ] = te[1]; flat[ 2 ] = te[2]; flat[ 3 ] = te[3]; flat[ 4 ] = te[4]; flat[ 5 ] = te[5]; flat[ 6 ] = te[6]; flat[ 7 ] = te[7]; flat[ 8 ] = te[8]; flat[ 9 ] = te[9]; flat[ 10 ] = te[10]; flat[ 11 ] = te[11]; flat[ 12 ] = te[12]; flat[ 13 ] = te[13]; flat[ 14 ] = te[14]; flat[ 15 ] = te[15]; return flat; }, flattenToArrayOffset: function( flat, offset ) { var te = this.elements; flat[ offset ] = te[0]; flat[ offset + 1 ] = te[1]; flat[ offset + 2 ] = te[2]; flat[ offset + 3 ] = te[3]; flat[ offset + 4 ] = te[4]; flat[ offset + 5 ] = te[5]; flat[ offset + 6 ] = te[6]; flat[ offset + 7 ] = te[7]; flat[ offset + 8 ] = te[8]; flat[ offset + 9 ] = te[9]; flat[ offset + 10 ] = te[10]; flat[ offset + 11 ] = te[11]; flat[ offset + 12 ] = te[12]; flat[ offset + 13 ] = te[13]; flat[ offset + 14 ] = te[14]; flat[ offset + 15 ] = te[15]; return flat; }, getPosition: function () { var te = this.elements; return THREE.Matrix4.__v1.set( te[12], te[13], te[14] ); }, setPosition: function ( v ) { var te = this.elements; te[12] = v.x; te[13] = v.y; te[14] = v.z; return this; }, getColumnX: function () { var te = this.elements; return THREE.Matrix4.__v1.set( te[0], te[1], te[2] ); }, getColumnY: function () { var te = this.elements; return THREE.Matrix4.__v1.set( te[4], te[5], te[6] ); }, getColumnZ: function() { var te = this.elements; return THREE.Matrix4.__v1.set( te[8], te[9], te[10] ); }, getInverse: function ( m ) { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements; var me = m.elements; var n11 = me[0], n12 = me[4], n13 = me[8], n14 = me[12]; var n21 = me[1], n22 = me[5], n23 = me[9], n24 = me[13]; var n31 = me[2], n32 = me[6], n33 = me[10], n34 = me[14]; var n41 = me[3], n42 = me[7], n43 = me[11], n44 = me[15]; te[0] = n23*n34*n42 - n24*n33*n42 + n24*n32*n43 - n22*n34*n43 - n23*n32*n44 + n22*n33*n44; te[4] = n14*n33*n42 - n13*n34*n42 - n14*n32*n43 + n12*n34*n43 + n13*n32*n44 - n12*n33*n44; te[8] = n13*n24*n42 - n14*n23*n42 + n14*n22*n43 - n12*n24*n43 - n13*n22*n44 + n12*n23*n44; te[12] = n14*n23*n32 - n13*n24*n32 - n14*n22*n33 + n12*n24*n33 + n13*n22*n34 - n12*n23*n34; te[1] = n24*n33*n41 - n23*n34*n41 - n24*n31*n43 + n21*n34*n43 + n23*n31*n44 - n21*n33*n44; te[5] = n13*n34*n41 - n14*n33*n41 + n14*n31*n43 - n11*n34*n43 - n13*n31*n44 + n11*n33*n44; te[9] = n14*n23*n41 - n13*n24*n41 - n14*n21*n43 + n11*n24*n43 + n13*n21*n44 - n11*n23*n44; te[13] = n13*n24*n31 - n14*n23*n31 + n14*n21*n33 - n11*n24*n33 - n13*n21*n34 + n11*n23*n34; te[2] = n22*n34*n41 - n24*n32*n41 + n24*n31*n42 - n21*n34*n42 - n22*n31*n44 + n21*n32*n44; te[6] = n14*n32*n41 - n12*n34*n41 - n14*n31*n42 + n11*n34*n42 + n12*n31*n44 - n11*n32*n44; te[10] = n12*n24*n41 - n14*n22*n41 + n14*n21*n42 - n11*n24*n42 - n12*n21*n44 + n11*n22*n44; te[14] = n14*n22*n31 - n12*n24*n31 - n14*n21*n32 + n11*n24*n32 + n12*n21*n34 - n11*n22*n34; te[3] = n23*n32*n41 - n22*n33*n41 - n23*n31*n42 + n21*n33*n42 + n22*n31*n43 - n21*n32*n43; te[7] = n12*n33*n41 - n13*n32*n41 + n13*n31*n42 - n11*n33*n42 - n12*n31*n43 + n11*n32*n43; te[11] = n13*n22*n41 - n12*n23*n41 - n13*n21*n42 + n11*n23*n42 + n12*n21*n43 - n11*n22*n43; te[15] = n12*n23*n31 - n13*n22*n31 + n13*n21*n32 - n11*n23*n32 - n12*n21*n33 + n11*n22*n33; this.multiplyScalar( 1 / m.determinant() ); return this; }, setRotationFromEuler: function ( v, order ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; var a = Math.cos( x ), b = Math.sin( x ); var c = Math.cos( y ), d = Math.sin( y ); var e = Math.cos( z ), f = Math.sin( z ); if ( order === undefined || order === 'XYZ' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[0] = c * e; te[4] = - c * f; te[8] = d; te[1] = af + be * d; te[5] = ae - bf * d; te[9] = - b * c; te[2] = bf - ae * d; te[6] = be + af * d; te[10] = a * c; } else if ( order === 'YXZ' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[0] = ce + df * b; te[4] = de * b - cf; te[8] = a * d; te[1] = a * f; te[5] = a * e; te[9] = - b; te[2] = cf * b - de; te[6] = df + ce * b; te[10] = a * c; } else if ( order === 'ZXY' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[0] = ce - df * b; te[4] = - a * f; te[8] = de + cf * b; te[1] = cf + de * b; te[5] = a * e; te[9] = df - ce * b; te[2] = - a * d; te[6] = b; te[10] = a * c; } else if ( order === 'ZYX' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[0] = c * e; te[4] = be * d - af; te[8] = ae * d + bf; te[1] = c * f; te[5] = bf * d + ae; te[9] = af * d - be; te[2] = - d; te[6] = b * c; te[10] = a * c; } else if ( order === 'YZX' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[0] = c * e; te[4] = bd - ac * f; te[8] = bc * f + ad; te[1] = f; te[5] = a * e; te[9] = - b * e; te[2] = - d * e; te[6] = ad * f + bc; te[10] = ac - bd * f; } else if ( order === 'XZY' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[0] = c * e; te[4] = - f; te[8] = d * e; te[1] = ac * f + bd; te[5] = a * e; te[9] = ad * f - bc; te[2] = bc * f - ad; te[6] = b * e; te[10] = bd * f + ac; } return this; }, setRotationFromQuaternion: function ( q ) { var te = this.elements; var x = q.x, y = q.y, z = q.z, w = q.w; var x2 = x + x, y2 = y + y, z2 = z + z; var xx = x * x2, xy = x * y2, xz = x * z2; var yy = y * y2, yz = y * z2, zz = z * z2; var wx = w * x2, wy = w * y2, wz = w * z2; te[0] = 1 - ( yy + zz ); te[4] = xy - wz; te[8] = xz + wy; te[1] = xy + wz; te[5] = 1 - ( xx + zz ); te[9] = yz - wx; te[2] = xz - wy; te[6] = yz + wx; te[10] = 1 - ( xx + yy ); return this; }, compose: function ( translation, rotation, scale ) { var te = this.elements; var mRotation = THREE.Matrix4.__m1; var mScale = THREE.Matrix4.__m2; mRotation.identity(); mRotation.setRotationFromQuaternion( rotation ); mScale.makeScale( scale.x, scale.y, scale.z ); this.multiply( mRotation, mScale ); te[12] = translation.x; te[13] = translation.y; te[14] = translation.z; return this; }, decompose: function ( translation, rotation, scale ) { var te = this.elements; // grab the axis vectors var x = THREE.Matrix4.__v1; var y = THREE.Matrix4.__v2; var z = THREE.Matrix4.__v3; x.set( te[0], te[1], te[2] ); y.set( te[4], te[5], te[6] ); z.set( te[8], te[9], te[10] ); translation = ( translation instanceof THREE.Vector3 ) ? translation : new THREE.Vector3(); rotation = ( rotation instanceof THREE.Quaternion ) ? rotation : new THREE.Quaternion(); scale = ( scale instanceof THREE.Vector3 ) ? scale : new THREE.Vector3(); scale.x = x.length(); scale.y = y.length(); scale.z = z.length(); translation.x = te[12]; translation.y = te[13]; translation.z = te[14]; // scale the rotation part var matrix = THREE.Matrix4.__m1; matrix.copy( this ); matrix.elements[0] /= scale.x; matrix.elements[1] /= scale.x; matrix.elements[2] /= scale.x; matrix.elements[4] /= scale.y; matrix.elements[5] /= scale.y; matrix.elements[6] /= scale.y; matrix.elements[8] /= scale.z; matrix.elements[9] /= scale.z; matrix.elements[10] /= scale.z; rotation.setFromRotationMatrix( matrix ); return [ translation, rotation, scale ]; }, extractPosition: function ( m ) { var te = this.elements; var me = m.elements; te[12] = me[12]; te[13] = me[13]; te[14] = me[14]; return this; }, extractRotation: function ( m ) { var te = this.elements; var me = m.elements; var vector = THREE.Matrix4.__v1; var scaleX = 1 / vector.set( me[0], me[1], me[2] ).length(); var scaleY = 1 / vector.set( me[4], me[5], me[6] ).length(); var scaleZ = 1 / vector.set( me[8], me[9], me[10] ).length(); te[0] = me[0] * scaleX; te[1] = me[1] * scaleX; te[2] = me[2] * scaleX; te[4] = me[4] * scaleY; te[5] = me[5] * scaleY; te[6] = me[6] * scaleY; te[8] = me[8] * scaleZ; te[9] = me[9] * scaleZ; te[10] = me[10] * scaleZ; return this; }, // translate: function ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[12] = te[0] * x + te[4] * y + te[8] * z + te[12]; te[13] = te[1] * x + te[5] * y + te[9] * z + te[13]; te[14] = te[2] * x + te[6] * y + te[10] * z + te[14]; te[15] = te[3] * x + te[7] * y + te[11] * z + te[15]; return this; }, rotateX: function ( angle ) { var te = this.elements; var m12 = te[4]; var m22 = te[5]; var m32 = te[6]; var m42 = te[7]; var m13 = te[8]; var m23 = te[9]; var m33 = te[10]; var m43 = te[11]; var c = Math.cos( angle ); var s = Math.sin( angle ); te[4] = c * m12 + s * m13; te[5] = c * m22 + s * m23; te[6] = c * m32 + s * m33; te[7] = c * m42 + s * m43; te[8] = c * m13 - s * m12; te[9] = c * m23 - s * m22; te[10] = c * m33 - s * m32; te[11] = c * m43 - s * m42; return this; }, rotateY: function ( angle ) { var te = this.elements; var m11 = te[0]; var m21 = te[1]; var m31 = te[2]; var m41 = te[3]; var m13 = te[8]; var m23 = te[9]; var m33 = te[10]; var m43 = te[11]; var c = Math.cos( angle ); var s = Math.sin( angle ); te[0] = c * m11 - s * m13; te[1] = c * m21 - s * m23; te[2] = c * m31 - s * m33; te[3] = c * m41 - s * m43; te[8] = c * m13 + s * m11; te[9] = c * m23 + s * m21; te[10] = c * m33 + s * m31; te[11] = c * m43 + s * m41; return this; }, rotateZ: function ( angle ) { var te = this.elements; var m11 = te[0]; var m21 = te[1]; var m31 = te[2]; var m41 = te[3]; var m12 = te[4]; var m22 = te[5]; var m32 = te[6]; var m42 = te[7]; var c = Math.cos( angle ); var s = Math.sin( angle ); te[0] = c * m11 + s * m12; te[1] = c * m21 + s * m22; te[2] = c * m31 + s * m32; te[3] = c * m41 + s * m42; te[4] = c * m12 - s * m11; te[5] = c * m22 - s * m21; te[6] = c * m32 - s * m31; te[7] = c * m42 - s * m41; return this; }, rotateByAxis: function ( axis, angle ) { var te = this.elements; // optimize by checking axis if ( axis.x === 1 && axis.y === 0 && axis.z === 0 ) { return this.rotateX( angle ); } else if ( axis.x === 0 && axis.y === 1 && axis.z === 0 ) { return this.rotateY( angle ); } else if ( axis.x === 0 && axis.y === 0 && axis.z === 1 ) { return this.rotateZ( angle ); } var x = axis.x, y = axis.y, z = axis.z; var n = Math.sqrt(x * x + y * y + z * z); x /= n; y /= n; z /= n; var xx = x * x, yy = y * y, zz = z * z; var c = Math.cos( angle ); var s = Math.sin( angle ); var oneMinusCosine = 1 - c; var xy = x * y * oneMinusCosine; var xz = x * z * oneMinusCosine; var yz = y * z * oneMinusCosine; var xs = x * s; var ys = y * s; var zs = z * s; var r11 = xx + (1 - xx) * c; var r21 = xy + zs; var r31 = xz - ys; var r12 = xy - zs; var r22 = yy + (1 - yy) * c; var r32 = yz + xs; var r13 = xz + ys; var r23 = yz - xs; var r33 = zz + (1 - zz) * c; var m11 = te[0], m21 = te[1], m31 = te[2], m41 = te[3]; var m12 = te[4], m22 = te[5], m32 = te[6], m42 = te[7]; var m13 = te[8], m23 = te[9], m33 = te[10], m43 = te[11]; var m14 = te[12], m24 = te[13], m34 = te[14], m44 = te[15]; te[0] = r11 * m11 + r21 * m12 + r31 * m13; te[1] = r11 * m21 + r21 * m22 + r31 * m23; te[2] = r11 * m31 + r21 * m32 + r31 * m33; te[3] = r11 * m41 + r21 * m42 + r31 * m43; te[4] = r12 * m11 + r22 * m12 + r32 * m13; te[5] = r12 * m21 + r22 * m22 + r32 * m23; te[6] = r12 * m31 + r22 * m32 + r32 * m33; te[7] = r12 * m41 + r22 * m42 + r32 * m43; te[8] = r13 * m11 + r23 * m12 + r33 * m13; te[9] = r13 * m21 + r23 * m22 + r33 * m23; te[10] = r13 * m31 + r23 * m32 + r33 * m33; te[11] = r13 * m41 + r23 * m42 + r33 * m43; return this; }, scale: function ( v ) { var te = this.elements; var x = v.x, y = v.y, z = v.z; te[0] *= x; te[4] *= y; te[8] *= z; te[1] *= x; te[5] *= y; te[9] *= z; te[2] *= x; te[6] *= y; te[10] *= z; te[3] *= x; te[7] *= y; te[11] *= z; return this; }, getMaxScaleOnAxis: function () { var te = this.elements; var scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2]; var scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6]; var scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10]; return Math.sqrt( Math.max( scaleXSq, Math.max( scaleYSq, scaleZSq ) ) ); }, // makeTranslation: function ( x, y, z ) { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); return this; }, makeRotationX: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationY: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1 ); return this; }, makeRotationZ: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; }, makeRotationAxis: function ( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos( angle ); var s = Math.sin( angle ); var t = 1 - c; var x = axis.x, y = axis.y, z = axis.z; var tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; }, makeScale: function ( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; }, makeFrustum: function ( left, right, bottom, top, near, far ) { var te = this.elements; var x = 2 * near / ( right - left ); var y = 2 * near / ( top - bottom ); var a = ( right + left ) / ( right - left ); var b = ( top + bottom ) / ( top - bottom ); var c = - ( far + near ) / ( far - near ); var d = - 2 * far * near / ( far - near ); te[0] = x; te[4] = 0; te[8] = a; te[12] = 0; te[1] = 0; te[5] = y; te[9] = b; te[13] = 0; te[2] = 0; te[6] = 0; te[10] = c; te[14] = d; te[3] = 0; te[7] = 0; te[11] = - 1; te[15] = 0; return this; }, makePerspective: function ( fov, aspect, near, far ) { var ymax = near * Math.tan( fov * Math.PI / 360 ); var ymin = - ymax; var xmin = ymin * aspect; var xmax = ymax * aspect; return this.makeFrustum( xmin, xmax, ymin, ymax, near, far ); }, makeOrthographic: function ( left, right, top, bottom, near, far ) { var te = this.elements; var w = right - left; var h = top - bottom; var p = far - near; var x = ( right + left ) / w; var y = ( top + bottom ) / h; var z = ( far + near ) / p; te[0] = 2 / w; te[4] = 0; te[8] = 0; te[12] = -x; te[1] = 0; te[5] = 2 / h; te[9] = 0; te[13] = -y; te[2] = 0; te[6] = 0; te[10] = -2 / p; te[14] = -z; te[3] = 0; te[7] = 0; te[11] = 0; te[15] = 1; return this; }, clone: function () { var te = this.elements; return new THREE.Matrix4( te[0], te[4], te[8], te[12], te[1], te[5], te[9], te[13], te[2], te[6], te[10], te[14], te[3], te[7], te[11], te[15] ); } }; THREE.Matrix4.__v1 = new THREE.Vector3(); THREE.Matrix4.__v2 = new THREE.Vector3(); THREE.Matrix4.__v3 = new THREE.Vector3(); THREE.Matrix4.__m1 = new THREE.Matrix4(); THREE.Matrix4.__m2 = new THREE.Matrix4(); /** * @author mr.doob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.Object3D = function () { this.id = THREE.Object3DCount ++; this.name = ''; this.parent = undefined; this.children = []; this.up = new THREE.Vector3( 0, 1, 0 ); this.position = new THREE.Vector3(); this.rotation = new THREE.Vector3(); this.eulerOrder = 'XYZ'; this.scale = new THREE.Vector3( 1, 1, 1 ); this.doubleSided = false; this.flipSided = false; this.renderDepth = null; this.rotationAutoUpdate = true; this.matrix = new THREE.Matrix4(); this.matrixWorld = new THREE.Matrix4(); this.matrixRotationWorld = new THREE.Matrix4(); this.matrixAutoUpdate = true; this.matrixWorldNeedsUpdate = true; this.quaternion = new THREE.Quaternion(); this.useQuaternion = false; this.boundRadius = 0.0; this.boundRadiusScale = 1.0; this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this._vector = new THREE.Vector3(); }; THREE.Object3D.prototype = { constructor: THREE.Object3D, applyMatrix: function ( matrix ) { this.matrix.multiply( matrix, this.matrix ); this.scale.getScaleFromMatrix( this.matrix ); var mat = new THREE.Matrix4().extractRotation( this.matrix ); this.rotation.setEulerFromRotationMatrix( mat, this.eulerOrder ); this.position.getPositionFromMatrix( this.matrix ); }, translate: function ( distance, axis ) { this.matrix.rotateAxis( axis ); this.position.addSelf( axis.multiplyScalar( distance ) ); }, translateX: function ( distance ) { this.translate( distance, this._vector.set( 1, 0, 0 ) ); }, translateY: function ( distance ) { this.translate( distance, this._vector.set( 0, 1, 0 ) ); }, translateZ: function ( distance ) { this.translate( distance, this._vector.set( 0, 0, 1 ) ); }, lookAt: function ( vector ) { // TODO: Add hierarchy support. this.matrix.lookAt( vector, this.position, this.up ); if ( this.rotationAutoUpdate ) { this.rotation.setEulerFromRotationMatrix( this.matrix, this.eulerOrder ); } }, add: function ( object ) { if ( object === this ) { console.warn( 'THREE.Object3D.add: An object can\'t be added as a child of itself.' ); return; } if ( object instanceof THREE.Object3D ) { if ( object.parent !== undefined ) { object.parent.remove( object ); } object.parent = this; this.children.push( object ); // add to scene var scene = this; while ( scene.parent !== undefined ) { scene = scene.parent; } if ( scene !== undefined && scene instanceof THREE.Scene ) { scene.__addObject( object ); } } }, remove: function ( object ) { var index = this.children.indexOf( object ); if ( index !== - 1 ) { object.parent = undefined; this.children.splice( index, 1 ); // remove from scene var scene = this; while ( scene.parent !== undefined ) { scene = scene.parent; } if ( scene !== undefined && scene instanceof THREE.Scene ) { scene.__removeObject( object ); } } }, getChildByName: function ( name, recursive ) { var c, cl, child; for ( c = 0, cl = this.children.length; c < cl; c ++ ) { child = this.children[ c ]; if ( child.name === name ) { return child; } if ( recursive ) { child = child.getChildByName( name, recursive ); if ( child !== undefined ) { return child; } } } return undefined; }, updateMatrix: function () { this.matrix.setPosition( this.position ); if ( this.useQuaternion === true ) { this.matrix.setRotationFromQuaternion( this.quaternion ); } else { this.matrix.setRotationFromEuler( this.rotation, this.eulerOrder ); } if ( this.scale.x !== 1 || this.scale.y !== 1 || this.scale.z !== 1 ) { this.matrix.scale( this.scale ); this.boundRadiusScale = Math.max( this.scale.x, Math.max( this.scale.y, this.scale.z ) ); } this.matrixWorldNeedsUpdate = true; }, updateMatrixWorld: function ( force ) { if ( this.matrixAutoUpdate === true ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate === true || force === true ) { if ( this.parent !== undefined ) { this.matrixWorld.multiply( this.parent.matrixWorld, this.matrix ); } else { this.matrixWorld.copy( this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].updateMatrixWorld( force ); } }, worldToLocal: function ( vector ) { return THREE.Object3D.__m1.getInverse( this.matrixWorld ).multiplyVector3( vector ); }, localToWorld: function ( vector ) { return this.matrixWorld.multiplyVector3( vector ); } }; THREE.Object3D.__m1 = new THREE.Matrix4(); THREE.Object3DCount = 0; /** * @author mr.doob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author julianwa / https://github.com/julianwa */ THREE.Projector = function() { var _object, _objectCount, _objectPool = [], _vertex, _vertexCount, _vertexPool = [], _face, _face3Count, _face3Pool = [], _face4Count, _face4Pool = [], _line, _lineCount, _linePool = [], _particle, _particleCount, _particlePool = [], _renderData = { objects: [], sprites: [], lights: [], elements: [] }, _vector3 = new THREE.Vector3(), _vector4 = new THREE.Vector4(), _projScreenMatrix = new THREE.Matrix4(), _projScreenobjectMatrixWorld = new THREE.Matrix4(), _frustum = new THREE.Frustum(), _clippedVertex1PositionScreen = new THREE.Vector4(), _clippedVertex2PositionScreen = new THREE.Vector4(), _face3VertexNormals; this.projectVector = function ( vector, camera ) { camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse ); _projScreenMatrix.multiplyVector3( vector ); return vector; }; this.unprojectVector = function ( vector, camera ) { camera.projectionMatrixInverse.getInverse( camera.projectionMatrix ); _projScreenMatrix.multiply( camera.matrixWorld, camera.projectionMatrixInverse ); _projScreenMatrix.multiplyVector3( vector ); return vector; }; this.pickingRay = function ( vector, camera ) { var end, ray, t; // set two vectors with opposing z values vector.z = -1.0; end = new THREE.Vector3( vector.x, vector.y, 1.0 ); this.unprojectVector( vector, camera ); this.unprojectVector( end, camera ); // find direction from vector to end end.subSelf( vector ).normalize(); return new THREE.Ray( vector, end ); }; function projectGraph( root, sort ) { _objectCount = 0; _renderData.objects.length = 0; _renderData.sprites.length = 0; _renderData.lights.length = 0; var projectObject = function ( object ) { if ( object.visible === false ) return; if ( ( object instanceof THREE.Mesh || object instanceof THREE.Line ) && ( object.frustumCulled === false || _frustum.contains( object ) === true ) ) { _vector3.copy( object.matrixWorld.getPosition() ); _projScreenMatrix.multiplyVector3( _vector3 ); _object = getNextObjectInPool(); _object.object = object; _object.z = _vector3.z; _renderData.objects.push( _object ); } else if ( object instanceof THREE.Sprite || object instanceof THREE.Particle ) { _vector3.copy( object.matrixWorld.getPosition() ); _projScreenMatrix.multiplyVector3( _vector3 ); _object = getNextObjectInPool(); _object.object = object; _object.z = _vector3.z; _renderData.sprites.push( _object ); } else if ( object instanceof THREE.Light ) { _renderData.lights.push( object ); } for ( var c = 0, cl = object.children.length; c < cl; c ++ ) { projectObject( object.children[ c ] ); } }; projectObject( root ); if ( sort === true ) _renderData.objects.sort( painterSort ); return _renderData; }; this.projectScene = function ( scene, camera, sort ) { var near = camera.near, far = camera.far, visible = false, o, ol, v, vl, f, fl, n, nl, c, cl, u, ul, object, objectMatrixWorld, objectMatrixWorldRotation, geometry, geometryMaterials, vertices, vertex, vertexPositionScreen, faces, face, faceVertexNormals, normal, faceVertexUvs, uvs, v1, v2, v3, v4; _face3Count = 0; _face4Count = 0; _lineCount = 0; _particleCount = 0; _renderData.elements.length = 0; if ( camera.parent === undefined ) { console.warn( 'DEPRECATED: Camera hasn\'t been added to a Scene. Adding it...' ); scene.add( camera ); } scene.updateMatrixWorld(); camera.matrixWorldInverse.getInverse( camera.matrixWorld ); _projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); _renderData = projectGraph( scene, false ); for ( o = 0, ol = _renderData.objects.length; o < ol; o++ ) { object = _renderData.objects[ o ].object; objectMatrixWorld = object.matrixWorld; _vertexCount = 0; if ( object instanceof THREE.Mesh ) { geometry = object.geometry; geometryMaterials = object.geometry.materials; vertices = geometry.vertices; faces = geometry.faces; faceVertexUvs = geometry.faceVertexUvs; objectMatrixWorldRotation = object.matrixRotationWorld.extractRotation( objectMatrixWorld ); for ( v = 0, vl = vertices.length; v < vl; v ++ ) { _vertex = getNextVertexInPool(); _vertex.positionWorld.copy( vertices[ v ] ); objectMatrixWorld.multiplyVector3( _vertex.positionWorld ); _vertex.positionScreen.copy( _vertex.positionWorld ); _projScreenMatrix.multiplyVector4( _vertex.positionScreen ); _vertex.positionScreen.x /= _vertex.positionScreen.w; _vertex.positionScreen.y /= _vertex.positionScreen.w; _vertex.visible = _vertex.positionScreen.z > near && _vertex.positionScreen.z < far; } for ( f = 0, fl = faces.length; f < fl; f ++ ) { face = faces[ f ]; if ( face instanceof THREE.Face3 ) { v1 = _vertexPool[ face.a ]; v2 = _vertexPool[ face.b ]; v3 = _vertexPool[ face.c ]; if ( v1.visible === true && v2.visible === true && v3.visible === true ) { visible = ( ( v3.positionScreen.x - v1.positionScreen.x ) * ( v2.positionScreen.y - v1.positionScreen.y ) - ( v3.positionScreen.y - v1.positionScreen.y ) * ( v2.positionScreen.x - v1.positionScreen.x ) ) < 0; if ( object.doubleSided === true || visible !== object.flipSided ) { _face = getNextFace3InPool(); _face.v1.copy( v1 ); _face.v2.copy( v2 ); _face.v3.copy( v3 ); } else { continue; } } else { continue; } } else if ( face instanceof THREE.Face4 ) { v1 = _vertexPool[ face.a ]; v2 = _vertexPool[ face.b ]; v3 = _vertexPool[ face.c ]; v4 = _vertexPool[ face.d ]; if ( v1.visible === true && v2.visible === true && v3.visible === true && v4.visible === true ) { visible = ( v4.positionScreen.x - v1.positionScreen.x ) * ( v2.positionScreen.y - v1.positionScreen.y ) - ( v4.positionScreen.y - v1.positionScreen.y ) * ( v2.positionScreen.x - v1.positionScreen.x ) < 0 || ( v2.positionScreen.x - v3.positionScreen.x ) * ( v4.positionScreen.y - v3.positionScreen.y ) - ( v2.positionScreen.y - v3.positionScreen.y ) * ( v4.positionScreen.x - v3.positionScreen.x ) < 0; if ( object.doubleSided === true || visible !== object.flipSided ) { _face = getNextFace4InPool(); _face.v1.copy( v1 ); _face.v2.copy( v2 ); _face.v3.copy( v3 ); _face.v4.copy( v4 ); } else { continue; } } else { continue; } } _face.normalWorld.copy( face.normal ); if ( visible === false && ( object.flipSided === true || object.doubleSided === true ) ) _face.normalWorld.negate(); objectMatrixWorldRotation.multiplyVector3( _face.normalWorld ); _face.centroidWorld.copy( face.centroid ); objectMatrixWorld.multiplyVector3( _face.centroidWorld ); _face.centroidScreen.copy( _face.centroidWorld ); _projScreenMatrix.multiplyVector3( _face.centroidScreen ); faceVertexNormals = face.vertexNormals; for ( n = 0, nl = faceVertexNormals.length; n < nl; n ++ ) { normal = _face.vertexNormalsWorld[ n ]; normal.copy( faceVertexNormals[ n ] ); if ( visible === false && ( object.flipSided === true || object.doubleSided === true ) ) normal.negate(); objectMatrixWorldRotation.multiplyVector3( normal ); } for ( c = 0, cl = faceVertexUvs.length; c < cl; c ++ ) { uvs = faceVertexUvs[ c ][ f ]; if ( uvs === undefined ) continue; for ( u = 0, ul = uvs.length; u < ul; u ++ ) { _face.uvs[ c ][ u ] = uvs[ u ]; } } _face.material = object.material; _face.faceMaterial = face.materialIndex !== null ? geometryMaterials[ face.materialIndex ] : null; _face.z = _face.centroidScreen.z; _renderData.elements.push( _face ); } } else if ( object instanceof THREE.Line ) { _projScreenobjectMatrixWorld.multiply( _projScreenMatrix, objectMatrixWorld ); vertices = object.geometry.vertices; v1 = getNextVertexInPool(); v1.positionScreen.copy( vertices[ 0 ] ); _projScreenobjectMatrixWorld.multiplyVector4( v1.positionScreen ); // Handle LineStrip and LinePieces var step = object.type === THREE.LinePieces ? 2 : 1; for ( v = 1, vl = vertices.length; v < vl; v ++ ) { v1 = getNextVertexInPool(); v1.positionScreen.copy( vertices[ v ] ); _projScreenobjectMatrixWorld.multiplyVector4( v1.positionScreen ); if ( ( v + 1 ) % step > 0 ) continue; v2 = _vertexPool[ _vertexCount - 2 ]; _clippedVertex1PositionScreen.copy( v1.positionScreen ); _clippedVertex2PositionScreen.copy( v2.positionScreen ); if ( clipLine( _clippedVertex1PositionScreen, _clippedVertex2PositionScreen ) === true ) { // Perform the perspective divide _clippedVertex1PositionScreen.multiplyScalar( 1 / _clippedVertex1PositionScreen.w ); _clippedVertex2PositionScreen.multiplyScalar( 1 / _clippedVertex2PositionScreen.w ); _line = getNextLineInPool(); _line.v1.positionScreen.copy( _clippedVertex1PositionScreen ); _line.v2.positionScreen.copy( _clippedVertex2PositionScreen ); _line.z = Math.max( _clippedVertex1PositionScreen.z, _clippedVertex2PositionScreen.z ); _line.material = object.material; _renderData.elements.push( _line ); } } } } for ( o = 0, ol = _renderData.sprites.length; o < ol; o++ ) { object = _renderData.sprites[ o ].object; objectMatrixWorld = object.matrixWorld; if ( object instanceof THREE.Particle ) { _vector4.set( objectMatrixWorld.elements[12], objectMatrixWorld.elements[13], objectMatrixWorld.elements[14], 1 ); _projScreenMatrix.multiplyVector4( _vector4 ); _vector4.z /= _vector4.w; if ( _vector4.z > 0 && _vector4.z < 1 ) { _particle = getNextParticleInPool(); _particle.x = _vector4.x / _vector4.w; _particle.y = _vector4.y / _vector4.w; _particle.z = _vector4.z; _particle.rotation = object.rotation.z; _particle.scale.x = object.scale.x * Math.abs( _particle.x - ( _vector4.x + camera.projectionMatrix.elements[0] ) / ( _vector4.w + camera.projectionMatrix.elements[12] ) ); _particle.scale.y = object.scale.y * Math.abs( _particle.y - ( _vector4.y + camera.projectionMatrix.elements[5] ) / ( _vector4.w + camera.projectionMatrix.elements[13] ) ); _particle.material = object.material; _renderData.elements.push( _particle ); } } } sort && _renderData.elements.sort( painterSort ); return _renderData; }; // Pools function getNextObjectInPool() { var object; if ( _objectCount === _objectPool.length ) { object = new THREE.RenderableObject(); _objectPool.push( object ); } else { object = _objectPool[ _objectCount ]; } _objectCount ++; return object; } function getNextVertexInPool() { var vertex; if ( _vertexCount === _vertexPool.length ) { vertex = new THREE.RenderableVertex(); _vertexPool.push( vertex ); } else { vertex = _vertexPool[ _vertexCount ]; } _vertexCount ++; return vertex; } function getNextFace3InPool() { var face; if ( _face3Count === _face3Pool.length ) { face = new THREE.RenderableFace3(); _face3Pool.push( face ); } else { face = _face3Pool[ _face3Count ]; } _face3Count ++; return face; } function getNextFace4InPool() { var face; if ( _face4Count === _face4Pool.length ) { face = new THREE.RenderableFace4(); _face4Pool.push( face ); } else { face = _face4Pool[ _face4Count ]; } _face4Count ++; return face; } function getNextLineInPool() { var line; if ( _lineCount === _linePool.length ) { line = new THREE.RenderableLine(); _linePool.push( line ); } else { line = _linePool[ _lineCount ]; } _lineCount ++; return line; } function getNextParticleInPool() { var particle; if ( _particleCount === _particlePool.length ) { particle = new THREE.RenderableParticle(); _particlePool.push( particle ); } else { particle = _particlePool[ _particleCount ]; } _particleCount ++; return particle; } // function painterSort( a, b ) { return b.z - a.z; } function clipLine( s1, s2 ) { var alpha1 = 0, alpha2 = 1, // Calculate the boundary coordinate of each vertex for the near and far clip planes, // Z = -1 and Z = +1, respectively. bc1near = s1.z + s1.w, bc2near = s2.z + s2.w, bc1far = - s1.z + s1.w, bc2far = - s2.z + s2.w; if ( bc1near >= 0 && bc2near >= 0 && bc1far >= 0 && bc2far >= 0 ) { // Both vertices lie entirely within all clip planes. return true; } else if ( ( bc1near < 0 && bc2near < 0) || (bc1far < 0 && bc2far < 0 ) ) { // Both vertices lie entirely outside one of the clip planes. return false; } else { // The line segment spans at least one clip plane. if ( bc1near < 0 ) { // v1 lies outside the near plane, v2 inside alpha1 = Math.max( alpha1, bc1near / ( bc1near - bc2near ) ); } else if ( bc2near < 0 ) { // v2 lies outside the near plane, v1 inside alpha2 = Math.min( alpha2, bc1near / ( bc1near - bc2near ) ); } if ( bc1far < 0 ) { // v1 lies outside the far plane, v2 inside alpha1 = Math.max( alpha1, bc1far / ( bc1far - bc2far ) ); } else if ( bc2far < 0 ) { // v2 lies outside the far plane, v2 inside alpha2 = Math.min( alpha2, bc1far / ( bc1far - bc2far ) ); } if ( alpha2 < alpha1 ) { // The line segment spans two boundaries, but is outside both of them. // (This can't happen when we're only clipping against just near/far but good // to leave the check here for future usage if other clip planes are added.) return false; } else { // Update the s1 and s2 vertices to match the clipped line segment. s1.lerpSelf( s2, alpha1 ); s2.lerpSelf( s1, 1 - alpha2 ); return true; } } } }; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Quaternion = function( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; }; THREE.Quaternion.prototype = { constructor: THREE.Quaternion, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, copy: function ( q ) { this.x = q.x; this.y = q.y; this.z = q.z; this.w = q.w; return this; }, setFromEuler: function ( v, order ) { // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m var c1 = Math.cos( v.x / 2 ); var c2 = Math.cos( v.y / 2 ); var c3 = Math.cos( v.z / 2 ); var s1 = Math.sin( v.x / 2 ); var s2 = Math.sin( v.y / 2 ); var s3 = Math.sin( v.z / 2 ); if ( order === undefined || order === 'XYZ' ) { this.x = s1 * c2 * c3 + c1 * s2 * s3; this.y = c1 * s2 * c3 - s1 * c2 * s3; this.z = c1 * c2 * s3 + s1 * s2 * c3; this.w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'YXZ' ) { this.x = s1 * c2 * c3 + c1 * s2 * s3; this.y = c1 * s2 * c3 - s1 * c2 * s3; this.z = c1 * c2 * s3 - s1 * s2 * c3; this.w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'ZXY' ) { this.x = s1 * c2 * c3 - c1 * s2 * s3; this.y = c1 * s2 * c3 + s1 * c2 * s3; this.z = c1 * c2 * s3 + s1 * s2 * c3; this.w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'ZYX' ) { this.x = s1 * c2 * c3 - c1 * s2 * s3; this.y = c1 * s2 * c3 + s1 * c2 * s3; this.z = c1 * c2 * s3 - s1 * s2 * c3; this.w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'YZX' ) { this.x = s1 * c2 * c3 + c1 * s2 * s3; this.y = c1 * s2 * c3 + s1 * c2 * s3; this.z = c1 * c2 * s3 - s1 * s2 * c3; this.w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'XZY' ) { this.x = s1 * c2 * c3 - c1 * s2 * s3; this.y = c1 * s2 * c3 - s1 * c2 * s3; this.z = c1 * c2 * s3 + s1 * s2 * c3; this.w = c1 * c2 * c3 + s1 * s2 * s3; } return this; }, setFromAxisAngle: function ( axis, angle ) { // from http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // axis have to be normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this.x = axis.x * s; this.y = axis.y * s; this.z = axis.z * s; this.w = Math.cos( halfAngle ); return this; }, setFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10], trace = m11 + m22 + m33, s; if( trace > 0 ) { s = 0.5 / Math.sqrt( trace + 1.0 ); this.w = 0.25 / s; this.x = ( m32 - m23 ) * s; this.y = ( m13 - m31 ) * s; this.z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this.w = (m32 - m23 ) / s; this.x = 0.25 * s; this.y = (m12 + m21 ) / s; this.z = (m13 + m31 ) / s; } else if (m22 > m33) { s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this.w = (m13 - m31 ) / s; this.x = (m12 + m21 ) / s; this.y = 0.25 * s; this.z = (m23 + m32 ) / s; } else { s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this.w = ( m21 - m12 ) / s; this.x = ( m13 + m31 ) / s; this.y = ( m23 + m32 ) / s; this.z = 0.25 * s; } return this; }, calculateW : function () { this.w = - Math.sqrt( Math.abs( 1.0 - this.x * this.x - this.y * this.y - this.z * this.z ) ); return this; }, inverse: function () { this.x *= -1; this.y *= -1; this.z *= -1; return this; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }, normalize: function () { var l = Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); if ( l === 0 ) { this.x = 0; this.y = 0; this.z = 0; this.w = 0; } else { l = 1 / l; this.x = this.x * l; this.y = this.y * l; this.z = this.z * l; this.w = this.w * l; } return this; }, multiply: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm this.x = a.x * b.w + a.y * b.z - a.z * b.y + a.w * b.x; this.y = -a.x * b.z + a.y * b.w + a.z * b.x + a.w * b.y; this.z = a.x * b.y - a.y * b.x + a.z * b.w + a.w * b.z; this.w = -a.x * b.x - a.y * b.y - a.z * b.z + a.w * b.w; return this; }, multiplySelf: function ( b ) { var qax = this.x, qay = this.y, qaz = this.z, qaw = this.w, qbx = b.x, qby = b.y, qbz = b.z, qbw = b.w; this.x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this.y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this.z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this.w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; return this; }, multiplyVector3: function ( vector, dest ) { if ( !dest ) { dest = vector; } var x = vector.x, y = vector.y, z = vector.z, qx = this.x, qy = this.y, qz = this.z, qw = this.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y, iy = qw * y + qz * x - qx * z, iz = qw * z + qx * y - qy * x, iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat dest.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; dest.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; dest.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; return dest; }, slerpSelf: function ( qb, t ) { var x = this.x, y = this.y, z = this.z, w = this.w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb.w + x * qb.x + y * qb.y + z * qb.z; if ( cosHalfTheta < 0 ) { this.w = -qb.w; this.x = -qb.x; this.y = -qb.y; this.z = -qb.z; cosHalfTheta = -cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this.w = w; this.x = x; this.y = y; this.z = z; return this; } var halfTheta = Math.acos( cosHalfTheta ); var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { this.w = 0.5 * ( w + this.w ); this.x = 0.5 * ( x + this.x ); this.y = 0.5 * ( y + this.y ); this.z = 0.5 * ( z + this.z ); return this; } var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this.w = ( w * ratioA + this.w * ratioB ); this.x = ( x * ratioA + this.x * ratioB ); this.y = ( y * ratioA + this.y * ratioB ); this.z = ( z * ratioA + this.z * ratioB ); return this; }, clone: function () { return new THREE.Quaternion( this.x, this.y, this.z, this.w ); } } THREE.Quaternion.slerp = function ( qa, qb, qm, t ) { // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = qa.w * qb.w + qa.x * qb.x + qa.y * qb.y + qa.z * qb.z; if ( cosHalfTheta < 0 ) { qm.w = -qb.w; qm.x = -qb.x; qm.y = -qb.y; qm.z = -qb.z; cosHalfTheta = -cosHalfTheta; } else { qm.copy( qb ); } if ( Math.abs( cosHalfTheta ) >= 1.0 ) { qm.w = qa.w; qm.x = qa.x; qm.y = qa.y; qm.z = qa.z; return qm; } var halfTheta = Math.acos( cosHalfTheta ); var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { qm.w = 0.5 * ( qa.w + qm.w ); qm.x = 0.5 * ( qa.x + qm.x ); qm.y = 0.5 * ( qa.y + qm.y ); qm.z = 0.5 * ( qa.z + qm.z ); return qm; } var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta; var ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; qm.w = ( qa.w * ratioA + qm.w * ratioB ); qm.x = ( qa.x * ratioA + qm.x * ratioB ); qm.y = ( qa.y * ratioA + qm.y * ratioB ); qm.z = ( qa.z * ratioA + qm.z * ratioB ); return qm; } /** * @author mr.doob / http://mrdoob.com/ */ THREE.Vertex = function () { console.warn( 'THREE.Vertex has been DEPRECATED. Use THREE.Vector3 instead.') }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Face3 = function ( a, b, c, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3(); this.vertexNormals = normal instanceof Array ? normal : [ ]; this.color = color instanceof THREE.Color ? color : new THREE.Color(); this.vertexColors = color instanceof Array ? color : []; this.vertexTangents = []; this.materialIndex = materialIndex; this.centroid = new THREE.Vector3(); }; THREE.Face3.prototype = { constructor: THREE.Face3, clone: function () { var face = new THREE.Face3( this.a, this.b, this.c ); face.normal.copy( this.normal ); face.color.copy( this.color ); face.centroid.copy( this.centroid ); face.materialIndex = this.materialIndex; var i, il; for ( i = 0, il = this.vertexNormals.length; i < il; i ++ ) face.vertexNormals[ i ] = this.vertexNormals[ i ].clone(); for ( i = 0, il = this.vertexColors.length; i < il; i ++ ) face.vertexColors[ i ] = this.vertexColors[ i ].clone(); for ( i = 0, il = this.vertexTangents.length; i < il; i ++ ) face.vertexTangents[ i ] = this.vertexTangents[ i ].clone(); return face; } }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Face4 = function ( a, b, c, d, normal, color, materialIndex ) { this.a = a; this.b = b; this.c = c; this.d = d; this.normal = normal instanceof THREE.Vector3 ? normal : new THREE.Vector3(); this.vertexNormals = normal instanceof Array ? normal : [ ]; this.color = color instanceof THREE.Color ? color : new THREE.Color(); this.vertexColors = color instanceof Array ? color : []; this.vertexTangents = []; this.materialIndex = materialIndex; this.centroid = new THREE.Vector3(); }; THREE.Face4.prototype = { constructor: THREE.Face4, clone: function () { var face = new THREE.Face4( this.a, this.b, this.c, this.d ); face.normal.copy( this.normal ); face.color.copy( this.color ); face.centroid.copy( this.centroid ); face.materialIndex = this.materialIndex; var i, il; for ( i = 0, il = this.vertexNormals.length; i < il; i ++ ) face.vertexNormals[ i ] = this.vertexNormals[ i ].clone(); for ( i = 0, il = this.vertexColors.length; i < il; i ++ ) face.vertexColors[ i ] = this.vertexColors[ i ].clone(); for ( i = 0, il = this.vertexTangents.length; i < il; i ++ ) face.vertexTangents[ i ] = this.vertexTangents[ i ].clone(); return face; } }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.UV = function ( u, v ) { this.u = u || 0; this.v = v || 0; }; THREE.UV.prototype = { constructor: THREE.UV, set: function ( u, v ) { this.u = u; this.v = v; return this; }, copy: function ( uv ) { this.u = uv.u; this.v = uv.v; return this; }, lerpSelf: function ( uv, alpha ) { this.u += ( uv.u - this.u ) * alpha; this.v += ( uv.v - this.v ) * alpha; return this; }, clone: function () { return new THREE.UV( this.u, this.v ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.Geometry = function () { this.id = THREE.GeometryCount ++; this.name = ''; this.vertices = []; this.colors = []; // one-to-one vertex colors, used in ParticleSystem, Line and Ribbon this.materials = []; this.faces = []; this.faceUvs = [[]]; this.faceVertexUvs = [[]]; this.morphTargets = []; this.morphColors = []; this.morphNormals = []; this.skinWeights = []; this.skinIndices = []; this.boundingBox = null; this.boundingSphere = null; this.hasTangents = false; this.dynamic = false; // unless set to true the *Arrays will be deleted once sent to a buffer }; THREE.Geometry.prototype = { constructor : THREE.Geometry, applyMatrix: function ( matrix ) { var matrixRotation = new THREE.Matrix4(); matrixRotation.extractRotation( matrix ); for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { var vertex = this.vertices[ i ]; matrix.multiplyVector3( vertex ); } for ( var i = 0, il = this.faces.length; i < il; i ++ ) { var face = this.faces[ i ]; matrixRotation.multiplyVector3( face.normal ); for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { matrixRotation.multiplyVector3( face.vertexNormals[ j ] ); } matrix.multiplyVector3( face.centroid ); } }, computeCentroids: function () { var f, fl, face; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.centroid.set( 0, 0, 0 ); if ( face instanceof THREE.Face3 ) { face.centroid.addSelf( this.vertices[ face.a ] ); face.centroid.addSelf( this.vertices[ face.b ] ); face.centroid.addSelf( this.vertices[ face.c ] ); face.centroid.divideScalar( 3 ); } else if ( face instanceof THREE.Face4 ) { face.centroid.addSelf( this.vertices[ face.a ] ); face.centroid.addSelf( this.vertices[ face.b ] ); face.centroid.addSelf( this.vertices[ face.c ] ); face.centroid.addSelf( this.vertices[ face.d ] ); face.centroid.divideScalar( 4 ); } } }, computeFaceNormals: function () { var n, nl, v, vl, vertex, f, fl, face, vA, vB, vC, cb = new THREE.Vector3(), ab = new THREE.Vector3(); for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; vA = this.vertices[ face.a ]; vB = this.vertices[ face.b ]; vC = this.vertices[ face.c ]; cb.sub( vC, vB ); ab.sub( vA, vB ); cb.crossSelf( ab ); if ( !cb.isZero() ) { cb.normalize(); } face.normal.copy( cb ); } }, computeVertexNormals: function () { var v, vl, f, fl, face, vertices; // create internal buffers for reuse when calling this method repeatedly // (otherwise memory allocation / deallocation every frame is big resource hog) if ( this.__tmpVertices === undefined ) { this.__tmpVertices = new Array( this.vertices.length ); vertices = this.__tmpVertices; for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ] = new THREE.Vector3(); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( face instanceof THREE.Face3 ) { face.vertexNormals = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; } else if ( face instanceof THREE.Face4 ) { face.vertexNormals = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; } } } else { vertices = this.__tmpVertices; for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ].set( 0, 0, 0 ); } } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( face instanceof THREE.Face3 ) { vertices[ face.a ].addSelf( face.normal ); vertices[ face.b ].addSelf( face.normal ); vertices[ face.c ].addSelf( face.normal ); } else if ( face instanceof THREE.Face4 ) { vertices[ face.a ].addSelf( face.normal ); vertices[ face.b ].addSelf( face.normal ); vertices[ face.c ].addSelf( face.normal ); vertices[ face.d ].addSelf( face.normal ); } } for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { vertices[ v ].normalize(); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( face instanceof THREE.Face3 ) { face.vertexNormals[ 0 ].copy( vertices[ face.a ] ); face.vertexNormals[ 1 ].copy( vertices[ face.b ] ); face.vertexNormals[ 2 ].copy( vertices[ face.c ] ); } else if ( face instanceof THREE.Face4 ) { face.vertexNormals[ 0 ].copy( vertices[ face.a ] ); face.vertexNormals[ 1 ].copy( vertices[ face.b ] ); face.vertexNormals[ 2 ].copy( vertices[ face.c ] ); face.vertexNormals[ 3 ].copy( vertices[ face.d ] ); } } }, computeMorphNormals: function () { var i, il, f, fl, face; // save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls) for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; if ( ! face.__originalFaceNormal ) { face.__originalFaceNormal = face.normal.clone(); } else { face.__originalFaceNormal.copy( face.normal ); } if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = []; for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) { if ( ! face.__originalVertexNormals[ i ] ) { face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone(); } else { face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] ); } } } // use temp geometry to compute face and vertex normals for each morph var tmpGeo = new THREE.Geometry(); tmpGeo.faces = this.faces; for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) { // create on first access if ( ! this.morphNormals[ i ] ) { this.morphNormals[ i ] = {}; this.morphNormals[ i ].faceNormals = []; this.morphNormals[ i ].vertexNormals = []; var dstNormalsFace = this.morphNormals[ i ].faceNormals; var dstNormalsVertex = this.morphNormals[ i ].vertexNormals; var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; faceNormal = new THREE.Vector3(); if ( face instanceof THREE.Face3 ) { vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3() }; } else { vertexNormals = { a: new THREE.Vector3(), b: new THREE.Vector3(), c: new THREE.Vector3(), d: new THREE.Vector3() }; } dstNormalsFace.push( faceNormal ); dstNormalsVertex.push( vertexNormals ); } } var morphNormals = this.morphNormals[ i ]; // set vertices to morph target tmpGeo.vertices = this.morphTargets[ i ].vertices; // compute morph normals tmpGeo.computeFaceNormals(); tmpGeo.computeVertexNormals(); // store morph normals var faceNormal, vertexNormals; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; faceNormal = morphNormals.faceNormals[ f ]; vertexNormals = morphNormals.vertexNormals[ f ]; faceNormal.copy( face.normal ); if ( face instanceof THREE.Face3 ) { vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] ); } else { vertexNormals.a.copy( face.vertexNormals[ 0 ] ); vertexNormals.b.copy( face.vertexNormals[ 1 ] ); vertexNormals.c.copy( face.vertexNormals[ 2 ] ); vertexNormals.d.copy( face.vertexNormals[ 3 ] ); } } } // restore original normals for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; face.normal = face.__originalFaceNormal; face.vertexNormals = face.__originalVertexNormals; } }, computeTangents: function () { // based on http://www.terathon.com/code/tangent.html // tangents go to vertices var f, fl, v, vl, i, il, vertexIndex, face, uv, vA, vB, vC, uvA, uvB, uvC, x1, x2, y1, y2, z1, z2, s1, s2, t1, t2, r, t, test, tan1 = [], tan2 = [], sdir = new THREE.Vector3(), tdir = new THREE.Vector3(), tmp = new THREE.Vector3(), tmp2 = new THREE.Vector3(), n = new THREE.Vector3(), w; for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) { tan1[ v ] = new THREE.Vector3(); tan2[ v ] = new THREE.Vector3(); } function handleTriangle( context, a, b, c, ua, ub, uc ) { vA = context.vertices[ a ]; vB = context.vertices[ b ]; vC = context.vertices[ c ]; uvA = uv[ ua ]; uvB = uv[ ub ]; uvC = uv[ uc ]; x1 = vB.x - vA.x; x2 = vC.x - vA.x; y1 = vB.y - vA.y; y2 = vC.y - vA.y; z1 = vB.z - vA.z; z2 = vC.z - vA.z; s1 = uvB.u - uvA.u; s2 = uvC.u - uvA.u; t1 = uvB.v - uvA.v; t2 = uvC.v - uvA.v; r = 1.0 / ( s1 * t2 - s2 * t1 ); sdir.set( ( t2 * x1 - t1 * x2 ) * r, ( t2 * y1 - t1 * y2 ) * r, ( t2 * z1 - t1 * z2 ) * r ); tdir.set( ( s1 * x2 - s2 * x1 ) * r, ( s1 * y2 - s2 * y1 ) * r, ( s1 * z2 - s2 * z1 ) * r ); tan1[ a ].addSelf( sdir ); tan1[ b ].addSelf( sdir ); tan1[ c ].addSelf( sdir ); tan2[ a ].addSelf( tdir ); tan2[ b ].addSelf( tdir ); tan2[ c ].addSelf( tdir ); } for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; uv = this.faceVertexUvs[ 0 ][ f ]; // use UV layer 0 for tangents if ( face instanceof THREE.Face3 ) { handleTriangle( this, face.a, face.b, face.c, 0, 1, 2 ); } else if ( face instanceof THREE.Face4 ) { handleTriangle( this, face.a, face.b, face.d, 0, 1, 3 ); handleTriangle( this, face.b, face.c, face.d, 1, 2, 3 ); } } var faceIndex = [ 'a', 'b', 'c', 'd' ]; for ( f = 0, fl = this.faces.length; f < fl; f ++ ) { face = this.faces[ f ]; for ( i = 0; i < face.vertexNormals.length; i++ ) { n.copy( face.vertexNormals[ i ] ); vertexIndex = face[ faceIndex[ i ] ]; t = tan1[ vertexIndex ]; // Gram-Schmidt orthogonalize tmp.copy( t ); tmp.subSelf( n.multiplyScalar( n.dot( t ) ) ).normalize(); // Calculate handedness tmp2.cross( face.vertexNormals[ i ], t ); test = tmp2.dot( tan2[ vertexIndex ] ); w = (test < 0.0) ? -1.0 : 1.0; face.vertexTangents[ i ] = new THREE.Vector4( tmp.x, tmp.y, tmp.z, w ); } } this.hasTangents = true; }, computeBoundingBox: function () { if ( ! this.boundingBox ) { this.boundingBox = { min: new THREE.Vector3(), max: new THREE.Vector3() }; } if ( this.vertices.length > 0 ) { var position, firstPosition = this.vertices[ 0 ]; this.boundingBox.min.copy( firstPosition ); this.boundingBox.max.copy( firstPosition ); var min = this.boundingBox.min, max = this.boundingBox.max; for ( var v = 1, vl = this.vertices.length; v < vl; v ++ ) { position = this.vertices[ v ]; if ( position.x < min.x ) { min.x = position.x; } else if ( position.x > max.x ) { max.x = position.x; } if ( position.y < min.y ) { min.y = position.y; } else if ( position.y > max.y ) { max.y = position.y; } if ( position.z < min.z ) { min.z = position.z; } else if ( position.z > max.z ) { max.z = position.z; } } } else { this.boundingBox.min.set( 0, 0, 0 ); this.boundingBox.max.set( 0, 0, 0 ); } }, computeBoundingSphere: function () { if ( ! this.boundingSphere ) this.boundingSphere = { radius: 0 }; var radius, maxRadius = 0; for ( var v = 0, vl = this.vertices.length; v < vl; v ++ ) { radius = this.vertices[ v ].length(); if ( radius > maxRadius ) maxRadius = radius; } this.boundingSphere.radius = maxRadius; }, /* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */ mergeVertices: function() { var verticesMap = {}; // Hashmap for looking up vertice by position coordinates (and making sure they are unique) var unique = [], changes = []; var v, key; var precisionPoints = 4; // number of decimal points, eg. 4 for epsilon of 0.0001 var precision = Math.pow( 10, precisionPoints ); var i,il, face; var abcd = 'abcd', o, k, j, jl, u; for ( i = 0, il = this.vertices.length; i < il; i ++ ) { v = this.vertices[ i ]; key = [ Math.round( v.x * precision ), Math.round( v.y * precision ), Math.round( v.z * precision ) ].join( '_' ); if ( verticesMap[ key ] === undefined ) { verticesMap[ key ] = i; unique.push( this.vertices[ i ] ); changes[ i ] = unique.length - 1; } else { //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[ i ] = changes[ verticesMap[ key ] ]; } }; // Start to patch face indices for( i = 0, il = this.faces.length; i < il; i ++ ) { face = this.faces[ i ]; if ( face instanceof THREE.Face3 ) { face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; } else if ( face instanceof THREE.Face4 ) { face.a = changes[ face.a ]; face.b = changes[ face.b ]; face.c = changes[ face.c ]; face.d = changes[ face.d ]; // check dups in (a, b, c, d) and convert to -> face3 o = [ face.a, face.b, face.c, face.d ]; for ( k = 3; k > 0; k -- ) { if ( o.indexOf( face[ abcd[ k ] ] ) !== k ) { // console.log('faces', face.a, face.b, face.c, face.d, 'dup at', k); o.splice( k, 1 ); this.faces[ i ] = new THREE.Face3( o[0], o[1], o[2], face.normal, face.color, face.materialIndex ); for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) { u = this.faceVertexUvs[ j ][ i ]; if ( u ) u.splice( k, 1 ); } this.faces[ i ].vertexColors = face.vertexColors; break; } } } } // Use unique set of vertices var diff = this.vertices.length - unique.length; this.vertices = unique; return diff; } }; THREE.GeometryCount = 0; /** * Spline from Tween.js, slightly optimized (and trashed) * http://sole.github.com/tween.js/examples/05_spline.html * * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Spline = function ( points ) { this.points = points; var c = [], v3 = { x: 0, y: 0, z: 0 }, point, intPoint, weight, w2, w3, pa, pb, pc, pd; this.initFromArray = function( a ) { this.points = []; for ( var i = 0; i < a.length; i++ ) { this.points[ i ] = { x: a[ i ][ 0 ], y: a[ i ][ 1 ], z: a[ i ][ 2 ] }; } }; this.getPoint = function ( k ) { point = ( this.points.length - 1 ) * k; intPoint = Math.floor( point ); weight = point - intPoint; c[ 0 ] = intPoint === 0 ? intPoint : intPoint - 1; c[ 1 ] = intPoint; c[ 2 ] = intPoint > this.points.length - 2 ? this.points.length - 1 : intPoint + 1; c[ 3 ] = intPoint > this.points.length - 3 ? this.points.length - 1 : intPoint + 2; pa = this.points[ c[ 0 ] ]; pb = this.points[ c[ 1 ] ]; pc = this.points[ c[ 2 ] ]; pd = this.points[ c[ 3 ] ]; w2 = weight * weight; w3 = weight * w2; v3.x = interpolate( pa.x, pb.x, pc.x, pd.x, weight, w2, w3 ); v3.y = interpolate( pa.y, pb.y, pc.y, pd.y, weight, w2, w3 ); v3.z = interpolate( pa.z, pb.z, pc.z, pd.z, weight, w2, w3 ); return v3; }; this.getControlPointsArray = function () { var i, p, l = this.points.length, coords = []; for ( i = 0; i < l; i ++ ) { p = this.points[ i ]; coords[ i ] = [ p.x, p.y, p.z ]; } return coords; }; // approximate length by summing linear segments this.getLength = function ( nSubDivisions ) { var i, index, nSamples, position, point = 0, intPoint = 0, oldIntPoint = 0, oldPosition = new THREE.Vector3(), tmpVec = new THREE.Vector3(), chunkLengths = [], totalLength = 0; // first point has 0 length chunkLengths[ 0 ] = 0; if ( !nSubDivisions ) nSubDivisions = 100; nSamples = this.points.length * nSubDivisions; oldPosition.copy( this.points[ 0 ] ); for ( i = 1; i < nSamples; i ++ ) { index = i / nSamples; position = this.getPoint( index ); tmpVec.copy( position ); totalLength += tmpVec.distanceTo( oldPosition ); oldPosition.copy( position ); point = ( this.points.length - 1 ) * index; intPoint = Math.floor( point ); if ( intPoint != oldIntPoint ) { chunkLengths[ intPoint ] = totalLength; oldIntPoint = intPoint; } } // last point ends with total length chunkLengths[ chunkLengths.length ] = totalLength; return { chunks: chunkLengths, total: totalLength }; }; this.reparametrizeByArcLength = function ( samplingCoef ) { var i, j, index, indexCurrent, indexNext, linearDistance, realDistance, sampling, position, newpoints = [], tmpVec = new THREE.Vector3(), sl = this.getLength(); newpoints.push( tmpVec.copy( this.points[ 0 ] ).clone() ); for ( i = 1; i < this.points.length; i++ ) { //tmpVec.copy( this.points[ i - 1 ] ); //linearDistance = tmpVec.distanceTo( this.points[ i ] ); realDistance = sl.chunks[ i ] - sl.chunks[ i - 1 ]; sampling = Math.ceil( samplingCoef * realDistance / sl.total ); indexCurrent = ( i - 1 ) / ( this.points.length - 1 ); indexNext = i / ( this.points.length - 1 ); for ( j = 1; j < sampling - 1; j++ ) { index = indexCurrent + j * ( 1 / sampling ) * ( indexNext - indexCurrent ); position = this.getPoint( index ); newpoints.push( tmpVec.copy( position ).clone() ); } newpoints.push( tmpVec.copy( this.points[ i ] ).clone() ); } this.points = newpoints; }; // Catmull-Rom function interpolate( p0, p1, p2, p3, t, t2, t3 ) { var v0 = ( p2 - p0 ) * 0.5, v1 = ( p3 - p1 ) * 0.5; return ( 2 * ( p1 - p2 ) + v0 + v1 ) * t3 + ( - 3 * ( p1 - p2 ) - 2 * v0 - v1 ) * t2 + v0 * t + p1; }; }; /** * @author mr.doob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ THREE.Camera = function () { THREE.Object3D.call( this ); this.matrixWorldInverse = new THREE.Matrix4(); this.projectionMatrix = new THREE.Matrix4(); this.projectionMatrixInverse = new THREE.Matrix4(); }; THREE.Camera.prototype = Object.create( THREE.Object3D.prototype ); THREE.Camera.prototype.lookAt = function ( vector ) { // TODO: Add hierarchy support. this.matrix.lookAt( this.position, vector, this.up ); if ( this.rotationAutoUpdate === true ) { this.rotation.setEulerFromRotationMatrix( this.matrix, this.eulerOrder ); } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.OrthographicCamera = function ( left, right, top, bottom, near, far ) { THREE.Camera.call( this ); this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = ( near !== undefined ) ? near : 0.1; this.far = ( far !== undefined ) ? far : 2000; this.updateProjectionMatrix(); }; THREE.OrthographicCamera.prototype = Object.create( THREE.Camera.prototype ); THREE.OrthographicCamera.prototype.updateProjectionMatrix = function () { this.projectionMatrix.makeOrthographic( this.left, this.right, this.top, this.bottom, this.near, this.far ); }; /** * @author mr.doob / http://mrdoob.com/ * @author greggman / http://games.greggman.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ THREE.PerspectiveCamera = function ( fov, aspect, near, far ) { THREE.Camera.call( this ); this.fov = fov !== undefined ? fov : 50; this.aspect = aspect !== undefined ? aspect : 1; this.near = near !== undefined ? near : 0.1; this.far = far !== undefined ? far : 2000; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype = Object.create( THREE.Camera.prototype ); /** * Uses Focal Length (in mm) to estimate and set FOV * 35mm (fullframe) camera is used if frame size is not specified; * Formula based on http://www.bobatkins.com/photography/technical/field_of_view.html */ THREE.PerspectiveCamera.prototype.setLens = function ( focalLength, frameHeight ) { frameHeight = frameHeight !== undefined ? frameHeight : 24; this.fov = 2 * Math.atan( frameHeight / ( focalLength * 2 ) ) * ( 180 / Math.PI ); this.updateProjectionMatrix(); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * var w = 1920; * var h = 1080; * var fullWidth = w * 3; * var fullHeight = h * 2; * * --A-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ THREE.PerspectiveCamera.prototype.setViewOffset = function ( fullWidth, fullHeight, x, y, width, height ) { this.fullWidth = fullWidth; this.fullHeight = fullHeight; this.x = x; this.y = y; this.width = width; this.height = height; this.updateProjectionMatrix(); }; THREE.PerspectiveCamera.prototype.updateProjectionMatrix = function () { if ( this.fullWidth ) { var aspect = this.fullWidth / this.fullHeight; var top = Math.tan( this.fov * Math.PI / 360 ) * this.near; var bottom = -top; var left = aspect * bottom; var right = aspect * top; var width = Math.abs( right - left ); var height = Math.abs( top - bottom ); this.projectionMatrix.makeFrustum( left + this.x * width / this.fullWidth, left + ( this.x + this.width ) * width / this.fullWidth, top - ( this.y + this.height ) * height / this.fullHeight, top - this.y * height / this.fullHeight, this.near, this.far ); } else { this.projectionMatrix.makePerspective( this.fov, this.aspect, this.near, this.far ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Light = function ( hex ) { THREE.Object3D.call( this ); this.color = new THREE.Color( hex ); }; THREE.Light.prototype = Object.create( THREE.Object3D.prototype ); /** * @author mr.doob / http://mrdoob.com/ */ THREE.AmbientLight = function ( hex ) { THREE.Light.call( this, hex ); }; THREE.AmbientLight.prototype = Object.create( THREE.Light.prototype ); /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.DirectionalLight = function ( hex, intensity, distance ) { THREE.Light.call( this, hex ); this.position = new THREE.Vector3( 0, 1, 0 ); this.target = new THREE.Object3D(); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.distance = ( distance !== undefined ) ? distance : 0; this.castShadow = false; this.onlyShadow = false; // this.shadowCameraNear = 50; this.shadowCameraFar = 5000; this.shadowCameraLeft = -500; this.shadowCameraRight = 500; this.shadowCameraTop = 500; this.shadowCameraBottom = -500; this.shadowCameraVisible = false; this.shadowBias = 0; this.shadowDarkness = 0.5; this.shadowMapWidth = 512; this.shadowMapHeight = 512; // this.shadowCascade = false; this.shadowCascadeOffset = new THREE.Vector3( 0, 0, -1000 ); this.shadowCascadeCount = 2; this.shadowCascadeBias = [ 0, 0, 0 ]; this.shadowCascadeWidth = [ 512, 512, 512 ]; this.shadowCascadeHeight = [ 512, 512, 512 ]; this.shadowCascadeNearZ = [ -1.000, 0.990, 0.998 ]; this.shadowCascadeFarZ = [ 0.990, 0.998, 1.000 ]; this.shadowCascadeArray = []; // this.shadowMap = null; this.shadowMapSize = null; this.shadowCamera = null; this.shadowMatrix = null; }; THREE.DirectionalLight.prototype = Object.create( THREE.Light.prototype ); /** * @author mr.doob / http://mrdoob.com/ */ THREE.PointLight = function ( hex, intensity, distance ) { THREE.Light.call( this, hex ); this.position = new THREE.Vector3( 0, 0, 0 ); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.distance = ( distance !== undefined ) ? distance : 0; }; THREE.PointLight.prototype = Object.create( THREE.Light.prototype ); /** * @author alteredq / http://alteredqualia.com/ */ THREE.SpotLight = function ( hex, intensity, distance, angle, exponent ) { THREE.Light.call( this, hex ); this.position = new THREE.Vector3( 0, 1, 0 ); this.target = new THREE.Object3D(); this.intensity = ( intensity !== undefined ) ? intensity : 1; this.distance = ( distance !== undefined ) ? distance : 0; this.angle = ( angle !== undefined ) ? angle : Math.PI / 2; this.exponent = ( exponent !== undefined ) ? exponent : 10; this.castShadow = false; this.onlyShadow = false; // this.shadowCameraNear = 50; this.shadowCameraFar = 5000; this.shadowCameraFov = 50; this.shadowCameraVisible = false; this.shadowBias = 0; this.shadowDarkness = 0.5; this.shadowMapWidth = 512; this.shadowMapHeight = 512; // this.shadowMap = null; this.shadowMapSize = null; this.shadowCamera = null; this.shadowMatrix = null; }; THREE.SpotLight.prototype = Object.create( THREE.Light.prototype ); /** * @author alteredq / http://alteredqualia.com/ */ THREE.Loader = function ( showStatus ) { this.showStatus = showStatus; this.statusDomElement = showStatus ? THREE.Loader.prototype.addStatusElement() : null; this.onLoadStart = function () {}; this.onLoadProgress = function () {}; this.onLoadComplete = function () {}; }; THREE.Loader.prototype = { constructor: THREE.Loader, crossOrigin: 'anonymous', addStatusElement: function () { var e = document.createElement( "div" ); e.style.position = "absolute"; e.style.right = "0px"; e.style.top = "0px"; e.style.fontSize = "0.8em"; e.style.textAlign = "left"; e.style.background = "rgba(0,0,0,0.25)"; e.style.color = "#fff"; e.style.width = "120px"; e.style.padding = "0.5em 0.5em 0.5em 0.5em"; e.style.zIndex = 1000; e.innerHTML = "Loading ..."; return e; }, updateProgress: function ( progress ) { var message = "Loaded "; if ( progress.total ) { message += ( 100 * progress.loaded / progress.total ).toFixed(0) + "%"; } else { message += ( progress.loaded / 1000 ).toFixed(2) + " KB"; } this.statusDomElement.innerHTML = message; }, extractUrlBase: function ( url ) { var parts = url.split( '/' ); parts.pop(); return ( parts.length < 1 ? '.' : parts.join( '/' ) ) + '/'; }, initMaterials: function ( scope, materials, texturePath ) { scope.materials = []; for ( var i = 0; i < materials.length; ++ i ) { scope.materials[ i ] = THREE.Loader.prototype.createMaterial( materials[ i ], texturePath ); } }, hasNormals: function ( scope ) { var m, i, il = scope.materials.length; for( i = 0; i < il; i ++ ) { m = scope.materials[ i ]; if ( m instanceof THREE.ShaderMaterial ) return true; } return false; }, createMaterial: function ( m, texturePath ) { var _this = this; function is_pow2( n ) { var l = Math.log( n ) / Math.LN2; return Math.floor( l ) == l; } function nearest_pow2( n ) { var l = Math.log( n ) / Math.LN2; return Math.pow( 2, Math.round( l ) ); } function load_image( where, url ) { var image = new Image(); image.onload = function () { if ( !is_pow2( this.width ) || !is_pow2( this.height ) ) { var width = nearest_pow2( this.width ); var height = nearest_pow2( this.height ); where.image.width = width; where.image.height = height; where.image.getContext( '2d' ).drawImage( this, 0, 0, width, height ); } else { where.image = this; } where.needsUpdate = true; }; image.crossOrigin = _this.crossOrigin; image.src = url; } function create_texture( where, name, sourceFile, repeat, offset, wrap ) { var texture = document.createElement( 'canvas' ); where[ name ] = new THREE.Texture( texture ); where[ name ].sourceFile = sourceFile; if( repeat ) { where[ name ].repeat.set( repeat[ 0 ], repeat[ 1 ] ); if ( repeat[ 0 ] != 1 ) where[ name ].wrapS = THREE.RepeatWrapping; if ( repeat[ 1 ] != 1 ) where[ name ].wrapT = THREE.RepeatWrapping; } if ( offset ) { where[ name ].offset.set( offset[ 0 ], offset[ 1 ] ); } if ( wrap ) { var wrapMap = { "repeat": THREE.RepeatWrapping, "mirror": THREE.MirroredRepeatWrapping } if ( wrapMap[ wrap[ 0 ] ] !== undefined ) where[ name ].wrapS = wrapMap[ wrap[ 0 ] ]; if ( wrapMap[ wrap[ 1 ] ] !== undefined ) where[ name ].wrapT = wrapMap[ wrap[ 1 ] ]; } load_image( where[ name ], texturePath + "/" + sourceFile ); } function rgb2hex( rgb ) { return ( rgb[ 0 ] * 255 << 16 ) + ( rgb[ 1 ] * 255 << 8 ) + rgb[ 2 ] * 255; } // defaults var mtype = "MeshLambertMaterial"; var mpars = { color: 0xeeeeee, opacity: 1.0, map: null, lightMap: null, normalMap: null, wireframe: m.wireframe }; // parameters from model file if ( m.shading ) { var shading = m.shading.toLowerCase(); if ( shading === "phong" ) mtype = "MeshPhongMaterial"; else if ( shading === "basic" ) mtype = "MeshBasicMaterial"; } if ( m.blending !== undefined && THREE[ m.blending ] !== undefined ) { mpars.blending = THREE[ m.blending ]; } if ( m.transparent !== undefined || m.opacity < 1.0 ) { mpars.transparent = m.transparent; } if ( m.depthTest !== undefined ) { mpars.depthTest = m.depthTest; } if ( m.depthWrite !== undefined ) { mpars.depthWrite = m.depthWrite; } if ( m.vertexColors !== undefined ) { if ( m.vertexColors == "face" ) { mpars.vertexColors = THREE.FaceColors; } else if ( m.vertexColors ) { mpars.vertexColors = THREE.VertexColors; } } // colors if ( m.colorDiffuse ) { mpars.color = rgb2hex( m.colorDiffuse ); } else if ( m.DbgColor ) { mpars.color = m.DbgColor; } if ( m.colorSpecular ) { mpars.specular = rgb2hex( m.colorSpecular ); } if ( m.colorAmbient ) { mpars.ambient = rgb2hex( m.colorAmbient ); } // modifiers if ( m.transparency ) { mpars.opacity = m.transparency; } if ( m.specularCoef ) { mpars.shininess = m.specularCoef; } // textures if ( m.mapDiffuse && texturePath ) { create_texture( mpars, "map", m.mapDiffuse, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap ); } if ( m.mapLight && texturePath ) { create_texture( mpars, "lightMap", m.mapLight, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap ); } if ( m.mapNormal && texturePath ) { create_texture( mpars, "normalMap", m.mapNormal, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap ); } if ( m.mapSpecular && texturePath ) { create_texture( mpars, "specularMap", m.mapSpecular, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap ); } // special case for normal mapped material if ( m.mapNormal ) { var shader = THREE.ShaderUtils.lib[ "normal" ]; var uniforms = THREE.UniformsUtils.clone( shader.uniforms ); uniforms[ "tNormal" ].texture = mpars.normalMap; if ( m.mapNormalFactor ) { uniforms[ "uNormalScale" ].value = m.mapNormalFactor; } if ( mpars.map ) { uniforms[ "tDiffuse" ].texture = mpars.map; uniforms[ "enableDiffuse" ].value = true; } if ( mpars.specularMap ) { uniforms[ "tSpecular" ].texture = mpars.specularMap; uniforms[ "enableSpecular" ].value = true; } if ( mpars.lightMap ) { uniforms[ "tAO" ].texture = mpars.lightMap; uniforms[ "enableAO" ].value = true; } // for the moment don't handle displacement texture uniforms[ "uDiffuseColor" ].value.setHex( mpars.color ); uniforms[ "uSpecularColor" ].value.setHex( mpars.specular ); uniforms[ "uAmbientColor" ].value.setHex( mpars.ambient ); uniforms[ "uShininess" ].value = mpars.shininess; if ( mpars.opacity !== undefined ) { uniforms[ "uOpacity" ].value = mpars.opacity; } var parameters = { fragmentShader: shader.fragmentShader, vertexShader: shader.vertexShader, uniforms: uniforms, lights: true, fog: true }; var material = new THREE.ShaderMaterial( parameters ); } else { var material = new THREE[ mtype ]( mpars ); } if ( m.DbgName !== undefined ) material.name = m.DbgName; return material; } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.BinaryLoader = function ( showStatus ) { THREE.Loader.call( this, showStatus ); }; THREE.BinaryLoader.prototype = Object.create( THREE.Loader.prototype ); // Load models generated by slim OBJ converter with BINARY option (converter_obj_three_slim.py -t binary) // - binary models consist of two files: JS and BIN // - parameters // - url (required) // - callback (required) // - texturePath (optional: if not specified, textures will be assumed to be in the same folder as JS model file) // - binaryPath (optional: if not specified, binary file will be assumed to be in the same folder as JS model file) THREE.BinaryLoader.prototype.load = function( url, callback, texturePath, binaryPath ) { texturePath = texturePath ? texturePath : this.extractUrlBase( url ); binaryPath = binaryPath ? binaryPath : this.extractUrlBase( url ); var callbackProgress = this.showProgress ? THREE.Loader.prototype.updateProgress : null; this.onLoadStart(); // #1 load JS part via web worker this.loadAjaxJSON( this, url, callback, texturePath, binaryPath, callbackProgress ); }; THREE.BinaryLoader.prototype.loadAjaxJSON = function ( context, url, callback, texturePath, binaryPath, callbackProgress ) { var xhr = new XMLHttpRequest(); xhr.onreadystatechange = function () { if ( xhr.readyState == 4 ) { if ( xhr.status == 200 || xhr.status == 0 ) { var json = JSON.parse( xhr.responseText ); context.loadAjaxBuffers( json, callback, binaryPath, texturePath, callbackProgress ); } else { console.error( "THREE.BinaryLoader: Couldn't load [" + url + "] [" + xhr.status + "]" ); } } }; xhr.open( "GET", url, true ); if ( xhr.overrideMimeType ) xhr.overrideMimeType( "text/plain; charset=x-user-defined" ); xhr.setRequestHeader( "Content-Type", "text/plain" ); xhr.send( null ); }; THREE.BinaryLoader.prototype.loadAjaxBuffers = function ( json, callback, binaryPath, texturePath, callbackProgress ) { var xhr = new XMLHttpRequest(), url = binaryPath + "/" + json.buffers; var length = 0; xhr.onreadystatechange = function () { if ( xhr.readyState == 4 ) { if ( xhr.status == 200 || xhr.status == 0 ) { THREE.BinaryLoader.prototype.createBinModel( xhr.response, callback, texturePath, json.materials ); } else { console.error( "THREE.BinaryLoader: Couldn't load [" + url + "] [" + xhr.status + "]" ); } } else if ( xhr.readyState == 3 ) { if ( callbackProgress ) { if ( length == 0 ) { length = xhr.getResponseHeader( "Content-Length" ); } callbackProgress( { total: length, loaded: xhr.responseText.length } ); } } else if ( xhr.readyState == 2 ) { length = xhr.getResponseHeader( "Content-Length" ); } }; xhr.open( "GET", url, true ); xhr.responseType = "arraybuffer"; xhr.send( null ); }; // Binary AJAX parser THREE.BinaryLoader.prototype.createBinModel = function ( data, callback, texturePath, materials ) { var Model = function ( texturePath ) { var scope = this, currentOffset = 0, md, normals = [], uvs = [], start_tri_flat, start_tri_smooth, start_tri_flat_uv, start_tri_smooth_uv, start_quad_flat, start_quad_smooth, start_quad_flat_uv, start_quad_smooth_uv, tri_size, quad_size, len_tri_flat, len_tri_smooth, len_tri_flat_uv, len_tri_smooth_uv, len_quad_flat, len_quad_smooth, len_quad_flat_uv, len_quad_smooth_uv; THREE.Geometry.call( this ); THREE.Loader.prototype.initMaterials( scope, materials, texturePath ); md = parseMetaData( data, currentOffset ); currentOffset += md.header_bytes; /* md.vertex_index_bytes = Uint32Array.BYTES_PER_ELEMENT; md.material_index_bytes = Uint16Array.BYTES_PER_ELEMENT; md.normal_index_bytes = Uint32Array.BYTES_PER_ELEMENT; md.uv_index_bytes = Uint32Array.BYTES_PER_ELEMENT; */ // buffers sizes tri_size = md.vertex_index_bytes * 3 + md.material_index_bytes; quad_size = md.vertex_index_bytes * 4 + md.material_index_bytes; len_tri_flat = md.ntri_flat * ( tri_size ); len_tri_smooth = md.ntri_smooth * ( tri_size + md.normal_index_bytes * 3 ); len_tri_flat_uv = md.ntri_flat_uv * ( tri_size + md.uv_index_bytes * 3 ); len_tri_smooth_uv = md.ntri_smooth_uv * ( tri_size + md.normal_index_bytes * 3 + md.uv_index_bytes * 3 ); len_quad_flat = md.nquad_flat * ( quad_size ); len_quad_smooth = md.nquad_smooth * ( quad_size + md.normal_index_bytes * 4 ); len_quad_flat_uv = md.nquad_flat_uv * ( quad_size + md.uv_index_bytes * 4 ); len_quad_smooth_uv = md.nquad_smooth_uv * ( quad_size + md.normal_index_bytes * 4 + md.uv_index_bytes * 4 ); // read buffers currentOffset += init_vertices( currentOffset ); currentOffset += init_normals( currentOffset ); currentOffset += handlePadding( md.nnormals * 3 ); currentOffset += init_uvs( currentOffset ); start_tri_flat = currentOffset; start_tri_smooth = start_tri_flat + len_tri_flat + handlePadding( md.ntri_flat * 2 ); start_tri_flat_uv = start_tri_smooth + len_tri_smooth + handlePadding( md.ntri_smooth * 2 ); start_tri_smooth_uv = start_tri_flat_uv + len_tri_flat_uv + handlePadding( md.ntri_flat_uv * 2 ); start_quad_flat = start_tri_smooth_uv + len_tri_smooth_uv + handlePadding( md.ntri_smooth_uv * 2 ); start_quad_smooth = start_quad_flat + len_quad_flat + handlePadding( md.nquad_flat * 2 ); start_quad_flat_uv = start_quad_smooth + len_quad_smooth + handlePadding( md.nquad_smooth * 2 ); start_quad_smooth_uv= start_quad_flat_uv + len_quad_flat_uv + handlePadding( md.nquad_flat_uv * 2 ); // have to first process faces with uvs // so that face and uv indices match init_triangles_flat_uv( start_tri_flat_uv ); init_triangles_smooth_uv( start_tri_smooth_uv ); init_quads_flat_uv( start_quad_flat_uv ); init_quads_smooth_uv( start_quad_smooth_uv ); // now we can process untextured faces init_triangles_flat( start_tri_flat ); init_triangles_smooth( start_tri_smooth ); init_quads_flat( start_quad_flat ); init_quads_smooth( start_quad_smooth ); this.computeCentroids(); this.computeFaceNormals(); if ( THREE.Loader.prototype.hasNormals( this ) ) this.computeTangents(); function handlePadding( n ) { return ( n % 4 ) ? ( 4 - n % 4 ) : 0; }; function parseMetaData( data, offset ) { var metaData = { 'signature' :parseString( data, offset, 12 ), 'header_bytes' :parseUChar8( data, offset + 12 ), 'vertex_coordinate_bytes' :parseUChar8( data, offset + 13 ), 'normal_coordinate_bytes' :parseUChar8( data, offset + 14 ), 'uv_coordinate_bytes' :parseUChar8( data, offset + 15 ), 'vertex_index_bytes' :parseUChar8( data, offset + 16 ), 'normal_index_bytes' :parseUChar8( data, offset + 17 ), 'uv_index_bytes' :parseUChar8( data, offset + 18 ), 'material_index_bytes' :parseUChar8( data, offset + 19 ), 'nvertices' :parseUInt32( data, offset + 20 ), 'nnormals' :parseUInt32( data, offset + 20 + 4*1 ), 'nuvs' :parseUInt32( data, offset + 20 + 4*2 ), 'ntri_flat' :parseUInt32( data, offset + 20 + 4*3 ), 'ntri_smooth' :parseUInt32( data, offset + 20 + 4*4 ), 'ntri_flat_uv' :parseUInt32( data, offset + 20 + 4*5 ), 'ntri_smooth_uv' :parseUInt32( data, offset + 20 + 4*6 ), 'nquad_flat' :parseUInt32( data, offset + 20 + 4*7 ), 'nquad_smooth' :parseUInt32( data, offset + 20 + 4*8 ), 'nquad_flat_uv' :parseUInt32( data, offset + 20 + 4*9 ), 'nquad_smooth_uv' :parseUInt32( data, offset + 20 + 4*10 ) }; /* console.log( "signature: " + metaData.signature ); console.log( "header_bytes: " + metaData.header_bytes ); console.log( "vertex_coordinate_bytes: " + metaData.vertex_coordinate_bytes ); console.log( "normal_coordinate_bytes: " + metaData.normal_coordinate_bytes ); console.log( "uv_coordinate_bytes: " + metaData.uv_coordinate_bytes ); console.log( "vertex_index_bytes: " + metaData.vertex_index_bytes ); console.log( "normal_index_bytes: " + metaData.normal_index_bytes ); console.log( "uv_index_bytes: " + metaData.uv_index_bytes ); console.log( "material_index_bytes: " + metaData.material_index_bytes ); console.log( "nvertices: " + metaData.nvertices ); console.log( "nnormals: " + metaData.nnormals ); console.log( "nuvs: " + metaData.nuvs ); console.log( "ntri_flat: " + metaData.ntri_flat ); console.log( "ntri_smooth: " + metaData.ntri_smooth ); console.log( "ntri_flat_uv: " + metaData.ntri_flat_uv ); console.log( "ntri_smooth_uv: " + metaData.ntri_smooth_uv ); console.log( "nquad_flat: " + metaData.nquad_flat ); console.log( "nquad_smooth: " + metaData.nquad_smooth ); console.log( "nquad_flat_uv: " + metaData.nquad_flat_uv ); console.log( "nquad_smooth_uv: " + metaData.nquad_smooth_uv ); var total = metaData.header_bytes + metaData.nvertices * metaData.vertex_coordinate_bytes * 3 + metaData.nnormals * metaData.normal_coordinate_bytes * 3 + metaData.nuvs * metaData.uv_coordinate_bytes * 2 + metaData.ntri_flat * ( metaData.vertex_index_bytes*3 + metaData.material_index_bytes ) + metaData.ntri_smooth * ( metaData.vertex_index_bytes*3 + metaData.material_index_bytes + metaData.normal_index_bytes*3 ) + metaData.ntri_flat_uv * ( metaData.vertex_index_bytes*3 + metaData.material_index_bytes + metaData.uv_index_bytes*3 ) + metaData.ntri_smooth_uv * ( metaData.vertex_index_bytes*3 + metaData.material_index_bytes + metaData.normal_index_bytes*3 + metaData.uv_index_bytes*3 ) + metaData.nquad_flat * ( metaData.vertex_index_bytes*4 + metaData.material_index_bytes ) + metaData.nquad_smooth * ( metaData.vertex_index_bytes*4 + metaData.material_index_bytes + metaData.normal_index_bytes*4 ) + metaData.nquad_flat_uv * ( metaData.vertex_index_bytes*4 + metaData.material_index_bytes + metaData.uv_index_bytes*4 ) + metaData.nquad_smooth_uv * ( metaData.vertex_index_bytes*4 + metaData.material_index_bytes + metaData.normal_index_bytes*4 + metaData.uv_index_bytes*4 ); console.log( "total bytes: " + total ); */ return metaData; }; function parseString( data, offset, length ) { var charArray = new Uint8Array( data, offset, length ); var text = ""; for ( var i = 0; i < length; i ++ ) { text += String.fromCharCode( charArray[ offset + i ] ); } return text; }; function parseUChar8( data, offset ) { var charArray = new Uint8Array( data, offset, 1 ); return charArray[ 0 ]; }; function parseUInt32( data, offset ) { var intArray = new Uint32Array( data, offset, 1 ); return intArray[ 0 ]; }; function init_vertices( start ) { var nElements = md.nvertices; var coordArray = new Float32Array( data, start, nElements * 3 ); var i, x, y, z; for( i = 0; i < nElements; i ++ ) { x = coordArray[ i * 3 ]; y = coordArray[ i * 3 + 1 ]; z = coordArray[ i * 3 + 2 ]; vertex( scope, x, y, z ); } return nElements * 3 * Float32Array.BYTES_PER_ELEMENT; }; function init_normals( start ) { var nElements = md.nnormals; if ( nElements ) { var normalArray = new Int8Array( data, start, nElements * 3 ); var i, x, y, z; for( i = 0; i < nElements; i ++ ) { x = normalArray[ i * 3 ]; y = normalArray[ i * 3 + 1 ]; z = normalArray[ i * 3 + 2 ]; normals.push( x/127, y/127, z/127 ); } } return nElements * 3 * Int8Array.BYTES_PER_ELEMENT; }; function init_uvs( start ) { var nElements = md.nuvs; if ( nElements ) { var uvArray = new Float32Array( data, start, nElements * 2 ); var i, u, v; for( i = 0; i < nElements; i ++ ) { u = uvArray[ i * 2 ]; v = uvArray[ i * 2 + 1 ]; uvs.push( u, v ); } } return nElements * 2 * Float32Array.BYTES_PER_ELEMENT; }; function init_uvs3( nElements, offset ) { var i, uva, uvb, uvc, u1, u2, u3, v1, v2, v3; var uvIndexBuffer = new Uint32Array( data, offset, 3 * nElements ); for( i = 0; i < nElements; i ++ ) { uva = uvIndexBuffer[ i * 3 ]; uvb = uvIndexBuffer[ i * 3 + 1 ]; uvc = uvIndexBuffer[ i * 3 + 2 ]; u1 = uvs[ uva*2 ]; v1 = uvs[ uva*2 + 1 ]; u2 = uvs[ uvb*2 ]; v2 = uvs[ uvb*2 + 1 ]; u3 = uvs[ uvc*2 ]; v3 = uvs[ uvc*2 + 1 ]; uv3( scope.faceVertexUvs[ 0 ], u1, v1, u2, v2, u3, v3 ); } }; function init_uvs4( nElements, offset ) { var i, uva, uvb, uvc, uvd, u1, u2, u3, u4, v1, v2, v3, v4; var uvIndexBuffer = new Uint32Array( data, offset, 4 * nElements ); for( i = 0; i < nElements; i ++ ) { uva = uvIndexBuffer[ i * 4 ]; uvb = uvIndexBuffer[ i * 4 + 1 ]; uvc = uvIndexBuffer[ i * 4 + 2 ]; uvd = uvIndexBuffer[ i * 4 + 3 ]; u1 = uvs[ uva*2 ]; v1 = uvs[ uva*2 + 1 ]; u2 = uvs[ uvb*2 ]; v2 = uvs[ uvb*2 + 1 ]; u3 = uvs[ uvc*2 ]; v3 = uvs[ uvc*2 + 1 ]; u4 = uvs[ uvd*2 ]; v4 = uvs[ uvd*2 + 1 ]; uv4( scope.faceVertexUvs[ 0 ], u1, v1, u2, v2, u3, v3, u4, v4 ); } }; function init_faces3_flat( nElements, offsetVertices, offsetMaterials ) { var i, a, b, c, m; var vertexIndexBuffer = new Uint32Array( data, offsetVertices, 3 * nElements ); var materialIndexBuffer = new Uint16Array( data, offsetMaterials, nElements ); for( i = 0; i < nElements; i ++ ) { a = vertexIndexBuffer[ i * 3 ]; b = vertexIndexBuffer[ i * 3 + 1 ]; c = vertexIndexBuffer[ i * 3 + 2 ]; m = materialIndexBuffer[ i ]; f3( scope, a, b, c, m ); } }; function init_faces4_flat( nElements, offsetVertices, offsetMaterials ) { var i, a, b, c, d, m; var vertexIndexBuffer = new Uint32Array( data, offsetVertices, 4 * nElements ); var materialIndexBuffer = new Uint16Array( data, offsetMaterials, nElements ); for( i = 0; i < nElements; i ++ ) { a = vertexIndexBuffer[ i * 4 ]; b = vertexIndexBuffer[ i * 4 + 1 ]; c = vertexIndexBuffer[ i * 4 + 2 ]; d = vertexIndexBuffer[ i * 4 + 3 ]; m = materialIndexBuffer[ i ]; f4( scope, a, b, c, d, m ); } }; function init_faces3_smooth( nElements, offsetVertices, offsetNormals, offsetMaterials ) { var i, a, b, c, m; var na, nb, nc; var vertexIndexBuffer = new Uint32Array( data, offsetVertices, 3 * nElements ); var normalIndexBuffer = new Uint32Array( data, offsetNormals, 3 * nElements ); var materialIndexBuffer = new Uint16Array( data, offsetMaterials, nElements ); for( i = 0; i < nElements; i ++ ) { a = vertexIndexBuffer[ i * 3 ]; b = vertexIndexBuffer[ i * 3 + 1 ]; c = vertexIndexBuffer[ i * 3 + 2 ]; na = normalIndexBuffer[ i * 3 ]; nb = normalIndexBuffer[ i * 3 + 1 ]; nc = normalIndexBuffer[ i * 3 + 2 ]; m = materialIndexBuffer[ i ]; f3n( scope, normals, a, b, c, m, na, nb, nc ); } }; function init_faces4_smooth( nElements, offsetVertices, offsetNormals, offsetMaterials ) { var i, a, b, c, d, m; var na, nb, nc, nd; var vertexIndexBuffer = new Uint32Array( data, offsetVertices, 4 * nElements ); var normalIndexBuffer = new Uint32Array( data, offsetNormals, 4 * nElements ); var materialIndexBuffer = new Uint16Array( data, offsetMaterials, nElements ); for( i = 0; i < nElements; i ++ ) { a = vertexIndexBuffer[ i * 4 ]; b = vertexIndexBuffer[ i * 4 + 1 ]; c = vertexIndexBuffer[ i * 4 + 2 ]; d = vertexIndexBuffer[ i * 4 + 3 ]; na = normalIndexBuffer[ i * 4 ]; nb = normalIndexBuffer[ i * 4 + 1 ]; nc = normalIndexBuffer[ i * 4 + 2 ]; nd = normalIndexBuffer[ i * 4 + 3 ]; m = materialIndexBuffer[ i ]; f4n( scope, normals, a, b, c, d, m, na, nb, nc, nd ); } }; function init_triangles_flat( start ) { var nElements = md.ntri_flat; if ( nElements ) { var offsetMaterials = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 3; init_faces3_flat( nElements, start, offsetMaterials ); } }; function init_triangles_flat_uv( start ) { var nElements = md.ntri_flat_uv; if ( nElements ) { var offsetUvs = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 3; var offsetMaterials = offsetUvs + nElements * Uint32Array.BYTES_PER_ELEMENT * 3; init_faces3_flat( nElements, start, offsetMaterials ); init_uvs3( nElements, offsetUvs ); } }; function init_triangles_smooth( start ) { var nElements = md.ntri_smooth; if ( nElements ) { var offsetNormals = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 3; var offsetMaterials = offsetNormals + nElements * Uint32Array.BYTES_PER_ELEMENT * 3; init_faces3_smooth( nElements, start, offsetNormals, offsetMaterials ); } }; function init_triangles_smooth_uv( start ) { var nElements = md.ntri_smooth_uv; if ( nElements ) { var offsetNormals = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 3; var offsetUvs = offsetNormals + nElements * Uint32Array.BYTES_PER_ELEMENT * 3; var offsetMaterials = offsetUvs + nElements * Uint32Array.BYTES_PER_ELEMENT * 3; init_faces3_smooth( nElements, start, offsetNormals, offsetMaterials ); init_uvs3( nElements, offsetUvs ); } }; function init_quads_flat( start ) { var nElements = md.nquad_flat; if ( nElements ) { var offsetMaterials = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 4; init_faces4_flat( nElements, start, offsetMaterials ); } }; function init_quads_flat_uv( start ) { var nElements = md.nquad_flat_uv; if ( nElements ) { var offsetUvs = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 4; var offsetMaterials = offsetUvs + nElements * Uint32Array.BYTES_PER_ELEMENT * 4; init_faces4_flat( nElements, start, offsetMaterials ); init_uvs4( nElements, offsetUvs ); } }; function init_quads_smooth( start ) { var nElements = md.nquad_smooth; if ( nElements ) { var offsetNormals = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 4; var offsetMaterials = offsetNormals + nElements * Uint32Array.BYTES_PER_ELEMENT * 4; init_faces4_smooth( nElements, start, offsetNormals, offsetMaterials ); } }; function init_quads_smooth_uv( start ) { var nElements = md.nquad_smooth_uv; if ( nElements ) { var offsetNormals = start + nElements * Uint32Array.BYTES_PER_ELEMENT * 4; var offsetUvs = offsetNormals + nElements * Uint32Array.BYTES_PER_ELEMENT * 4; var offsetMaterials = offsetUvs + nElements * Uint32Array.BYTES_PER_ELEMENT * 4; init_faces4_smooth( nElements, start, offsetNormals, offsetMaterials ); init_uvs4( nElements, offsetUvs ); } }; }; function vertex ( scope, x, y, z ) { scope.vertices.push( new THREE.Vector3( x, y, z ) ); }; function f3 ( scope, a, b, c, mi ) { scope.faces.push( new THREE.Face3( a, b, c, null, null, mi ) ); }; function f4 ( scope, a, b, c, d, mi ) { scope.faces.push( new THREE.Face4( a, b, c, d, null, null, mi ) ); }; function f3n ( scope, normals, a, b, c, mi, na, nb, nc ) { var nax = normals[ na*3 ], nay = normals[ na*3 + 1 ], naz = normals[ na*3 + 2 ], nbx = normals[ nb*3 ], nby = normals[ nb*3 + 1 ], nbz = normals[ nb*3 + 2 ], ncx = normals[ nc*3 ], ncy = normals[ nc*3 + 1 ], ncz = normals[ nc*3 + 2 ]; scope.faces.push( new THREE.Face3( a, b, c, [new THREE.Vector3( nax, nay, naz ), new THREE.Vector3( nbx, nby, nbz ), new THREE.Vector3( ncx, ncy, ncz )], null, mi ) ); }; function f4n ( scope, normals, a, b, c, d, mi, na, nb, nc, nd ) { var nax = normals[ na*3 ], nay = normals[ na*3 + 1 ], naz = normals[ na*3 + 2 ], nbx = normals[ nb*3 ], nby = normals[ nb*3 + 1 ], nbz = normals[ nb*3 + 2 ], ncx = normals[ nc*3 ], ncy = normals[ nc*3 + 1 ], ncz = normals[ nc*3 + 2 ], ndx = normals[ nd*3 ], ndy = normals[ nd*3 + 1 ], ndz = normals[ nd*3 + 2 ]; scope.faces.push( new THREE.Face4( a, b, c, d, [new THREE.Vector3( nax, nay, naz ), new THREE.Vector3( nbx, nby, nbz ), new THREE.Vector3( ncx, ncy, ncz ), new THREE.Vector3( ndx, ndy, ndz )], null, mi ) ); }; function uv3 ( where, u1, v1, u2, v2, u3, v3 ) { var uv = []; uv.push( new THREE.UV( u1, v1 ) ); uv.push( new THREE.UV( u2, v2 ) ); uv.push( new THREE.UV( u3, v3 ) ); where.push( uv ); }; function uv4 ( where, u1, v1, u2, v2, u3, v3, u4, v4 ) { var uv = []; uv.push( new THREE.UV( u1, v1 ) ); uv.push( new THREE.UV( u2, v2 ) ); uv.push( new THREE.UV( u3, v3 ) ); uv.push( new THREE.UV( u4, v4 ) ); where.push( uv ); }; Model.prototype = Object.create( THREE.Geometry.prototype ); callback( new Model( texturePath ) ); }; /** * @author mrdoob / http://mrdoob.com/ */ THREE.ImageLoader = function () { THREE.EventTarget.call( this ); this.crossOrigin = null; }; THREE.ImageLoader.prototype = { constructor: THREE.ImageLoader, load: function ( url ) { var scope = this; var image = new Image(); image.addEventListener( 'load', function () { scope.dispatchEvent( { type: 'load', content: image } ); }, false ); image.addEventListener( 'error', function () { scope.dispatchEvent( { type: 'error', message: 'Couldn\'t load URL [' + url + ']' } ); }, false ); if ( scope.crossOrigin ) image.crossOrigin = scope.crossOrigin; image.src = url; } } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.JSONLoader = function ( showStatus ) { THREE.Loader.call( this, showStatus ); }; THREE.JSONLoader.prototype = Object.create( THREE.Loader.prototype ); THREE.JSONLoader.prototype.load = function ( url, callback, texturePath ) { var scope = this; texturePath = texturePath ? texturePath : this.extractUrlBase( url ); this.onLoadStart(); this.loadAjaxJSON( this, url, callback, texturePath ); }; THREE.JSONLoader.prototype.loadAjaxJSON = function ( context, url, callback, texturePath, callbackProgress ) { var xhr = new XMLHttpRequest(); var length = 0; xhr.onreadystatechange = function () { if ( xhr.readyState === xhr.DONE ) { if ( xhr.status === 200 || xhr.status === 0 ) { if ( xhr.responseText ) { var json = JSON.parse( xhr.responseText ); context.createModel( json, callback, texturePath ); } else { console.warn( "THREE.JSONLoader: [" + url + "] seems to be unreachable or file there is empty" ); } // in context of more complex asset initialization // do not block on single failed file // maybe should go even one more level up context.onLoadComplete(); } else { console.error( "THREE.JSONLoader: Couldn't load [" + url + "] [" + xhr.status + "]" ); } } else if ( xhr.readyState === xhr.LOADING ) { if ( callbackProgress ) { if ( length === 0 ) { length = xhr.getResponseHeader( "Content-Length" ); } callbackProgress( { total: length, loaded: xhr.responseText.length } ); } } else if ( xhr.readyState === xhr.HEADERS_RECEIVED ) { length = xhr.getResponseHeader( "Content-Length" ); } }; xhr.open( "GET", url, true ); if ( xhr.overrideMimeType ) xhr.overrideMimeType( "text/plain; charset=x-user-defined" ); xhr.setRequestHeader( "Content-Type", "text/plain" ); xhr.send( null ); }; THREE.JSONLoader.prototype.createModel = function ( json, callback, texturePath ) { var scope = this, geometry = new THREE.Geometry(), scale = ( json.scale !== undefined ) ? 1.0 / json.scale : 1.0; this.initMaterials( geometry, json.materials, texturePath ); parseModel( scale ); parseSkin(); parseMorphing( scale ); geometry.computeCentroids(); geometry.computeFaceNormals(); if ( this.hasNormals( geometry ) ) geometry.computeTangents(); function parseModel( scale ) { function isBitSet( value, position ) { return value & ( 1 << position ); } var i, j, fi, offset, zLength, nVertices, colorIndex, normalIndex, uvIndex, materialIndex, type, isQuad, hasMaterial, hasFaceUv, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor, vertex, face, color, normal, uvLayer, uvs, u, v, faces = json.faces, vertices = json.vertices, normals = json.normals, colors = json.colors, nUvLayers = 0; // disregard empty arrays for ( i = 0; i < json.uvs.length; i++ ) { if ( json.uvs[ i ].length ) nUvLayers ++; } for ( i = 0; i < nUvLayers; i++ ) { geometry.faceUvs[ i ] = []; geometry.faceVertexUvs[ i ] = []; } offset = 0; zLength = vertices.length; while ( offset < zLength ) { vertex = new THREE.Vector3(); vertex.x = vertices[ offset ++ ] * scale; vertex.y = vertices[ offset ++ ] * scale; vertex.z = vertices[ offset ++ ] * scale; geometry.vertices.push( vertex ); } offset = 0; zLength = faces.length; while ( offset < zLength ) { type = faces[ offset ++ ]; isQuad = isBitSet( type, 0 ); hasMaterial = isBitSet( type, 1 ); hasFaceUv = isBitSet( type, 2 ); hasFaceVertexUv = isBitSet( type, 3 ); hasFaceNormal = isBitSet( type, 4 ); hasFaceVertexNormal = isBitSet( type, 5 ); hasFaceColor = isBitSet( type, 6 ); hasFaceVertexColor = isBitSet( type, 7 ); //console.log("type", type, "bits", isQuad, hasMaterial, hasFaceUv, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor); if ( isQuad ) { face = new THREE.Face4(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ]; face.d = faces[ offset ++ ]; nVertices = 4; } else { face = new THREE.Face3(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ]; nVertices = 3; } if ( hasMaterial ) { materialIndex = faces[ offset ++ ]; face.materialIndex = materialIndex; } // to get face <=> uv index correspondence fi = geometry.faces.length; if ( hasFaceUv ) { for ( i = 0; i < nUvLayers; i++ ) { uvLayer = json.uvs[ i ]; uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; geometry.faceUvs[ i ][ fi ] = new THREE.UV( u, v ); } } if ( hasFaceVertexUv ) { for ( i = 0; i < nUvLayers; i++ ) { uvLayer = json.uvs[ i ]; uvs = []; for ( j = 0; j < nVertices; j ++ ) { uvIndex = faces[ offset ++ ]; u = uvLayer[ uvIndex * 2 ]; v = uvLayer[ uvIndex * 2 + 1 ]; uvs[ j ] = new THREE.UV( u, v ); } geometry.faceVertexUvs[ i ][ fi ] = uvs; } } if ( hasFaceNormal ) { normalIndex = faces[ offset ++ ] * 3; normal = new THREE.Vector3(); normal.x = normals[ normalIndex ++ ]; normal.y = normals[ normalIndex ++ ]; normal.z = normals[ normalIndex ]; face.normal = normal; } if ( hasFaceVertexNormal ) { for ( i = 0; i < nVertices; i++ ) { normalIndex = faces[ offset ++ ] * 3; normal = new THREE.Vector3(); normal.x = normals[ normalIndex ++ ]; normal.y = normals[ normalIndex ++ ]; normal.z = normals[ normalIndex ]; face.vertexNormals.push( normal ); } } if ( hasFaceColor ) { colorIndex = faces[ offset ++ ]; color = new THREE.Color( colors[ colorIndex ] ); face.color = color; } if ( hasFaceVertexColor ) { for ( i = 0; i < nVertices; i++ ) { colorIndex = faces[ offset ++ ]; color = new THREE.Color( colors[ colorIndex ] ); face.vertexColors.push( color ); } } geometry.faces.push( face ); } }; function parseSkin() { var i, l, x, y, z, w, a, b, c, d; if ( json.skinWeights ) { for ( i = 0, l = json.skinWeights.length; i < l; i += 2 ) { x = json.skinWeights[ i ]; y = json.skinWeights[ i + 1 ]; z = 0; w = 0; geometry.skinWeights.push( new THREE.Vector4( x, y, z, w ) ); } } if ( json.skinIndices ) { for ( i = 0, l = json.skinIndices.length; i < l; i += 2 ) { a = json.skinIndices[ i ]; b = json.skinIndices[ i + 1 ]; c = 0; d = 0; geometry.skinIndices.push( new THREE.Vector4( a, b, c, d ) ); } } geometry.bones = json.bones; geometry.animation = json.animation; }; function parseMorphing( scale ) { if ( json.morphTargets !== undefined ) { var i, l, v, vl, dstVertices, srcVertices; for ( i = 0, l = json.morphTargets.length; i < l; i ++ ) { geometry.morphTargets[ i ] = {}; geometry.morphTargets[ i ].name = json.morphTargets[ i ].name; geometry.morphTargets[ i ].vertices = []; dstVertices = geometry.morphTargets[ i ].vertices; srcVertices = json.morphTargets [ i ].vertices; for( v = 0, vl = srcVertices.length; v < vl; v += 3 ) { var vertex = new THREE.Vector3(); vertex.x = srcVertices[ v ] * scale; vertex.y = srcVertices[ v + 1 ] * scale; vertex.z = srcVertices[ v + 2 ] * scale; dstVertices.push( vertex ); } } } if ( json.morphColors !== undefined ) { var i, l, c, cl, dstColors, srcColors, color; for ( i = 0, l = json.morphColors.length; i < l; i++ ) { geometry.morphColors[ i ] = {}; geometry.morphColors[ i ].name = json.morphColors[ i ].name; geometry.morphColors[ i ].colors = []; dstColors = geometry.morphColors[ i ].colors; srcColors = json.morphColors [ i ].colors; for ( c = 0, cl = srcColors.length; c < cl; c += 3 ) { color = new THREE.Color( 0xffaa00 ); color.setRGB( srcColors[ c ], srcColors[ c + 1 ], srcColors[ c + 2 ] ); dstColors.push( color ); } } } }; callback( geometry ); }; /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.GeometryLoader = function () { THREE.EventTarget.call( this ); this.crossOrigin = null; this.path = null; }; THREE.GeometryLoader.prototype = { constructor: THREE.GeometryLoader, load: function ( url ) { var scope = this; var geometry = null; if ( scope.path === null ) { var parts = url.split( '/' ); parts.pop(); scope.path = ( parts.length < 1 ? '.' : parts.join( '/' ) ); } // var xhr = new XMLHttpRequest(); xhr.addEventListener( 'load', function ( event ) { if ( event.target.responseText ) { geometry = scope.parse( JSON.parse( event.target.responseText ), monitor ); } else { scope.dispatchEvent( { type: 'error', message: 'Invalid file [' + url + ']' } ); } }, false ); xhr.addEventListener( 'error', function () { scope.dispatchEvent( { type: 'error', message: 'Couldn\'t load URL [' + url + ']' } ); }, false ); xhr.open( 'GET', url, true ); xhr.send( null ); // var monitor = new THREE.LoadingMonitor(); monitor.addEventListener( 'load', function ( event ) { scope.dispatchEvent( { type: 'load', content: geometry } ); } ); monitor.add( xhr ); }, parse: function ( data, monitor ) { var scope = this; var geometry = new THREE.Geometry(); var scale = ( data.scale !== undefined ) ? 1 / data.scale : 1; // materials if ( data.materials ) { geometry.materials = []; for ( var i = 0; i < data.materials.length; ++ i ) { var m = data.materials[ i ]; function isPow2( n ) { var l = Math.log( n ) / Math.LN2; return Math.floor( l ) == l; } function nearestPow2( n ) { var l = Math.log( n ) / Math.LN2; return Math.pow( 2, Math.round( l ) ); } function createTexture( where, name, sourceFile, repeat, offset, wrap ) { where[ name ] = new THREE.Texture(); where[ name ].sourceFile = sourceFile; if ( repeat ) { where[ name ].repeat.set( repeat[ 0 ], repeat[ 1 ] ); if ( repeat[ 0 ] != 1 ) where[ name ].wrapS = THREE.RepeatWrapping; if ( repeat[ 1 ] != 1 ) where[ name ].wrapT = THREE.RepeatWrapping; } if ( offset ) { where[ name ].offset.set( offset[ 0 ], offset[ 1 ] ); } if ( wrap ) { var wrapMap = { "repeat": THREE.RepeatWrapping, "mirror": THREE.MirroredRepeatWrapping } if ( wrapMap[ wrap[ 0 ] ] !== undefined ) where[ name ].wrapS = wrapMap[ wrap[ 0 ] ]; if ( wrapMap[ wrap[ 1 ] ] !== undefined ) where[ name ].wrapT = wrapMap[ wrap[ 1 ] ]; } // load image var texture = where[ name ]; var loader = new THREE.ImageLoader(); loader.addEventListener( 'load', function ( event ) { var image = event.content; if ( !isPow2( image.width ) || !isPow2( image.height ) ) { var width = nearestPow2( image.width ); var height = nearestPow2( image.height ); texture.image = document.createElement( 'canvas' ); texture.image.width = width; texture.image.height = height; texture.image.getContext( '2d' ).drawImage( image, 0, 0, width, height ); } else { texture.image = image; } texture.needsUpdate = true; } ); loader.crossOrigin = scope.crossOrigin; loader.load( scope.path + '/' + sourceFile ); if ( monitor ) monitor.add( loader ); } function rgb2hex( rgb ) { return ( rgb[ 0 ] * 255 << 16 ) + ( rgb[ 1 ] * 255 << 8 ) + rgb[ 2 ] * 255; } // defaults var mtype = "MeshLambertMaterial"; var mpars = { color: 0xeeeeee, opacity: 1.0, map: null, lightMap: null, normalMap: null, wireframe: m.wireframe }; // parameters from model file if ( m.shading ) { var shading = m.shading.toLowerCase(); if ( shading === "phong" ) mtype = "MeshPhongMaterial"; else if ( shading === "basic" ) mtype = "MeshBasicMaterial"; } if ( m.blending !== undefined && THREE[ m.blending ] !== undefined ) { mpars.blending = THREE[ m.blending ]; } if ( m.transparent !== undefined || m.opacity < 1.0 ) { mpars.transparent = m.transparent; } if ( m.depthTest !== undefined ) { mpars.depthTest = m.depthTest; } if ( m.depthWrite !== undefined ) { mpars.depthWrite = m.depthWrite; } if ( m.vertexColors !== undefined ) { if ( m.vertexColors == "face" ) { mpars.vertexColors = THREE.FaceColors; } else if ( m.vertexColors ) { mpars.vertexColors = THREE.VertexColors; } } // colors if ( m.colorDiffuse ) { mpars.color = rgb2hex( m.colorDiffuse ); } else if ( m.DbgColor ) { mpars.color = m.DbgColor; } if ( m.colorSpecular ) { mpars.specular = rgb2hex( m.colorSpecular ); } if ( m.colorAmbient ) { mpars.ambient = rgb2hex( m.colorAmbient ); } // modifiers if ( m.transparency ) { mpars.opacity = m.transparency; } if ( m.specularCoef ) { mpars.shininess = m.specularCoef; } // textures if ( m.mapDiffuse ) { createTexture( mpars, "map", m.mapDiffuse, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap ); } if ( m.mapLight ) { createTexture( mpars, "lightMap", m.mapLight, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap ); } if ( m.mapNormal ) { createTexture( mpars, "normalMap", m.mapNormal, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap ); } if ( m.mapSpecular ) { createTexture( mpars, "specularMap", m.mapSpecular, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap ); } // special case for normal mapped material if ( m.mapNormal ) { var shader = THREE.ShaderUtils.lib[ "normal" ]; var uniforms = THREE.UniformsUtils.clone( shader.uniforms ); uniforms[ "tNormal" ].texture = mpars.normalMap; if ( m.mapNormalFactor ) { uniforms[ "uNormalScale" ].value = m.mapNormalFactor; } if ( mpars.map ) { uniforms[ "tDiffuse" ].texture = mpars.map; uniforms[ "enableDiffuse" ].value = true; } if ( mpars.specularMap ) { uniforms[ "tSpecular" ].texture = mpars.specularMap; uniforms[ "enableSpecular" ].value = true; } if ( mpars.lightMap ) { uniforms[ "tAO" ].texture = mpars.lightMap; uniforms[ "enableAO" ].value = true; } // for the moment don't handle displacement texture uniforms[ "uDiffuseColor" ].value.setHex( mpars.color ); uniforms[ "uSpecularColor" ].value.setHex( mpars.specular ); uniforms[ "uAmbientColor" ].value.setHex( mpars.ambient ); uniforms[ "uShininess" ].value = mpars.shininess; if ( mpars.opacity !== undefined ) { uniforms[ "uOpacity" ].value = mpars.opacity; } var parameters = { fragmentShader: shader.fragmentShader, vertexShader: shader.vertexShader, uniforms: uniforms, lights: true, fog: true }; var material = new THREE.ShaderMaterial( parameters ); } else { var material = new THREE[ mtype ]( mpars ); } if ( m.DbgName !== undefined ) material.name = m.DbgName; geometry.materials[ i ] = material; } } // geometry function isBitSet( value, position ) { return value & ( 1 << position ); } var faces = data.faces; var vertices = data.vertices; var normals = data.normals; var colors = data.colors; var nUvLayers = 0; // disregard empty arrays if ( data.uvs ) { for ( var i = 0; i < data.uvs.length; i ++ ) { if ( data.uvs[ i ].length ) nUvLayers ++; } } for ( var i = 0; i < nUvLayers; i ++ ) { geometry.faceUvs[ i ] = []; geometry.faceVertexUvs[ i ] = []; } var offset = 0; var zLength = vertices.length; while ( offset < zLength ) { var vertex = new THREE.Vector3(); vertex.x = vertices[ offset ++ ] * scale; vertex.y = vertices[ offset ++ ] * scale; vertex.z = vertices[ offset ++ ] * scale; geometry.vertices.push( vertex ); } offset = 0; zLength = faces.length; while ( offset < zLength ) { var type = faces[ offset ++ ]; var isQuad = isBitSet( type, 0 ); var hasMaterial = isBitSet( type, 1 ); var hasFaceUv = isBitSet( type, 2 ); var hasFaceVertexUv = isBitSet( type, 3 ); var hasFaceNormal = isBitSet( type, 4 ); var hasFaceVertexNormal = isBitSet( type, 5 ); var hasFaceColor = isBitSet( type, 6 ); var hasFaceVertexColor = isBitSet( type, 7 ); // console.log("type", type, "bits", isQuad, hasMaterial, hasFaceUv, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor); if ( isQuad ) { var face = new THREE.Face4(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ]; face.d = faces[ offset ++ ]; var nVertices = 4; } else { var face = new THREE.Face3(); face.a = faces[ offset ++ ]; face.b = faces[ offset ++ ]; face.c = faces[ offset ++ ]; var nVertices = 3; } if ( hasMaterial ) { var materialIndex = faces[ offset ++ ]; face.materialIndex = materialIndex; } // to get face <=> uv index correspondence var fi = geometry.faces.length; if ( hasFaceUv ) { for ( var i = 0; i < nUvLayers; i ++ ) { var uvLayer = data.uvs[ i ]; var uvIndex = faces[ offset ++ ]; var u = uvLayer[ uvIndex * 2 ]; var v = uvLayer[ uvIndex * 2 + 1 ]; geometry.faceUvs[ i ][ fi ] = new THREE.UV( u, v ); } } if ( hasFaceVertexUv ) { for ( var i = 0; i < nUvLayers; i ++ ) { var uvLayer = data.uvs[ i ]; var uvs = []; for ( var j = 0; j < nVertices; j ++ ) { var uvIndex = faces[ offset ++ ]; var u = uvLayer[ uvIndex * 2 ]; var v = uvLayer[ uvIndex * 2 + 1 ]; uvs[ j ] = new THREE.UV( u, v ); } geometry.faceVertexUvs[ i ][ fi ] = uvs; } } if ( hasFaceNormal ) { var normalIndex = faces[ offset ++ ] * 3; var normal = new THREE.Vector3(); normal.x = normals[ normalIndex ++ ]; normal.y = normals[ normalIndex ++ ]; normal.z = normals[ normalIndex ]; face.normal = normal; } if ( hasFaceVertexNormal ) { for ( i = 0; i < nVertices; i ++ ) { var normalIndex = faces[ offset ++ ] * 3; var normal = new THREE.Vector3(); normal.x = normals[ normalIndex ++ ]; normal.y = normals[ normalIndex ++ ]; normal.z = normals[ normalIndex ]; face.vertexNormals.push( normal ); } } if ( hasFaceColor ) { var colorIndex = faces[ offset ++ ]; face.color = new THREE.Color( colors[ colorIndex ] ); } if ( hasFaceVertexColor ) { for ( var i = 0; i < nVertices; i ++ ) { var colorIndex = faces[ offset ++ ]; face.vertexColors.push( new THREE.Color( colors[ colorIndex ] ) ); } } geometry.faces.push( face ); } // skin if ( data.skinWeights ) { for ( var i = 0, l = data.skinWeights.length; i < l; i += 2 ) { var x = data.skinWeights[ i ]; var y = data.skinWeights[ i + 1 ]; var z = 0; var w = 0; geometry.skinWeights.push( new THREE.Vector4( x, y, z, w ) ); } } if ( data.skinIndices ) { for ( var i = 0, l = data.skinIndices.length; i < l; i += 2 ) { var a = data.skinIndices[ i ]; var b = data.skinIndices[ i + 1 ]; var c = 0; var d = 0; geometry.skinIndices.push( new THREE.Vector4( a, b, c, d ) ); } } geometry.bones = data.bones; geometry.animation = data.animation; // morphing if ( data.morphTargets ) { for ( var i = 0, l = data.morphTargets.length; i < l; i ++ ) { geometry.morphTargets[ i ] = {}; geometry.morphTargets[ i ].name = data.morphTargets[ i ].name; geometry.morphTargets[ i ].vertices = []; var dstVertices = geometry.morphTargets[ i ].vertices; var srcVertices = data.morphTargets [ i ].vertices; for( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) { var vertex = new THREE.Vector3(); vertex.x = srcVertices[ v ] * scale; vertex.y = srcVertices[ v + 1 ] * scale; vertex.z = srcVertices[ v + 2 ] * scale; dstVertices.push( vertex ); } } } if ( data.morphColors ) { for ( var i = 0, l = data.morphColors.length; i < l; i++ ) { geometry.morphColors[ i ] = {}; geometry.morphColors[ i ].name = data.morphColors[ i ].name; geometry.morphColors[ i ].colors = []; var dstColors = geometry.morphColors[ i ].colors; var srcColors = data.morphColors [ i ].colors; for ( var c = 0, cl = srcColors.length; c < cl; c += 3 ) { var color = new THREE.Color( 0xffaa00 ); color.setRGB( srcColors[ c ], srcColors[ c + 1 ], srcColors[ c + 2 ] ); dstColors.push( color ); } } } geometry.computeCentroids(); geometry.computeFaceNormals(); return geometry; } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.SceneLoader = function () { this.onLoadStart = function () {}; this.onLoadProgress = function() {}; this.onLoadComplete = function () {}; this.callbackSync = function () {}; this.callbackProgress = function () {}; }; THREE.SceneLoader.prototype.constructor = THREE.SceneLoader; THREE.SceneLoader.prototype.load = function( url, callbackFinished ) { var context = this; var xhr = new XMLHttpRequest(); xhr.onreadystatechange = function () { if ( xhr.readyState === 4 ) { if ( xhr.status === 200 || xhr.status === 0 ) { var json = JSON.parse( xhr.responseText ); context.createScene( json, callbackFinished, url ); } else { console.error( "THREE.SceneLoader: Couldn't load [" + url + "] [" + xhr.status + "]" ); } } }; xhr.open( "GET", url, true ); if ( xhr.overrideMimeType ) xhr.overrideMimeType( "text/plain; charset=x-user-defined" ); xhr.setRequestHeader( "Content-Type", "text/plain" ); xhr.send( null ); }; THREE.SceneLoader.prototype.createScene = function ( json, callbackFinished, url ) { var scope = this; var urlBase = THREE.Loader.prototype.extractUrlBase( url ); var dg, dm, dd, dl, dc, df, dt, g, o, m, l, d, p, r, q, s, c, t, f, tt, pp, u, geometry, material, camera, fog, texture, images, light, data, binLoader, jsonLoader, counter_models, counter_textures, total_models, total_textures, result; data = json; binLoader = new THREE.BinaryLoader(); jsonLoader = new THREE.JSONLoader(); counter_models = 0; counter_textures = 0; result = { scene: new THREE.Scene(), geometries: {}, materials: {}, textures: {}, objects: {}, cameras: {}, lights: {}, fogs: {}, empties: {} }; if ( data.transform ) { var position = data.transform.position, rotation = data.transform.rotation, scale = data.transform.scale; if ( position ) result.scene.position.set( position[ 0 ], position[ 1 ], position [ 2 ] ); if ( rotation ) result.scene.rotation.set( rotation[ 0 ], rotation[ 1 ], rotation [ 2 ] ); if ( scale ) result.scene.scale.set( scale[ 0 ], scale[ 1 ], scale [ 2 ] ); if ( position || rotation || scale ) { result.scene.updateMatrix(); result.scene.updateMatrixWorld(); } } function get_url( source_url, url_type ) { if ( url_type == "relativeToHTML" ) { return source_url; } else { return urlBase + "/" + source_url; } }; function handle_objects() { var object; for( dd in data.objects ) { if ( !result.objects[ dd ] ) { o = data.objects[ dd ]; if ( o.geometry !== undefined ) { geometry = result.geometries[ o.geometry ]; // geometry already loaded if ( geometry ) { var hasNormals = false; // not anymore support for multiple materials // shouldn't really be array material = result.materials[ o.materials[ 0 ] ]; hasNormals = material instanceof THREE.ShaderMaterial; if ( hasNormals ) { geometry.computeTangents(); } p = o.position; r = o.rotation; q = o.quaternion; s = o.scale; m = o.matrix; // turn off quaternions, for the moment q = 0; if ( o.materials.length == 0 ) { material = new THREE.MeshFaceMaterial(); } // dirty hack to handle meshes with multiple materials // just use face materials defined in model if ( o.materials.length > 1 ) { material = new THREE.MeshFaceMaterial(); } object = new THREE.Mesh( geometry, material ); object.name = dd; if ( m ) { object.matrixAutoUpdate = false; object.matrix.set( m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], m[12], m[13], m[14], m[15]); } else { object.position.set( p[0], p[1], p[2] ); if ( q ) { object.quaternion.set( q[0], q[1], q[2], q[3] ); object.useQuaternion = true; } else { object.rotation.set( r[0], r[1], r[2] ); } object.scale.set( s[0], s[1], s[2] ); } object.visible = o.visible; object.doubleSided = o.doubleSided; object.castShadow = o.castShadow; object.receiveShadow = o.receiveShadow; result.scene.add( object ); result.objects[ dd ] = object; } // pure Object3D } else { p = o.position; r = o.rotation; q = o.quaternion; s = o.scale; // turn off quaternions, for the moment q = 0; object = new THREE.Object3D(); object.name = dd; object.position.set( p[0], p[1], p[2] ); if ( q ) { object.quaternion.set( q[0], q[1], q[2], q[3] ); object.useQuaternion = true; } else { object.rotation.set( r[0], r[1], r[2] ); } object.scale.set( s[0], s[1], s[2] ); object.visible = ( o.visible !== undefined ) ? o.visible : false; result.scene.add( object ); result.objects[ dd ] = object; result.empties[ dd ] = object; } } } }; function handle_mesh( geo, id ) { result.geometries[ id ] = geo; handle_objects(); }; function create_callback( id ) { return function( geo ) { handle_mesh( geo, id ); counter_models -= 1; scope.onLoadComplete(); async_callback_gate(); } }; function create_callback_embed( id ) { return function( geo ) { result.geometries[ id ] = geo; } }; function async_callback_gate() { var progress = { totalModels : total_models, totalTextures : total_textures, loadedModels : total_models - counter_models, loadedTextures : total_textures - counter_textures }; scope.callbackProgress( progress, result ); scope.onLoadProgress(); if( counter_models === 0 && counter_textures === 0 ) { callbackFinished( result ); } }; var callbackTexture = function ( count ) { counter_textures -= count; async_callback_gate(); scope.onLoadComplete(); }; // must use this instead of just directly calling callbackTexture // because of closure in the calling context loop var generateTextureCallback = function ( count ) { return function() { callbackTexture( count ); }; }; // first go synchronous elements // cameras for( dc in data.cameras ) { c = data.cameras[ dc ]; if ( c.type === "perspective" ) { camera = new THREE.PerspectiveCamera( c.fov, c.aspect, c.near, c.far ); } else if ( c.type === "ortho" ) { camera = new THREE.OrthographicCamera( c.left, c.right, c.top, c.bottom, c.near, c.far ); } p = c.position; t = c.target; u = c.up; camera.position.set( p[0], p[1], p[2] ); camera.target = new THREE.Vector3( t[0], t[1], t[2] ); if ( u ) camera.up.set( u[0], u[1], u[2] ); result.cameras[ dc ] = camera; } // lights var hex, intensity; for ( dl in data.lights ) { l = data.lights[ dl ]; hex = ( l.color !== undefined ) ? l.color : 0xffffff; intensity = ( l.intensity !== undefined ) ? l.intensity : 1; if ( l.type === "directional" ) { p = l.direction; light = new THREE.DirectionalLight( hex, intensity ); light.position.set( p[0], p[1], p[2] ); light.position.normalize(); } else if ( l.type === "point" ) { p = l.position; d = l.distance; light = new THREE.PointLight( hex, intensity, d ); light.position.set( p[0], p[1], p[2] ); } else if ( l.type === "ambient" ) { light = new THREE.AmbientLight( hex ); } result.scene.add( light ); result.lights[ dl ] = light; } // fogs for( df in data.fogs ) { f = data.fogs[ df ]; if ( f.type === "linear" ) { fog = new THREE.Fog( 0x000000, f.near, f.far ); } else if ( f.type === "exp2" ) { fog = new THREE.FogExp2( 0x000000, f.density ); } c = f.color; fog.color.setRGB( c[0], c[1], c[2] ); result.fogs[ df ] = fog; } // defaults if ( result.cameras && data.defaults.camera ) { result.currentCamera = result.cameras[ data.defaults.camera ]; } if ( result.fogs && data.defaults.fog ) { result.scene.fog = result.fogs[ data.defaults.fog ]; } c = data.defaults.bgcolor; result.bgColor = new THREE.Color(); result.bgColor.setRGB( c[0], c[1], c[2] ); result.bgColorAlpha = data.defaults.bgalpha; // now come potentially asynchronous elements // geometries // count how many models will be loaded asynchronously for( dg in data.geometries ) { g = data.geometries[ dg ]; if ( g.type == "bin_mesh" || g.type == "ascii_mesh" ) { counter_models += 1; scope.onLoadStart(); } } total_models = counter_models; for ( dg in data.geometries ) { g = data.geometries[ dg ]; if ( g.type === "cube" ) { geometry = new THREE.CubeGeometry( g.width, g.height, g.depth, g.segmentsWidth, g.segmentsHeight, g.segmentsDepth, null, g.flipped, g.sides ); result.geometries[ dg ] = geometry; } else if ( g.type === "plane" ) { geometry = new THREE.PlaneGeometry( g.width, g.height, g.segmentsWidth, g.segmentsHeight ); result.geometries[ dg ] = geometry; } else if ( g.type === "sphere" ) { geometry = new THREE.SphereGeometry( g.radius, g.segmentsWidth, g.segmentsHeight ); result.geometries[ dg ] = geometry; } else if ( g.type === "cylinder" ) { geometry = new THREE.CylinderGeometry( g.topRad, g.botRad, g.height, g.radSegs, g.heightSegs ); result.geometries[ dg ] = geometry; } else if ( g.type === "torus" ) { geometry = new THREE.TorusGeometry( g.radius, g.tube, g.segmentsR, g.segmentsT ); result.geometries[ dg ] = geometry; } else if ( g.type === "icosahedron" ) { geometry = new THREE.IcosahedronGeometry( g.radius, g.subdivisions ); result.geometries[ dg ] = geometry; } else if ( g.type === "bin_mesh" ) { binLoader.load( get_url( g.url, data.urlBaseType ), create_callback( dg ) ); } else if ( g.type === "ascii_mesh" ) { jsonLoader.load( get_url( g.url, data.urlBaseType ), create_callback( dg ) ); } else if ( g.type === "embedded_mesh" ) { var modelJson = data.embeds[ g.id ], texture_path = ""; // pass metadata along to jsonLoader so it knows the format version modelJson.metadata = data.metadata; if ( modelJson ) { jsonLoader.createModel( modelJson, create_callback_embed( dg ), texture_path ); } } } // textures // count how many textures will be loaded asynchronously for( dt in data.textures ) { tt = data.textures[ dt ]; if( tt.url instanceof Array ) { counter_textures += tt.url.length; for( var n = 0; n < tt.url.length; n ++ ) { scope.onLoadStart(); } } else { counter_textures += 1; scope.onLoadStart(); } } total_textures = counter_textures; for( dt in data.textures ) { tt = data.textures[ dt ]; if ( tt.mapping !== undefined && THREE[ tt.mapping ] !== undefined ) { tt.mapping = new THREE[ tt.mapping ](); } if( tt.url instanceof Array ) { var count = tt.url.length; var url_array = []; for( var i = 0; i < count; i ++ ) { url_array[ i ] = get_url( tt.url[ i ], data.urlBaseType ); } texture = THREE.ImageUtils.loadTextureCube( url_array, tt.mapping, generateTextureCallback( count ) ); } else { texture = THREE.ImageUtils.loadTexture( get_url( tt.url, data.urlBaseType ), tt.mapping, generateTextureCallback( 1 ) ); if ( THREE[ tt.minFilter ] !== undefined ) texture.minFilter = THREE[ tt.minFilter ]; if ( THREE[ tt.magFilter ] !== undefined ) texture.magFilter = THREE[ tt.magFilter ]; if ( tt.repeat ) { texture.repeat.set( tt.repeat[ 0 ], tt.repeat[ 1 ] ); if ( tt.repeat[ 0 ] !== 1 ) texture.wrapS = THREE.RepeatWrapping; if ( tt.repeat[ 1 ] !== 1 ) texture.wrapT = THREE.RepeatWrapping; } if ( tt.offset ) { texture.offset.set( tt.offset[ 0 ], tt.offset[ 1 ] ); } // handle wrap after repeat so that default repeat can be overriden if ( tt.wrap ) { var wrapMap = { "repeat" : THREE.RepeatWrapping, "mirror" : THREE.MirroredRepeatWrapping } if ( wrapMap[ tt.wrap[ 0 ] ] !== undefined ) texture.wrapS = wrapMap[ tt.wrap[ 0 ] ]; if ( wrapMap[ tt.wrap[ 1 ] ] !== undefined ) texture.wrapT = wrapMap[ tt.wrap[ 1 ] ]; } } result.textures[ dt ] = texture; } // materials for ( dm in data.materials ) { m = data.materials[ dm ]; for ( pp in m.parameters ) { if ( pp === "envMap" || pp === "map" || pp === "lightMap" ) { m.parameters[ pp ] = result.textures[ m.parameters[ pp ] ]; } else if ( pp === "shading" ) { m.parameters[ pp ] = ( m.parameters[ pp ] == "flat" ) ? THREE.FlatShading : THREE.SmoothShading; } else if ( pp === "blending" ) { m.parameters[ pp ] = m.parameters[ pp ] in THREE ? THREE[ m.parameters[ pp ] ] : THREE.NormalBlending; } else if ( pp === "combine" ) { m.parameters[ pp ] = ( m.parameters[ pp ] == "MixOperation" ) ? THREE.MixOperation : THREE.MultiplyOperation; } else if ( pp === "vertexColors" ) { if ( m.parameters[ pp ] == "face" ) { m.parameters[ pp ] = THREE.FaceColors; // default to vertex colors if "vertexColors" is anything else face colors or 0 / null / false } else if ( m.parameters[ pp ] ) { m.parameters[ pp ] = THREE.VertexColors; } } } if ( m.parameters.opacity !== undefined && m.parameters.opacity < 1.0 ) { m.parameters.transparent = true; } if ( m.parameters.normalMap ) { var shader = THREE.ShaderUtils.lib[ "normal" ]; var uniforms = THREE.UniformsUtils.clone( shader.uniforms ); var diffuse = m.parameters.color; var specular = m.parameters.specular; var ambient = m.parameters.ambient; var shininess = m.parameters.shininess; uniforms[ "tNormal" ].texture = result.textures[ m.parameters.normalMap ]; if ( m.parameters.normalMapFactor ) { uniforms[ "uNormalScale" ].value = m.parameters.normalMapFactor; } if ( m.parameters.map ) { uniforms[ "tDiffuse" ].texture = m.parameters.map; uniforms[ "enableDiffuse" ].value = true; } if ( m.parameters.lightMap ) { uniforms[ "tAO" ].texture = m.parameters.lightMap; uniforms[ "enableAO" ].value = true; } if ( m.parameters.specularMap ) { uniforms[ "tSpecular" ].texture = result.textures[ m.parameters.specularMap ]; uniforms[ "enableSpecular" ].value = true; } uniforms[ "uDiffuseColor" ].value.setHex( diffuse ); uniforms[ "uSpecularColor" ].value.setHex( specular ); uniforms[ "uAmbientColor" ].value.setHex( ambient ); uniforms[ "uShininess" ].value = shininess; if ( m.parameters.opacity ) { uniforms[ "uOpacity" ].value = m.parameters.opacity; } var parameters = { fragmentShader: shader.fragmentShader, vertexShader: shader.vertexShader, uniforms: uniforms, lights: true, fog: true }; material = new THREE.ShaderMaterial( parameters ); } else { material = new THREE[ m.type ]( m.parameters ); } result.materials[ dm ] = material; } // objects ( synchronous init of procedural primitives ) handle_objects(); // synchronous callback scope.callbackSync( result ); // just in case there are no async elements async_callback_gate(); }; /** * @author mrdoob / http://mrdoob.com/ */ THREE.TextureLoader = function () { THREE.EventTarget.call( this ); this.crossOrigin = null; }; THREE.TextureLoader.prototype = { constructor: THREE.TextureLoader, load: function ( url ) { var scope = this; var image = new Image(); image.addEventListener( 'load', function () { var texture = new THREE.Texture( image ); texture.needsUpdate = true; scope.dispatchEvent( { type: 'load', content: texture } ); }, false ); image.addEventListener( 'error', function () { scope.dispatchEvent( { type: 'error', message: 'Couldn\'t load URL [' + url + ']' } ); }, false ); if ( scope.crossOrigin ) image.crossOrigin = scope.crossOrigin; image.src = url; } } /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Material = function ( parameters ) { parameters = parameters || {}; this.id = THREE.MaterialCount ++; this.name = ''; this.opacity = parameters.opacity !== undefined ? parameters.opacity : 1; this.transparent = parameters.transparent !== undefined ? parameters.transparent : false; this.blending = parameters.blending !== undefined ? parameters.blending : THREE.NormalBlending; this.blendSrc = parameters.blendSrc !== undefined ? parameters.blendSrc : THREE.SrcAlphaFactor; this.blendDst = parameters.blendDst !== undefined ? parameters.blendDst : THREE.OneMinusSrcAlphaFactor; this.blendEquation = parameters.blendEquation !== undefined ? parameters.blendEquation : THREE.AddEquation; this.depthTest = parameters.depthTest !== undefined ? parameters.depthTest : true; this.depthWrite = parameters.depthWrite !== undefined ? parameters.depthWrite : true; this.polygonOffset = parameters.polygonOffset !== undefined ? parameters.polygonOffset : false; this.polygonOffsetFactor = parameters.polygonOffsetFactor !== undefined ? parameters.polygonOffsetFactor : 0; this.polygonOffsetUnits = parameters.polygonOffsetUnits !== undefined ? parameters.polygonOffsetUnits : 0; this.alphaTest = parameters.alphaTest !== undefined ? parameters.alphaTest : 0; this.overdraw = parameters.overdraw !== undefined ? parameters.overdraw : false; // Boolean for fixing antialiasing gaps in CanvasRenderer this.visible = true; this.needsUpdate = true; } THREE.MaterialCount = 0; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * blending: THREE.NormalBlending, * depthTest: , * * linewidth: , * linecap: "round", * linejoin: "round", * * vertexColors: * * fog: * } */ THREE.LineBasicMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.linewidth = parameters.linewidth !== undefined ? parameters.linewidth : 1; this.linecap = parameters.linecap !== undefined ? parameters.linecap : 'round'; this.linejoin = parameters.linejoin !== undefined ? parameters.linejoin : 'round'; this.vertexColors = parameters.vertexColors ? parameters.vertexColors : false; this.fog = parameters.fog !== undefined ? parameters.fog : true; }; THREE.LineBasicMaterial.prototype = Object.create( THREE.Material.prototype ); /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * * fog: * } */ THREE.MeshBasicMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; // color property represents emissive for MeshBasicMaterial this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.map = parameters.map !== undefined ? parameters.map : null; this.lightMap = parameters.lightMap !== undefined ? parameters.lightMap : null; this.envMap = parameters.envMap !== undefined ? parameters.envMap : null; this.combine = parameters.combine !== undefined ? parameters.combine : THREE.MultiplyOperation; this.reflectivity = parameters.reflectivity !== undefined ? parameters.reflectivity : 1; this.refractionRatio = parameters.refractionRatio !== undefined ? parameters.refractionRatio : 0.98; this.fog = parameters.fog !== undefined ? parameters.fog : true; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; this.wireframeLinecap = parameters.wireframeLinecap !== undefined ? parameters.wireframeLinecap : 'round'; this.wireframeLinejoin = parameters.wireframeLinejoin !== undefined ? parameters.wireframeLinejoin : 'round'; this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors; this.skinning = parameters.skinning !== undefined ? parameters.skinning : false; this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false; }; THREE.MeshBasicMaterial.prototype = Object.create( THREE.Material.prototype ); /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * ambient: , * emissive: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshLambertMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; // color property represents diffuse for MeshLambertMaterial this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.ambient = parameters.ambient !== undefined ? new THREE.Color( parameters.ambient ) : new THREE.Color( 0xffffff ); this.emissive = parameters.emissive !== undefined ? new THREE.Color( parameters.emissive ) : new THREE.Color( 0x000000 ); this.wrapAround = parameters.wrapAround !== undefined ? parameters.wrapAround: false; this.wrapRGB = new THREE.Vector3( 1, 1, 1 ); this.map = parameters.map !== undefined ? parameters.map : null; this.lightMap = parameters.lightMap !== undefined ? parameters.lightMap : null; this.envMap = parameters.envMap !== undefined ? parameters.envMap : null; this.combine = parameters.combine !== undefined ? parameters.combine : THREE.MultiplyOperation; this.reflectivity = parameters.reflectivity !== undefined ? parameters.reflectivity : 1; this.refractionRatio = parameters.refractionRatio !== undefined ? parameters.refractionRatio : 0.98; this.fog = parameters.fog !== undefined ? parameters.fog : true; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; this.wireframeLinecap = parameters.wireframeLinecap !== undefined ? parameters.wireframeLinecap : 'round'; this.wireframeLinejoin = parameters.wireframeLinejoin !== undefined ? parameters.wireframeLinejoin : 'round'; this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors; this.skinning = parameters.skinning !== undefined ? parameters.skinning : false; this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false; this.morphNormals = parameters.morphNormals !== undefined ? parameters.morphNormals : false; }; THREE.MeshLambertMaterial.prototype = Object.create( THREE.Material.prototype ); /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * ambient: , * emissive: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * * wireframe: , * wireframeLinewidth: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.MeshPhongMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; // color property represents diffuse for MeshPhongMaterial this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.ambient = parameters.ambient !== undefined ? new THREE.Color( parameters.ambient ) : new THREE.Color( 0xffffff ); this.emissive = parameters.emissive !== undefined ? new THREE.Color( parameters.emissive ) : new THREE.Color( 0x000000 ); this.specular = parameters.specular !== undefined ? new THREE.Color( parameters.specular ) : new THREE.Color( 0x111111 ); this.shininess = parameters.shininess !== undefined ? parameters.shininess : 30; this.metal = parameters.metal !== undefined ? parameters.metal : false; this.perPixel = parameters.perPixel !== undefined ? parameters.perPixel : false; this.wrapAround = parameters.wrapAround !== undefined ? parameters.wrapAround: false; this.wrapRGB = new THREE.Vector3( 1, 1, 1 ); this.map = parameters.map !== undefined ? parameters.map : null; this.lightMap = parameters.lightMap !== undefined ? parameters.lightMap : null; this.envMap = parameters.envMap !== undefined ? parameters.envMap : null; this.combine = parameters.combine !== undefined ? parameters.combine : THREE.MultiplyOperation; this.reflectivity = parameters.reflectivity !== undefined ? parameters.reflectivity : 1; this.refractionRatio = parameters.refractionRatio !== undefined ? parameters.refractionRatio : 0.98; this.fog = parameters.fog !== undefined ? parameters.fog : true; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; this.wireframeLinecap = parameters.wireframeLinecap !== undefined ? parameters.wireframeLinecap : 'round'; this.wireframeLinejoin = parameters.wireframeLinejoin !== undefined ? parameters.wireframeLinejoin : 'round'; this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors; this.skinning = parameters.skinning !== undefined ? parameters.skinning : false; this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false; this.morphNormals = parameters.morphNormals !== undefined ? parameters.morphNormals : false; }; THREE.MeshPhongMaterial.prototype = Object.create( THREE.Material.prototype ); /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * opacity: , * blending: THREE.NormalBlending, * depthTest: , * wireframe: , * wireframeLinewidth: * } */ THREE.MeshDepthMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; // doesn't really apply here, normals are not used this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; }; THREE.MeshDepthMaterial.prototype = Object.create( THREE.Material.prototype ); /** * @author mr.doob / http://mrdoob.com/ * * parameters = { * opacity: , * shading: THREE.FlatShading, * blending: THREE.NormalBlending, * depthTest: , * wireframe: , * wireframeLinewidth: * } */ THREE.MeshNormalMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.shading = parameters.shading ? parameters.shading : THREE.FlatShading; this.wireframe = parameters.wireframe ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth ? parameters.wireframeLinewidth : 1; }; THREE.MeshNormalMaterial.prototype = Object.create( THREE.Material.prototype ); /** * @author mr.doob / http://mrdoob.com/ */ THREE.MeshFaceMaterial = function () {}; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * size: , * * blending: THREE.NormalBlending, * depthTest: , * * vertexColors: , * * fog: * } */ THREE.ParticleBasicMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.color = parameters.color !== undefined ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.map = parameters.map !== undefined ? parameters.map : null; this.size = parameters.size !== undefined ? parameters.size : 1; this.sizeAttenuation = parameters.sizeAttenuation !== undefined ? parameters.sizeAttenuation : true; this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : false; this.fog = parameters.fog !== undefined ? parameters.fog : true; }; THREE.ParticleBasicMaterial.prototype = Object.create( THREE.Material.prototype ); /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * fragmentShader: , * vertexShader: , * * uniforms: { "parameter1": { type: "f", value: 1.0 }, "parameter2": { type: "i" value2: 2 } }, * * shading: THREE.SmoothShading, * blending: THREE.NormalBlending, * depthTest: , * * wireframe: , * wireframeLinewidth: , * * lights: , * * vertexColors: THREE.NoColors / THREE.VertexColors / THREE.FaceColors, * * skinning: , * morphTargets: , * morphNormals: , * * fog: * } */ THREE.ShaderMaterial = function ( parameters ) { THREE.Material.call( this, parameters ); parameters = parameters || {}; this.fragmentShader = parameters.fragmentShader !== undefined ? parameters.fragmentShader : "void main() {}"; this.vertexShader = parameters.vertexShader !== undefined ? parameters.vertexShader : "void main() {}"; this.uniforms = parameters.uniforms !== undefined ? parameters.uniforms : {}; this.attributes = parameters.attributes; this.shading = parameters.shading !== undefined ? parameters.shading : THREE.SmoothShading; this.wireframe = parameters.wireframe !== undefined ? parameters.wireframe : false; this.wireframeLinewidth = parameters.wireframeLinewidth !== undefined ? parameters.wireframeLinewidth : 1; this.fog = parameters.fog !== undefined ? parameters.fog : false; // set to use scene fog this.lights = parameters.lights !== undefined ? parameters.lights : false; // set to use scene lights this.vertexColors = parameters.vertexColors !== undefined ? parameters.vertexColors : THREE.NoColors; // set to use "color" attribute stream this.skinning = parameters.skinning !== undefined ? parameters.skinning : false; // set to use skinning attribute streams this.morphTargets = parameters.morphTargets !== undefined ? parameters.morphTargets : false; // set to use morph targets this.morphNormals = parameters.morphNormals !== undefined ? parameters.morphNormals : false; // set to use morph normals }; THREE.ShaderMaterial.prototype = Object.create( THREE.Material.prototype ); /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ THREE.Texture = function ( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { this.id = THREE.TextureCount ++; this.image = image; this.mapping = mapping !== undefined ? mapping : new THREE.UVMapping(); this.wrapS = wrapS !== undefined ? wrapS : THREE.ClampToEdgeWrapping; this.wrapT = wrapT !== undefined ? wrapT : THREE.ClampToEdgeWrapping; this.magFilter = magFilter !== undefined ? magFilter : THREE.LinearFilter; this.minFilter = minFilter !== undefined ? minFilter : THREE.LinearMipMapLinearFilter; this.anisotropy = anisotropy !== undefined ? anisotropy : 1; this.format = format !== undefined ? format : THREE.RGBAFormat; this.type = type !== undefined ? type : THREE.UnsignedByteType; this.offset = new THREE.Vector2( 0, 0 ); this.repeat = new THREE.Vector2( 1, 1 ); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.needsUpdate = false; this.onUpdate = null; }; THREE.Texture.prototype = { constructor: THREE.Texture, clone: function () { var clonedTexture = new THREE.Texture( this.image, this.mapping, this.wrapS, this.wrapT, this.magFilter, this.minFilter, this.format, this.type ); clonedTexture.offset.copy( this.offset ); clonedTexture.repeat.copy( this.repeat ); return clonedTexture; } }; THREE.TextureCount = 0; /** * @author alteredq / http://alteredqualia.com/ */ THREE.DataTexture = function ( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter ) { THREE.Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type ); this.image = { data: data, width: width, height: height }; }; THREE.DataTexture.prototype = Object.create( THREE.Texture.prototype ); THREE.DataTexture.prototype.clone = function () { var clonedTexture = new THREE.DataTexture( this.image.data, this.image.width, this.image.height, this.format, this.type, this.mapping, this.wrapS, this.wrapT, this.magFilter, this.minFilter ); clonedTexture.offset.copy( this.offset ); clonedTexture.repeat.copy( this.repeat ); return clonedTexture; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.Particle = function ( material ) { THREE.Object3D.call( this ); this.material = material; }; THREE.Particle.prototype = Object.create( THREE.Object3D.prototype ); /** * @author alteredq / http://alteredqualia.com/ */ THREE.ParticleSystem = function ( geometry, material ) { THREE.Object3D.call( this ); this.geometry = geometry; this.material = ( material !== undefined ) ? material : new THREE.ParticleBasicMaterial( { color: Math.random() * 0xffffff } ); this.sortParticles = false; if ( this.geometry ) { // calc bound radius if( !this.geometry.boundingSphere ) { this.geometry.computeBoundingSphere(); } this.boundRadius = geometry.boundingSphere.radius; } this.frustumCulled = false; }; THREE.ParticleSystem.prototype = Object.create( THREE.Object3D.prototype ); /** * @author mr.doob / http://mrdoob.com/ */ THREE.Line = function ( geometry, material, type ) { THREE.Object3D.call( this ); this.geometry = geometry; this.material = ( material !== undefined ) ? material : new THREE.LineBasicMaterial( { color: Math.random() * 0xffffff } ); this.type = ( type !== undefined ) ? type : THREE.LineStrip; if ( this.geometry ) { if ( ! this.geometry.boundingSphere ) { this.geometry.computeBoundingSphere(); } } }; THREE.LineStrip = 0; THREE.LinePieces = 1; THREE.Line.prototype = Object.create( THREE.Object3D.prototype ); /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ */ THREE.Mesh = function ( geometry, material ) { THREE.Object3D.call( this ); this.geometry = geometry; this.material = ( material !== undefined ) ? material : new THREE.MeshBasicMaterial( { color: Math.random() * 0xffffff, wireframe: true } ); if ( this.geometry ) { // calc bound radius if ( ! this.geometry.boundingSphere ) { this.geometry.computeBoundingSphere(); } this.boundRadius = geometry.boundingSphere.radius; // setup morph targets if( this.geometry.morphTargets.length ) { this.morphTargetBase = -1; this.morphTargetForcedOrder = []; this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for( var m = 0; m < this.geometry.morphTargets.length; m ++ ) { this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ this.geometry.morphTargets[ m ].name ] = m; } } } } THREE.Mesh.prototype = Object.create( THREE.Object3D.prototype ); /* * Get Morph Target Index by Name */ THREE.Mesh.prototype.getMorphTargetIndexByName = function( name ) { if ( this.morphTargetDictionary[ name ] !== undefined ) { return this.morphTargetDictionary[ name ]; } console.log( "THREE.Mesh.getMorphTargetIndexByName: morph target " + name + " does not exist. Returning 0." ); return 0; } /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.Bone = function( belongsToSkin ) { THREE.Object3D.call( this ); this.skin = belongsToSkin; this.skinMatrix = new THREE.Matrix4(); }; THREE.Bone.prototype = Object.create( THREE.Object3D.prototype ); THREE.Bone.prototype.update = function( parentSkinMatrix, forceUpdate ) { // update local if ( this.matrixAutoUpdate ) { forceUpdate |= this.updateMatrix(); } // update skin matrix if ( forceUpdate || this.matrixWorldNeedsUpdate ) { if( parentSkinMatrix ) { this.skinMatrix.multiply( parentSkinMatrix, this.matrix ); } else { this.skinMatrix.copy( this.matrix ); } this.matrixWorldNeedsUpdate = false; forceUpdate = true; } // update children var child, i, l = this.children.length; for ( i = 0; i < l; i ++ ) { this.children[ i ].update( this.skinMatrix, forceUpdate ); } }; /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.SkinnedMesh = function ( geometry, material, useVertexTexture ) { THREE.Mesh.call( this, geometry, material ); // this.useVertexTexture = useVertexTexture !== undefined ? useVertexTexture : true; // init bones this.identityMatrix = new THREE.Matrix4(); this.bones = []; this.boneMatrices = []; var b, bone, gbone, p, q, s; if ( this.geometry.bones !== undefined ) { for ( b = 0; b < this.geometry.bones.length; b ++ ) { gbone = this.geometry.bones[ b ]; p = gbone.pos; q = gbone.rotq; s = gbone.scl; bone = this.addBone(); bone.name = gbone.name; bone.position.set( p[0], p[1], p[2] ); bone.quaternion.set( q[0], q[1], q[2], q[3] ); bone.useQuaternion = true; if ( s !== undefined ) { bone.scale.set( s[0], s[1], s[2] ); } else { bone.scale.set( 1, 1, 1 ); } } for ( b = 0; b < this.bones.length; b ++ ) { gbone = this.geometry.bones[ b ]; bone = this.bones[ b ]; if ( gbone.parent === -1 ) { this.add( bone ); } else { this.bones[ gbone.parent ].add( bone ); } } // var nBones = this.bones.length; if ( this.useVertexTexture ) { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones (8 * 8 / 4) // 16x16 pixel texture max 64 bones (16 * 16 / 4) // 32x32 pixel texture max 256 bones (32 * 32 / 4) // 64x64 pixel texture max 1024 bones (64 * 64 / 4) var size; if ( nBones > 256 ) size = 64; else if ( nBones > 64 ) size = 32; else if ( nBones > 16 ) size = 16; else size = 8; this.boneTextureWidth = size; this.boneTextureHeight = size; this.boneMatrices = new Float32Array( this.boneTextureWidth * this.boneTextureHeight * 4 ); // 4 floats per RGBA pixel this.boneTexture = new THREE.DataTexture( this.boneMatrices, this.boneTextureWidth, this.boneTextureHeight, THREE.RGBAFormat, THREE.FloatType ); this.boneTexture.minFilter = THREE.NearestFilter; this.boneTexture.magFilter = THREE.NearestFilter; this.boneTexture.generateMipmaps = false; this.boneTexture.flipY = false; } else { this.boneMatrices = new Float32Array( 16 * nBones ); } this.pose(); } }; THREE.SkinnedMesh.prototype = Object.create( THREE.Mesh.prototype ); THREE.SkinnedMesh.prototype.addBone = function( bone ) { if ( bone === undefined ) { bone = new THREE.Bone( this ); } this.bones.push( bone ); return bone; }; THREE.SkinnedMesh.prototype.updateMatrixWorld = function ( force ) { this.matrixAutoUpdate && this.updateMatrix(); // update matrixWorld if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent ) { this.matrixWorld.multiply( this.parent.matrixWorld, this.matrix ); } else { this.matrixWorld.copy( this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { var child = this.children[ i ]; if ( child instanceof THREE.Bone ) { child.update( this.identityMatrix, false ); } else { child.updateMatrixWorld( true ); } } // flatten bone matrices to array var b, bl = this.bones.length, ba = this.bones, bm = this.boneMatrices; for ( b = 0; b < bl; b ++ ) { ba[ b ].skinMatrix.flattenToArrayOffset( bm, b * 16 ); } if ( this.useVertexTexture ) { this.boneTexture.needsUpdate = true; } }; /* * Pose */ THREE.SkinnedMesh.prototype.pose = function() { this.updateMatrixWorld( true ); var bim, bone, boneInverses = []; for ( var b = 0; b < this.bones.length; b ++ ) { bone = this.bones[ b ]; var inverseMatrix = new THREE.Matrix4(); inverseMatrix.getInverse( bone.skinMatrix ); boneInverses.push( inverseMatrix ); bone.skinMatrix.flattenToArrayOffset( this.boneMatrices, b * 16 ); } // project vertices to local if ( this.geometry.skinVerticesA === undefined ) { this.geometry.skinVerticesA = []; this.geometry.skinVerticesB = []; var orgVertex, vertex; for ( var i = 0; i < this.geometry.skinIndices.length; i ++ ) { orgVertex = this.geometry.vertices[ i ]; var indexA = this.geometry.skinIndices[ i ].x; var indexB = this.geometry.skinIndices[ i ].y; vertex = new THREE.Vector3( orgVertex.x, orgVertex.y, orgVertex.z ); this.geometry.skinVerticesA.push( boneInverses[ indexA ].multiplyVector3( vertex ) ); vertex = new THREE.Vector3( orgVertex.x, orgVertex.y, orgVertex.z ); this.geometry.skinVerticesB.push( boneInverses[ indexB ].multiplyVector3( vertex ) ); // todo: add more influences // normalize weights if ( this.geometry.skinWeights[ i ].x + this.geometry.skinWeights[ i ].y !== 1 ) { var len = ( 1.0 - ( this.geometry.skinWeights[ i ].x + this.geometry.skinWeights[ i ].y ) ) * 0.5; this.geometry.skinWeights[ i ].x += len; this.geometry.skinWeights[ i ].y += len; } } } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.Ribbon = function ( geometry, material ) { THREE.Object3D.call( this ); this.geometry = geometry; this.material = material; }; THREE.Ribbon.prototype = Object.create( THREE.Object3D.prototype ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author mr.doob / http://mrdoob.com/ */ THREE.LOD = function () { THREE.Object3D.call( this ); this.LODs = []; }; THREE.LOD.prototype = Object.create( THREE.Object3D.prototype ); THREE.LOD.prototype.addLevel = function ( object3D, visibleAtDistance ) { if ( visibleAtDistance === undefined ) { visibleAtDistance = 0; } visibleAtDistance = Math.abs( visibleAtDistance ); for ( var l = 0; l < this.LODs.length; l ++ ) { if ( visibleAtDistance < this.LODs[ l ].visibleAtDistance ) { break; } } this.LODs.splice( l, 0, { visibleAtDistance: visibleAtDistance, object3D: object3D } ); this.add( object3D ); }; THREE.LOD.prototype.update = function ( camera ) { if ( this.LODs.length > 1 ) { camera.matrixWorldInverse.getInverse( camera.matrixWorld ); var inverse = camera.matrixWorldInverse; var distance = -( inverse.elements[2] * this.matrixWorld.elements[12] + inverse.elements[6] * this.matrixWorld.elements[13] + inverse.elements[10] * this.matrixWorld.elements[14] + inverse.elements[14] ); this.LODs[ 0 ].object3D.visible = true; for ( var l = 1; l < this.LODs.length; l ++ ) { if( distance >= this.LODs[ l ].visibleAtDistance ) { this.LODs[ l - 1 ].object3D.visible = false; this.LODs[ l ].object3D.visible = true; } else { break; } } for( ; l < this.LODs.length; l ++ ) { this.LODs[ l ].object3D.visible = false; } } }; /** * @author mikael emtinger / http://gomo.se/ */ THREE.Sprite = function ( parameters ) { THREE.Object3D.call( this ); this.color = ( parameters.color !== undefined ) ? new THREE.Color( parameters.color ) : new THREE.Color( 0xffffff ); this.map = ( parameters.map !== undefined ) ? parameters.map : new THREE.Texture(); this.blending = ( parameters.blending !== undefined ) ? parameters.blending : THREE.NormalBlending; this.blendSrc = parameters.blendSrc !== undefined ? parameters.blendSrc : THREE.SrcAlphaFactor; this.blendDst = parameters.blendDst !== undefined ? parameters.blendDst : THREE.OneMinusSrcAlphaFactor; this.blendEquation = parameters.blendEquation !== undefined ? parameters.blendEquation : THREE.AddEquation; this.useScreenCoordinates = ( parameters.useScreenCoordinates !== undefined ) ? parameters.useScreenCoordinates : true; this.mergeWith3D = ( parameters.mergeWith3D !== undefined ) ? parameters.mergeWith3D : !this.useScreenCoordinates; this.affectedByDistance = ( parameters.affectedByDistance !== undefined ) ? parameters.affectedByDistance : !this.useScreenCoordinates; this.scaleByViewport = ( parameters.scaleByViewport !== undefined ) ? parameters.scaleByViewport : !this.affectedByDistance; this.alignment = ( parameters.alignment instanceof THREE.Vector2 ) ? parameters.alignment : THREE.SpriteAlignment.center; this.rotation3d = this.rotation; this.rotation = 0; this.opacity = 1; this.uvOffset = new THREE.Vector2( 0, 0 ); this.uvScale = new THREE.Vector2( 1, 1 ); }; THREE.Sprite.prototype = Object.create( THREE.Object3D.prototype ); /* * Custom update matrix */ THREE.Sprite.prototype.updateMatrix = function () { this.matrix.setPosition( this.position ); this.rotation3d.set( 0, 0, this.rotation ); this.matrix.setRotationFromEuler( this.rotation3d ); if ( this.scale.x !== 1 || this.scale.y !== 1 ) { this.matrix.scale( this.scale ); this.boundRadiusScale = Math.max( this.scale.x, this.scale.y ); } this.matrixWorldNeedsUpdate = true; }; /* * Alignment */ THREE.SpriteAlignment = {}; THREE.SpriteAlignment.topLeft = new THREE.Vector2( 1, -1 ); THREE.SpriteAlignment.topCenter = new THREE.Vector2( 0, -1 ); THREE.SpriteAlignment.topRight = new THREE.Vector2( -1, -1 ); THREE.SpriteAlignment.centerLeft = new THREE.Vector2( 1, 0 ); THREE.SpriteAlignment.center = new THREE.Vector2( 0, 0 ); THREE.SpriteAlignment.centerRight = new THREE.Vector2( -1, 0 ); THREE.SpriteAlignment.bottomLeft = new THREE.Vector2( 1, 1 ); THREE.SpriteAlignment.bottomCenter = new THREE.Vector2( 0, 1 ); THREE.SpriteAlignment.bottomRight = new THREE.Vector2( -1, 1 ); /** * @author mr.doob / http://mrdoob.com/ */ THREE.Scene = function () { THREE.Object3D.call( this ); this.fog = null; this.overrideMaterial = null; this.matrixAutoUpdate = false; this.__objects = []; this.__lights = []; this.__objectsAdded = []; this.__objectsRemoved = []; }; THREE.Scene.prototype = Object.create( THREE.Object3D.prototype ); THREE.Scene.prototype.__addObject = function ( object ) { if ( object instanceof THREE.Light ) { if ( this.__lights.indexOf( object ) === - 1 ) { this.__lights.push( object ); } } else if ( !( object instanceof THREE.Camera || object instanceof THREE.Bone ) ) { if ( this.__objects.indexOf( object ) === - 1 ) { this.__objects.push( object ); this.__objectsAdded.push( object ); // check if previously removed var i = this.__objectsRemoved.indexOf( object ); if ( i !== -1 ) { this.__objectsRemoved.splice( i, 1 ); } } } for ( var c = 0; c < object.children.length; c ++ ) { this.__addObject( object.children[ c ] ); } }; THREE.Scene.prototype.__removeObject = function ( object ) { if ( object instanceof THREE.Light ) { var i = this.__lights.indexOf( object ); if ( i !== -1 ) { this.__lights.splice( i, 1 ); } } else if ( !( object instanceof THREE.Camera ) ) { var i = this.__objects.indexOf( object ); if( i !== -1 ) { this.__objects.splice( i, 1 ); this.__objectsRemoved.push( object ); // check if previously added var ai = this.__objectsAdded.indexOf( object ); if ( ai !== -1 ) { this.__objectsAdded.splice( ai, 1 ); } } } for ( var c = 0; c < object.children.length; c ++ ) { this.__removeObject( object.children[ c ] ); } }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.Fog = function ( hex, near, far ) { this.color = new THREE.Color( hex ); this.near = ( near !== undefined ) ? near : 1; this.far = ( far !== undefined ) ? far : 1000; }; /** * @author mr.doob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ THREE.FogExp2 = function ( hex, density ) { this.color = new THREE.Color( hex ); this.density = ( density !== undefined ) ? density : 0.00025; }; /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ THREE.ShaderChunk = { // FOG fog_pars_fragment: [ "#ifdef USE_FOG", "uniform vec3 fogColor;", "#ifdef FOG_EXP2", "uniform float fogDensity;", "#else", "uniform float fogNear;", "uniform float fogFar;", "#endif", "#endif" ].join("\n"), fog_fragment: [ "#ifdef USE_FOG", "float depth = gl_FragCoord.z / gl_FragCoord.w;", "#ifdef FOG_EXP2", "const float LOG2 = 1.442695;", "float fogFactor = exp2( - fogDensity * fogDensity * depth * depth * LOG2 );", "fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );", "#else", "float fogFactor = smoothstep( fogNear, fogFar, depth );", "#endif", "gl_FragColor = mix( gl_FragColor, vec4( fogColor, gl_FragColor.w ), fogFactor );", "#endif" ].join("\n"), // ENVIRONMENT MAP envmap_pars_fragment: [ "#ifdef USE_ENVMAP", "varying vec3 vReflect;", "uniform float reflectivity;", "uniform samplerCube envMap;", "uniform float flipEnvMap;", "uniform int combine;", "#endif" ].join("\n"), envmap_fragment: [ "#ifdef USE_ENVMAP", "#ifdef DOUBLE_SIDED", "float flipNormal = ( -1.0 + 2.0 * float( gl_FrontFacing ) );", "vec4 cubeColor = textureCube( envMap, flipNormal * vec3( flipEnvMap * vReflect.x, vReflect.yz ) );", "#else", "vec4 cubeColor = textureCube( envMap, vec3( flipEnvMap * vReflect.x, vReflect.yz ) );", "#endif", "#ifdef GAMMA_INPUT", "cubeColor.xyz *= cubeColor.xyz;", "#endif", "if ( combine == 1 ) {", "gl_FragColor.xyz = mix( gl_FragColor.xyz, cubeColor.xyz, reflectivity );", "} else {", "gl_FragColor.xyz = gl_FragColor.xyz * cubeColor.xyz;", "}", "#endif" ].join("\n"), envmap_pars_vertex: [ "#ifdef USE_ENVMAP", "varying vec3 vReflect;", "uniform float refractionRatio;", "uniform bool useRefract;", "#endif" ].join("\n"), envmap_vertex : [ "#ifdef USE_ENVMAP", "vec4 mPosition = objectMatrix * vec4( position, 1.0 );", "vec3 nWorld = mat3( objectMatrix[ 0 ].xyz, objectMatrix[ 1 ].xyz, objectMatrix[ 2 ].xyz ) * normal;", "if ( useRefract ) {", "vReflect = refract( normalize( mPosition.xyz - cameraPosition ), normalize( nWorld.xyz ), refractionRatio );", "} else {", "vReflect = reflect( normalize( mPosition.xyz - cameraPosition ), normalize( nWorld.xyz ) );", "}", "#endif" ].join("\n"), // COLOR MAP (particles) map_particle_pars_fragment: [ "#ifdef USE_MAP", "uniform sampler2D map;", "#endif" ].join("\n"), map_particle_fragment: [ "#ifdef USE_MAP", "gl_FragColor = gl_FragColor * texture2D( map, vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y ) );", "#endif" ].join("\n"), // COLOR MAP (triangles) map_pars_vertex: [ "#ifdef USE_MAP", "varying vec2 vUv;", "uniform vec4 offsetRepeat;", "#endif" ].join("\n"), map_pars_fragment: [ "#ifdef USE_MAP", "varying vec2 vUv;", "uniform sampler2D map;", "#endif" ].join("\n"), map_vertex: [ "#ifdef USE_MAP", "vUv = uv * offsetRepeat.zw + offsetRepeat.xy;", "#endif" ].join("\n"), map_fragment: [ "#ifdef USE_MAP", "#ifdef GAMMA_INPUT", "vec4 texelColor = texture2D( map, vUv );", "texelColor.xyz *= texelColor.xyz;", "gl_FragColor = gl_FragColor * texelColor;", "#else", "gl_FragColor = gl_FragColor * texture2D( map, vUv );", "#endif", "#endif" ].join("\n"), // LIGHT MAP lightmap_pars_fragment: [ "#ifdef USE_LIGHTMAP", "varying vec2 vUv2;", "uniform sampler2D lightMap;", "#endif" ].join("\n"), lightmap_pars_vertex: [ "#ifdef USE_LIGHTMAP", "varying vec2 vUv2;", "#endif" ].join("\n"), lightmap_fragment: [ "#ifdef USE_LIGHTMAP", "gl_FragColor = gl_FragColor * texture2D( lightMap, vUv2 );", "#endif" ].join("\n"), lightmap_vertex: [ "#ifdef USE_LIGHTMAP", "vUv2 = uv2;", "#endif" ].join("\n"), // LIGHTS LAMBERT lights_lambert_pars_vertex: [ "uniform vec3 ambient;", "uniform vec3 diffuse;", "uniform vec3 emissive;", "uniform vec3 ambientLightColor;", "#if MAX_DIR_LIGHTS > 0", "uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];", "uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];", "#endif", "#if MAX_POINT_LIGHTS > 0", "uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];", "uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];", "uniform float pointLightDistance[ MAX_POINT_LIGHTS ];", "#endif", "#if MAX_SPOT_LIGHTS > 0", "uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];", "uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];", "uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];", "uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];", "uniform float spotLightAngle[ MAX_SPOT_LIGHTS ];", "uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];", "#endif", "#ifdef WRAP_AROUND", "uniform vec3 wrapRGB;", "#endif" ].join("\n"), lights_lambert_vertex: [ "vLightFront = vec3( 0.0 );", "#ifdef DOUBLE_SIDED", "vLightBack = vec3( 0.0 );", "#endif", "transformedNormal = normalize( transformedNormal );", "#if MAX_DIR_LIGHTS > 0", "for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {", "vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );", "vec3 dirVector = normalize( lDirection.xyz );", "float dotProduct = dot( transformedNormal, dirVector );", "vec3 directionalLightWeighting = vec3( max( dotProduct, 0.0 ) );", "#ifdef DOUBLE_SIDED", "vec3 directionalLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );", "#ifdef WRAP_AROUND", "vec3 directionalLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );", "#endif", "#endif", "#ifdef WRAP_AROUND", "vec3 directionalLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );", "directionalLightWeighting = mix( directionalLightWeighting, directionalLightWeightingHalf, wrapRGB );", "#ifdef DOUBLE_SIDED", "directionalLightWeightingBack = mix( directionalLightWeightingBack, directionalLightWeightingHalfBack, wrapRGB );", "#endif", "#endif", "vLightFront += directionalLightColor[ i ] * directionalLightWeighting;", "#ifdef DOUBLE_SIDED", "vLightBack += directionalLightColor[ i ] * directionalLightWeightingBack;", "#endif", "}", "#endif", "#if MAX_POINT_LIGHTS > 0", "for( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {", "vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );", "vec3 lVector = lPosition.xyz - mvPosition.xyz;", "float lDistance = 1.0;", "if ( pointLightDistance[ i ] > 0.0 )", "lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );", "lVector = normalize( lVector );", "float dotProduct = dot( transformedNormal, lVector );", "vec3 pointLightWeighting = vec3( max( dotProduct, 0.0 ) );", "#ifdef DOUBLE_SIDED", "vec3 pointLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );", "#ifdef WRAP_AROUND", "vec3 pointLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );", "#endif", "#endif", "#ifdef WRAP_AROUND", "vec3 pointLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );", "pointLightWeighting = mix( pointLightWeighting, pointLightWeightingHalf, wrapRGB );", "#ifdef DOUBLE_SIDED", "pointLightWeightingBack = mix( pointLightWeightingBack, pointLightWeightingHalfBack, wrapRGB );", "#endif", "#endif", "vLightFront += pointLightColor[ i ] * pointLightWeighting * lDistance;", "#ifdef DOUBLE_SIDED", "vLightBack += pointLightColor[ i ] * pointLightWeightingBack * lDistance;", "#endif", "}", "#endif", "#if MAX_SPOT_LIGHTS > 0", "for( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {", "vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );", "vec3 lVector = lPosition.xyz - mvPosition.xyz;", "lVector = normalize( lVector );", "float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - mPosition.xyz ) );", "if ( spotEffect > spotLightAngle[ i ] ) {", "spotEffect = pow( spotEffect, spotLightExponent[ i ] );", "float lDistance = 1.0;", "if ( spotLightDistance[ i ] > 0.0 )", "lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );", "float dotProduct = dot( transformedNormal, lVector );", "vec3 spotLightWeighting = vec3( max( dotProduct, 0.0 ) );", "#ifdef DOUBLE_SIDED", "vec3 spotLightWeightingBack = vec3( max( -dotProduct, 0.0 ) );", "#ifdef WRAP_AROUND", "vec3 spotLightWeightingHalfBack = vec3( max( -0.5 * dotProduct + 0.5, 0.0 ) );", "#endif", "#endif", "#ifdef WRAP_AROUND", "vec3 spotLightWeightingHalf = vec3( max( 0.5 * dotProduct + 0.5, 0.0 ) );", "spotLightWeighting = mix( spotLightWeighting, spotLightWeightingHalf, wrapRGB );", "#ifdef DOUBLE_SIDED", "spotLightWeightingBack = mix( spotLightWeightingBack, spotLightWeightingHalfBack, wrapRGB );", "#endif", "#endif", "vLightFront += spotLightColor[ i ] * spotLightWeighting * lDistance * spotEffect;", "#ifdef DOUBLE_SIDED", "vLightBack += spotLightColor[ i ] * spotLightWeightingBack * lDistance * spotEffect;", "#endif", "}", "}", "#endif", "vLightFront = vLightFront * diffuse + ambient * ambientLightColor + emissive;", "#ifdef DOUBLE_SIDED", "vLightBack = vLightBack * diffuse + ambient * ambientLightColor + emissive;", "#endif" ].join("\n"), // LIGHTS PHONG lights_phong_pars_vertex: [ "#ifndef PHONG_PER_PIXEL", "#if MAX_POINT_LIGHTS > 0", "uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];", "uniform float pointLightDistance[ MAX_POINT_LIGHTS ];", "varying vec4 vPointLight[ MAX_POINT_LIGHTS ];", "#endif", "#if MAX_SPOT_LIGHTS > 0", "uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];", "uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];", "varying vec4 vSpotLight[ MAX_SPOT_LIGHTS ];", "#endif", "#endif", "#if MAX_SPOT_LIGHTS > 0", "varying vec3 vWorldPosition;", "#endif" ].join("\n"), lights_phong_vertex: [ "#ifndef PHONG_PER_PIXEL", "#if MAX_POINT_LIGHTS > 0", "for( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {", "vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );", "vec3 lVector = lPosition.xyz - mvPosition.xyz;", "float lDistance = 1.0;", "if ( pointLightDistance[ i ] > 0.0 )", "lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );", "vPointLight[ i ] = vec4( lVector, lDistance );", "}", "#endif", "#if MAX_SPOT_LIGHTS > 0", "for( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {", "vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );", "vec3 lVector = lPosition.xyz - mvPosition.xyz;", "float lDistance = 1.0;", "if ( spotLightDistance[ i ] > 0.0 )", "lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );", "vSpotLight[ i ] = vec4( lVector, lDistance );", "}", "#endif", "#endif", "#if MAX_SPOT_LIGHTS > 0", "vWorldPosition = mPosition.xyz;", "#endif" ].join("\n"), lights_phong_pars_fragment: [ "uniform vec3 ambientLightColor;", "#if MAX_DIR_LIGHTS > 0", "uniform vec3 directionalLightColor[ MAX_DIR_LIGHTS ];", "uniform vec3 directionalLightDirection[ MAX_DIR_LIGHTS ];", "#endif", "#if MAX_POINT_LIGHTS > 0", "uniform vec3 pointLightColor[ MAX_POINT_LIGHTS ];", "#ifdef PHONG_PER_PIXEL", "uniform vec3 pointLightPosition[ MAX_POINT_LIGHTS ];", "uniform float pointLightDistance[ MAX_POINT_LIGHTS ];", "#else", "varying vec4 vPointLight[ MAX_POINT_LIGHTS ];", "#endif", "#endif", "#if MAX_SPOT_LIGHTS > 0", "uniform vec3 spotLightColor[ MAX_SPOT_LIGHTS ];", "uniform vec3 spotLightPosition[ MAX_SPOT_LIGHTS ];", "uniform vec3 spotLightDirection[ MAX_SPOT_LIGHTS ];", "uniform float spotLightAngle[ MAX_SPOT_LIGHTS ];", "uniform float spotLightExponent[ MAX_SPOT_LIGHTS ];", "#ifdef PHONG_PER_PIXEL", "uniform float spotLightDistance[ MAX_SPOT_LIGHTS ];", "#else", "varying vec4 vSpotLight[ MAX_SPOT_LIGHTS ];", "#endif", "varying vec3 vWorldPosition;", "#endif", "#ifdef WRAP_AROUND", "uniform vec3 wrapRGB;", "#endif", "varying vec3 vViewPosition;", "varying vec3 vNormal;" ].join("\n"), lights_phong_fragment: [ "vec3 normal = normalize( vNormal );", "vec3 viewPosition = normalize( vViewPosition );", "#ifdef DOUBLE_SIDED", "normal = normal * ( -1.0 + 2.0 * float( gl_FrontFacing ) );", "#endif", "#if MAX_POINT_LIGHTS > 0", "vec3 pointDiffuse = vec3( 0.0 );", "vec3 pointSpecular = vec3( 0.0 );", "for ( int i = 0; i < MAX_POINT_LIGHTS; i ++ ) {", "#ifdef PHONG_PER_PIXEL", "vec4 lPosition = viewMatrix * vec4( pointLightPosition[ i ], 1.0 );", "vec3 lVector = lPosition.xyz + vViewPosition.xyz;", "float lDistance = 1.0;", "if ( pointLightDistance[ i ] > 0.0 )", "lDistance = 1.0 - min( ( length( lVector ) / pointLightDistance[ i ] ), 1.0 );", "lVector = normalize( lVector );", "#else", "vec3 lVector = normalize( vPointLight[ i ].xyz );", "float lDistance = vPointLight[ i ].w;", "#endif", // diffuse "float dotProduct = dot( normal, lVector );", "#ifdef WRAP_AROUND", "float pointDiffuseWeightFull = max( dotProduct, 0.0 );", "float pointDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );", "vec3 pointDiffuseWeight = mix( vec3 ( pointDiffuseWeightFull ), vec3( pointDiffuseWeightHalf ), wrapRGB );", "#else", "float pointDiffuseWeight = max( dotProduct, 0.0 );", "#endif", "pointDiffuse += diffuse * pointLightColor[ i ] * pointDiffuseWeight * lDistance;", // specular "vec3 pointHalfVector = normalize( lVector + viewPosition );", "float pointDotNormalHalf = max( dot( normal, pointHalfVector ), 0.0 );", "float pointSpecularWeight = max( pow( pointDotNormalHalf, shininess ), 0.0 );", "#ifdef PHYSICALLY_BASED_SHADING", // 2.0 => 2.0001 is hack to work around ANGLE bug "float specularNormalization = ( shininess + 2.0001 ) / 8.0;", "vec3 schlick = specular + vec3( 1.0 - specular ) * pow( 1.0 - dot( lVector, pointHalfVector ), 5.0 );", "pointSpecular += schlick * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * lDistance * specularNormalization;", "#else", "pointSpecular += specular * pointLightColor[ i ] * pointSpecularWeight * pointDiffuseWeight * lDistance;", "#endif", "}", "#endif", "#if MAX_SPOT_LIGHTS > 0", "vec3 spotDiffuse = vec3( 0.0 );", "vec3 spotSpecular = vec3( 0.0 );", "for ( int i = 0; i < MAX_SPOT_LIGHTS; i ++ ) {", "#ifdef PHONG_PER_PIXEL", "vec4 lPosition = viewMatrix * vec4( spotLightPosition[ i ], 1.0 );", "vec3 lVector = lPosition.xyz + vViewPosition.xyz;", "float lDistance = 1.0;", "if ( spotLightDistance[ i ] > 0.0 )", "lDistance = 1.0 - min( ( length( lVector ) / spotLightDistance[ i ] ), 1.0 );", "lVector = normalize( lVector );", "#else", "vec3 lVector = normalize( vSpotLight[ i ].xyz );", "float lDistance = vSpotLight[ i ].w;", "#endif", "float spotEffect = dot( spotLightDirection[ i ], normalize( spotLightPosition[ i ] - vWorldPosition ) );", "if ( spotEffect > spotLightAngle[ i ] ) {", "spotEffect = pow( spotEffect, spotLightExponent[ i ] );", // diffuse "float dotProduct = dot( normal, lVector );", "#ifdef WRAP_AROUND", "float spotDiffuseWeightFull = max( dotProduct, 0.0 );", "float spotDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );", "vec3 spotDiffuseWeight = mix( vec3 ( spotDiffuseWeightFull ), vec3( spotDiffuseWeightHalf ), wrapRGB );", "#else", "float spotDiffuseWeight = max( dotProduct, 0.0 );", "#endif", "spotDiffuse += diffuse * spotLightColor[ i ] * spotDiffuseWeight * lDistance * spotEffect;", // specular "vec3 spotHalfVector = normalize( lVector + viewPosition );", "float spotDotNormalHalf = max( dot( normal, spotHalfVector ), 0.0 );", "float spotSpecularWeight = max( pow( spotDotNormalHalf, shininess ), 0.0 );", "#ifdef PHYSICALLY_BASED_SHADING", // 2.0 => 2.0001 is hack to work around ANGLE bug "float specularNormalization = ( shininess + 2.0001 ) / 8.0;", "vec3 schlick = specular + vec3( 1.0 - specular ) * pow( 1.0 - dot( lVector, spotHalfVector ), 5.0 );", "spotSpecular += schlick * spotLightColor[ i ] * spotSpecularWeight * spotDiffuseWeight * lDistance * specularNormalization * spotEffect;", "#else", "spotSpecular += specular * spotLightColor[ i ] * spotSpecularWeight * spotDiffuseWeight * lDistance * spotEffect;", "#endif", "}", "}", "#endif", "#if MAX_DIR_LIGHTS > 0", "vec3 dirDiffuse = vec3( 0.0 );", "vec3 dirSpecular = vec3( 0.0 );" , "for( int i = 0; i < MAX_DIR_LIGHTS; i ++ ) {", "vec4 lDirection = viewMatrix * vec4( directionalLightDirection[ i ], 0.0 );", "vec3 dirVector = normalize( lDirection.xyz );", // diffuse "float dotProduct = dot( normal, dirVector );", "#ifdef WRAP_AROUND", "float dirDiffuseWeightFull = max( dotProduct, 0.0 );", "float dirDiffuseWeightHalf = max( 0.5 * dotProduct + 0.5, 0.0 );", "vec3 dirDiffuseWeight = mix( vec3( dirDiffuseWeightFull ), vec3( dirDiffuseWeightHalf ), wrapRGB );", "#else", "float dirDiffuseWeight = max( dotProduct, 0.0 );", "#endif", "dirDiffuse += diffuse * directionalLightColor[ i ] * dirDiffuseWeight;", // specular "vec3 dirHalfVector = normalize( dirVector + viewPosition );", "float dirDotNormalHalf = max( dot( normal, dirHalfVector ), 0.0 );", "float dirSpecularWeight = max( pow( dirDotNormalHalf, shininess ), 0.0 );", "#ifdef PHYSICALLY_BASED_SHADING", /* // fresnel term from skin shader "const float F0 = 0.128;", "float base = 1.0 - dot( viewPosition, dirHalfVector );", "float exponential = pow( base, 5.0 );", "float fresnel = exponential + F0 * ( 1.0 - exponential );", */ /* // fresnel term from fresnel shader "const float mFresnelBias = 0.08;", "const float mFresnelScale = 0.3;", "const float mFresnelPower = 5.0;", "float fresnel = mFresnelBias + mFresnelScale * pow( 1.0 + dot( normalize( -viewPosition ), normal ), mFresnelPower );", */ // 2.0 => 2.0001 is hack to work around ANGLE bug "float specularNormalization = ( shininess + 2.0001 ) / 8.0;", //"dirSpecular += specular * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization * fresnel;", "vec3 schlick = specular + vec3( 1.0 - specular ) * pow( 1.0 - dot( dirVector, dirHalfVector ), 5.0 );", "dirSpecular += schlick * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight * specularNormalization;", "#else", "dirSpecular += specular * directionalLightColor[ i ] * dirSpecularWeight * dirDiffuseWeight;", "#endif", "}", "#endif", "vec3 totalDiffuse = vec3( 0.0 );", "vec3 totalSpecular = vec3( 0.0 );", "#if MAX_DIR_LIGHTS > 0", "totalDiffuse += dirDiffuse;", "totalSpecular += dirSpecular;", "#endif", "#if MAX_POINT_LIGHTS > 0", "totalDiffuse += pointDiffuse;", "totalSpecular += pointSpecular;", "#endif", "#if MAX_SPOT_LIGHTS > 0", "totalDiffuse += spotDiffuse;", "totalSpecular += spotSpecular;", "#endif", "#ifdef METAL", "gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient + totalSpecular );", "#else", "gl_FragColor.xyz = gl_FragColor.xyz * ( emissive + totalDiffuse + ambientLightColor * ambient ) + totalSpecular;", "#endif" ].join("\n"), // VERTEX COLORS color_pars_fragment: [ "#ifdef USE_COLOR", "varying vec3 vColor;", "#endif" ].join("\n"), color_fragment: [ "#ifdef USE_COLOR", "gl_FragColor = gl_FragColor * vec4( vColor, opacity );", "#endif" ].join("\n"), color_pars_vertex: [ "#ifdef USE_COLOR", "varying vec3 vColor;", "#endif" ].join("\n"), color_vertex: [ "#ifdef USE_COLOR", "#ifdef GAMMA_INPUT", "vColor = color * color;", "#else", "vColor = color;", "#endif", "#endif" ].join("\n"), // SKINNING skinning_pars_vertex: [ "#ifdef USE_SKINNING", "#ifdef BONE_TEXTURE", "uniform sampler2D boneTexture;", "mat4 getBoneMatrix( const in float i ) {", "float j = i * 4.0;", "float x = mod( j, N_BONE_PIXEL_X );", "float y = floor( j / N_BONE_PIXEL_X );", "const float dx = 1.0 / N_BONE_PIXEL_X;", "const float dy = 1.0 / N_BONE_PIXEL_Y;", "y = dy * ( y + 0.5 );", "vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );", "vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );", "vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );", "vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );", "mat4 bone = mat4( v1, v2, v3, v4 );", "return bone;", "}", "#else", "uniform mat4 boneGlobalMatrices[ MAX_BONES ];", "mat4 getBoneMatrix( const in float i ) {", "mat4 bone = boneGlobalMatrices[ int(i) ];", "return bone;", "}", "#endif", "#endif" ].join("\n"), skinbase_vertex: [ "#ifdef USE_SKINNING", "mat4 boneMatX = getBoneMatrix( skinIndex.x );", "mat4 boneMatY = getBoneMatrix( skinIndex.y );", "#endif" ].join("\n"), skinning_vertex: [ "#ifdef USE_SKINNING", "vec4 skinned = boneMatX * skinVertexA * skinWeight.x;", "skinned += boneMatY * skinVertexB * skinWeight.y;", "gl_Position = projectionMatrix * modelViewMatrix * skinned;", "#endif" ].join("\n"), // MORPHING morphtarget_pars_vertex: [ "#ifdef USE_MORPHTARGETS", "#ifndef USE_MORPHNORMALS", "uniform float morphTargetInfluences[ 8 ];", "#else", "uniform float morphTargetInfluences[ 4 ];", "#endif", "#endif" ].join("\n"), morphtarget_vertex: [ "#ifdef USE_MORPHTARGETS", "vec3 morphed = vec3( 0.0 );", "morphed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];", "morphed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];", "morphed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];", "morphed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];", "#ifndef USE_MORPHNORMALS", "morphed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];", "morphed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];", "morphed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];", "morphed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];", "#endif", "morphed += position;", "gl_Position = projectionMatrix * modelViewMatrix * vec4( morphed, 1.0 );", "#endif" ].join("\n"), default_vertex : [ "#ifndef USE_MORPHTARGETS", "#ifndef USE_SKINNING", "gl_Position = projectionMatrix * mvPosition;", "#endif", "#endif" ].join("\n"), morphnormal_vertex: [ "#ifdef USE_MORPHNORMALS", "vec3 morphedNormal = vec3( 0.0 );", "morphedNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];", "morphedNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];", "morphedNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];", "morphedNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];", "morphedNormal += normal;", "vec3 transformedNormal = normalMatrix * morphedNormal;", "#else", "vec3 transformedNormal = normalMatrix * normal;", "#endif" ].join("\n"), skinnormal_vertex: [ "#ifdef USE_SKINNING", "mat4 skinMatrix = skinWeight.x * boneMatX;", "skinMatrix += skinWeight.y * boneMatY;", "vec4 skinnedNormal = skinMatrix * vec4( transformedNormal, 0.0 );", "transformedNormal = skinnedNormal.xyz;", "#endif" ].join("\n"), // SHADOW MAP // based on SpiderGL shadow map and Fabien Sanglard's GLSL shadow mapping examples // http://spidergl.org/example.php?id=6 // http://fabiensanglard.net/shadowmapping shadowmap_pars_fragment: [ "#ifdef USE_SHADOWMAP", "uniform sampler2D shadowMap[ MAX_SHADOWS ];", "uniform vec2 shadowMapSize[ MAX_SHADOWS ];", "uniform float shadowDarkness[ MAX_SHADOWS ];", "uniform float shadowBias[ MAX_SHADOWS ];", "varying vec4 vShadowCoord[ MAX_SHADOWS ];", "float unpackDepth( const in vec4 rgba_depth ) {", "const vec4 bit_shift = vec4( 1.0 / ( 256.0 * 256.0 * 256.0 ), 1.0 / ( 256.0 * 256.0 ), 1.0 / 256.0, 1.0 );", "float depth = dot( rgba_depth, bit_shift );", "return depth;", "}", "#endif" ].join("\n"), shadowmap_fragment: [ "#ifdef USE_SHADOWMAP", "#ifdef SHADOWMAP_DEBUG", "vec3 frustumColors[3];", "frustumColors[0] = vec3( 1.0, 0.5, 0.0 );", "frustumColors[1] = vec3( 0.0, 1.0, 0.8 );", "frustumColors[2] = vec3( 0.0, 0.5, 1.0 );", "#endif", "#ifdef SHADOWMAP_CASCADE", "int inFrustumCount = 0;", "#endif", "float fDepth;", "vec3 shadowColor = vec3( 1.0 );", "for( int i = 0; i < MAX_SHADOWS; i ++ ) {", "vec3 shadowCoord = vShadowCoord[ i ].xyz / vShadowCoord[ i ].w;", // "if ( something && something )" breaks ATI OpenGL shader compiler // "if ( all( something, something ) )" using this instead "bvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );", "bool inFrustum = all( inFrustumVec );", // don't shadow pixels outside of light frustum // use just first frustum (for cascades) // don't shadow pixels behind far plane of light frustum "#ifdef SHADOWMAP_CASCADE", "inFrustumCount += int( inFrustum );", "bvec3 frustumTestVec = bvec3( inFrustum, inFrustumCount == 1, shadowCoord.z <= 1.0 );", "#else", "bvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );", "#endif", "bool frustumTest = all( frustumTestVec );", "if ( frustumTest ) {", "shadowCoord.z += shadowBias[ i ];", "#ifdef SHADOWMAP_SOFT", // Percentage-close filtering // (9 pixel kernel) // http://fabiensanglard.net/shadowmappingPCF/ "float shadow = 0.0;", /* // nested loops breaks shader compiler / validator on some ATI cards when using OpenGL // must enroll loop manually "for ( float y = -1.25; y <= 1.25; y += 1.25 )", "for ( float x = -1.25; x <= 1.25; x += 1.25 ) {", "vec4 rgbaDepth = texture2D( shadowMap[ i ], vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy );", // doesn't seem to produce any noticeable visual difference compared to simple "texture2D" lookup //"vec4 rgbaDepth = texture2DProj( shadowMap[ i ], vec4( vShadowCoord[ i ].w * ( vec2( x * xPixelOffset, y * yPixelOffset ) + shadowCoord.xy ), 0.05, vShadowCoord[ i ].w ) );", "float fDepth = unpackDepth( rgbaDepth );", "if ( fDepth < shadowCoord.z )", "shadow += 1.0;", "}", "shadow /= 9.0;", */ "const float shadowDelta = 1.0 / 9.0;", "float xPixelOffset = 1.0 / shadowMapSize[ i ].x;", "float yPixelOffset = 1.0 / shadowMapSize[ i ].y;", "float dx0 = -1.25 * xPixelOffset;", "float dy0 = -1.25 * yPixelOffset;", "float dx1 = 1.25 * xPixelOffset;", "float dy1 = 1.25 * yPixelOffset;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, 0.0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, 0.0 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx0, dy1 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( 0.0, dy1 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "fDepth = unpackDepth( texture2D( shadowMap[ i ], shadowCoord.xy + vec2( dx1, dy1 ) ) );", "if ( fDepth < shadowCoord.z ) shadow += shadowDelta;", "shadowColor = shadowColor * vec3( ( 1.0 - shadowDarkness[ i ] * shadow ) );", "#else", "vec4 rgbaDepth = texture2D( shadowMap[ i ], shadowCoord.xy );", "float fDepth = unpackDepth( rgbaDepth );", "if ( fDepth < shadowCoord.z )", // spot with multiple shadows is darker "shadowColor = shadowColor * vec3( 1.0 - shadowDarkness[ i ] );", // spot with multiple shadows has the same color as single shadow spot //"shadowColor = min( shadowColor, vec3( shadowDarkness[ i ] ) );", "#endif", "}", "#ifdef SHADOWMAP_DEBUG", "#ifdef SHADOWMAP_CASCADE", "if ( inFrustum && inFrustumCount == 1 ) gl_FragColor.xyz *= frustumColors[ i ];", "#else", "if ( inFrustum ) gl_FragColor.xyz *= frustumColors[ i ];", "#endif", "#endif", "}", "#ifdef GAMMA_OUTPUT", "shadowColor *= shadowColor;", "#endif", "gl_FragColor.xyz = gl_FragColor.xyz * shadowColor;", "#endif" ].join("\n"), shadowmap_pars_vertex: [ "#ifdef USE_SHADOWMAP", "varying vec4 vShadowCoord[ MAX_SHADOWS ];", "uniform mat4 shadowMatrix[ MAX_SHADOWS ];", "#endif" ].join("\n"), shadowmap_vertex: [ "#ifdef USE_SHADOWMAP", "for( int i = 0; i < MAX_SHADOWS; i ++ ) {", "#ifdef USE_MORPHTARGETS", "vShadowCoord[ i ] = shadowMatrix[ i ] * objectMatrix * vec4( morphed, 1.0 );", "#else", "#ifdef USE_SKINNING", "vShadowCoord[ i ] = shadowMatrix[ i ] * objectMatrix * skinned;", "#else", "vShadowCoord[ i ] = shadowMatrix[ i ] * objectMatrix * vec4( position, 1.0 );", "#endif", "#endif", "}", "#endif" ].join("\n"), // ALPHATEST alphatest_fragment: [ "#ifdef ALPHATEST", "if ( gl_FragColor.a < ALPHATEST ) discard;", "#endif" ].join("\n"), // LINEAR SPACE linear_to_gamma_fragment: [ "#ifdef GAMMA_OUTPUT", "gl_FragColor.xyz = sqrt( gl_FragColor.xyz );", "#endif" ].join("\n"), }; THREE.UniformsUtils = { merge: function ( uniforms ) { var u, p, tmp, merged = {}; for ( u = 0; u < uniforms.length; u++ ) { tmp = this.clone( uniforms[ u ] ); for ( p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; }, clone: function ( uniforms_src ) { var u, p, parameter, parameter_src, uniforms_dst = {}; for ( u in uniforms_src ) { uniforms_dst[ u ] = {}; for ( p in uniforms_src[ u ] ) { parameter_src = uniforms_src[ u ][ p ]; if ( parameter_src instanceof THREE.Color || parameter_src instanceof THREE.Vector2 || parameter_src instanceof THREE.Vector3 || parameter_src instanceof THREE.Vector4 || parameter_src instanceof THREE.Matrix4 || parameter_src instanceof THREE.Texture ) { uniforms_dst[ u ][ p ] = parameter_src.clone(); } else if ( parameter_src instanceof Array ) { uniforms_dst[ u ][ p ] = parameter_src.slice(); } else { uniforms_dst[ u ][ p ] = parameter_src; } } } return uniforms_dst; } }; THREE.UniformsLib = { common: { "diffuse" : { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity" : { type: "f", value: 1.0 }, "map" : { type: "t", value: 0, texture: null }, "offsetRepeat" : { type: "v4", value: new THREE.Vector4( 0, 0, 1, 1 ) }, "lightMap" : { type: "t", value: 2, texture: null }, "envMap" : { type: "t", value: 1, texture: null }, "flipEnvMap" : { type: "f", value: -1 }, "useRefract" : { type: "i", value: 0 }, "reflectivity" : { type: "f", value: 1.0 }, "refractionRatio" : { type: "f", value: 0.98 }, "combine" : { type: "i", value: 0 }, "morphTargetInfluences" : { type: "f", value: 0 } }, fog : { "fogDensity" : { type: "f", value: 0.00025 }, "fogNear" : { type: "f", value: 1 }, "fogFar" : { type: "f", value: 2000 }, "fogColor" : { type: "c", value: new THREE.Color( 0xffffff ) } }, lights: { "ambientLightColor" : { type: "fv", value: [] }, "directionalLightDirection" : { type: "fv", value: [] }, "directionalLightColor" : { type: "fv", value: [] }, "pointLightColor" : { type: "fv", value: [] }, "pointLightPosition" : { type: "fv", value: [] }, "pointLightDistance" : { type: "fv1", value: [] }, "spotLightColor" : { type: "fv", value: [] }, "spotLightPosition" : { type: "fv", value: [] }, "spotLightDirection" : { type: "fv", value: [] }, "spotLightDistance" : { type: "fv1", value: [] }, "spotLightAngle" : { type: "fv1", value: [] }, "spotLightExponent" : { type: "fv1", value: [] } }, particle: { "psColor" : { type: "c", value: new THREE.Color( 0xeeeeee ) }, "opacity" : { type: "f", value: 1.0 }, "size" : { type: "f", value: 1.0 }, "scale" : { type: "f", value: 1.0 }, "map" : { type: "t", value: 0, texture: null }, "fogDensity" : { type: "f", value: 0.00025 }, "fogNear" : { type: "f", value: 1 }, "fogFar" : { type: "f", value: 2000 }, "fogColor" : { type: "c", value: new THREE.Color( 0xffffff ) } }, shadowmap: { "shadowMap": { type: "tv", value: 6, texture: [] }, "shadowMapSize": { type: "v2v", value: [] }, "shadowBias" : { type: "fv1", value: [] }, "shadowDarkness": { type: "fv1", value: [] }, "shadowMatrix" : { type: "m4v", value: [] }, } }; THREE.ShaderLib = { 'depth': { uniforms: { "mNear": { type: "f", value: 1.0 }, "mFar" : { type: "f", value: 2000.0 }, "opacity" : { type: "f", value: 1.0 } }, vertexShader: [ "void main() {", "gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );", "}" ].join("\n"), fragmentShader: [ "uniform float mNear;", "uniform float mFar;", "uniform float opacity;", "void main() {", "float depth = gl_FragCoord.z / gl_FragCoord.w;", "float color = 1.0 - smoothstep( mNear, mFar, depth );", "gl_FragColor = vec4( vec3( color ), opacity );", "}" ].join("\n") }, 'normal': { uniforms: { "opacity" : { type: "f", value: 1.0 } }, vertexShader: [ "varying vec3 vNormal;", "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", "vNormal = normalMatrix * normal;", "gl_Position = projectionMatrix * mvPosition;", "}" ].join("\n"), fragmentShader: [ "uniform float opacity;", "varying vec3 vNormal;", "void main() {", "gl_FragColor = vec4( 0.5 * normalize( vNormal ) + 0.5, opacity );", "}" ].join("\n") }, 'basic': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "shadowmap" ] ] ), vertexShader: [ THREE.ShaderChunk[ "map_pars_vertex" ], THREE.ShaderChunk[ "lightmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "map_vertex" ], THREE.ShaderChunk[ "lightmap_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], "void main() {", "gl_FragColor = vec4( diffuse, opacity );", THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "lightmap_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'lambert': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], THREE.UniformsLib[ "shadowmap" ], { "ambient" : { type: "c", value: new THREE.Color( 0xffffff ) }, "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) } } ] ), vertexShader: [ "varying vec3 vLightFront;", "#ifdef DOUBLE_SIDED", "varying vec3 vLightBack;", "#endif", THREE.ShaderChunk[ "map_pars_vertex" ], THREE.ShaderChunk[ "lightmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "lights_lambert_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "map_vertex" ], THREE.ShaderChunk[ "lightmap_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "color_vertex" ], THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], "#ifndef USE_ENVMAP", "vec4 mPosition = objectMatrix * vec4( position, 1.0 );", "#endif", THREE.ShaderChunk[ "lights_lambert_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform float opacity;", "varying vec3 vLightFront;", "#ifdef DOUBLE_SIDED", "varying vec3 vLightBack;", "#endif", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], "void main() {", "gl_FragColor = vec4( vec3 ( 1.0 ), opacity );", THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], "#ifdef DOUBLE_SIDED", //"float isFront = float( gl_FrontFacing );", //"gl_FragColor.xyz *= isFront * vLightFront + ( 1.0 - isFront ) * vLightBack;", "if ( gl_FrontFacing )", "gl_FragColor.xyz *= vLightFront;", "else", "gl_FragColor.xyz *= vLightBack;", "#else", "gl_FragColor.xyz *= vLightFront;", "#endif", THREE.ShaderChunk[ "lightmap_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'phong': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "common" ], THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], THREE.UniformsLib[ "shadowmap" ], { "ambient" : { type: "c", value: new THREE.Color( 0xffffff ) }, "emissive" : { type: "c", value: new THREE.Color( 0x000000 ) }, "specular" : { type: "c", value: new THREE.Color( 0x111111 ) }, "shininess": { type: "f", value: 30 }, "wrapRGB" : { type: "v3", value: new THREE.Vector3( 1, 1, 1 ) } } ] ), vertexShader: [ "varying vec3 vViewPosition;", "varying vec3 vNormal;", THREE.ShaderChunk[ "map_pars_vertex" ], THREE.ShaderChunk[ "lightmap_pars_vertex" ], THREE.ShaderChunk[ "envmap_pars_vertex" ], THREE.ShaderChunk[ "lights_phong_pars_vertex" ], THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "map_vertex" ], THREE.ShaderChunk[ "lightmap_vertex" ], THREE.ShaderChunk[ "envmap_vertex" ], THREE.ShaderChunk[ "color_vertex" ], "#ifndef USE_ENVMAP", "vec4 mPosition = objectMatrix * vec4( position, 1.0 );", "#endif", "vViewPosition = -mvPosition.xyz;", THREE.ShaderChunk[ "morphnormal_vertex" ], THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinnormal_vertex" ], "vNormal = transformedNormal;", THREE.ShaderChunk[ "lights_phong_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 diffuse;", "uniform float opacity;", "uniform vec3 ambient;", "uniform vec3 emissive;", "uniform vec3 specular;", "uniform float shininess;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_pars_fragment" ], THREE.ShaderChunk[ "lightmap_pars_fragment" ], THREE.ShaderChunk[ "envmap_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "lights_phong_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], "void main() {", "gl_FragColor = vec4( vec3 ( 1.0 ), opacity );", THREE.ShaderChunk[ "map_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "lights_phong_fragment" ], THREE.ShaderChunk[ "lightmap_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "envmap_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "linear_to_gamma_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, 'particle_basic': { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "particle" ], THREE.UniformsLib[ "shadowmap" ] ] ), vertexShader: [ "uniform float size;", "uniform float scale;", THREE.ShaderChunk[ "color_pars_vertex" ], THREE.ShaderChunk[ "shadowmap_pars_vertex" ], "void main() {", THREE.ShaderChunk[ "color_vertex" ], "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", "#ifdef USE_SIZEATTENUATION", "gl_PointSize = size * ( scale / length( mvPosition.xyz ) );", "#else", "gl_PointSize = size;", "#endif", "gl_Position = projectionMatrix * mvPosition;", THREE.ShaderChunk[ "shadowmap_vertex" ], "}" ].join("\n"), fragmentShader: [ "uniform vec3 psColor;", "uniform float opacity;", THREE.ShaderChunk[ "color_pars_fragment" ], THREE.ShaderChunk[ "map_particle_pars_fragment" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "shadowmap_pars_fragment" ], "void main() {", "gl_FragColor = vec4( psColor, opacity );", THREE.ShaderChunk[ "map_particle_fragment" ], THREE.ShaderChunk[ "alphatest_fragment" ], THREE.ShaderChunk[ "color_fragment" ], THREE.ShaderChunk[ "shadowmap_fragment" ], THREE.ShaderChunk[ "fog_fragment" ], "}" ].join("\n") }, // Depth encoding into RGBA texture // based on SpiderGL shadow map example // http://spidergl.org/example.php?id=6 // originally from // http://www.gamedev.net/topic/442138-packing-a-float-into-a-a8r8g8b8-texture-shader/page__whichpage__1%25EF%25BF%25BD // see also here: // http://aras-p.info/blog/2009/07/30/encoding-floats-to-rgba-the-final/ 'depthRGBA': { uniforms: {}, vertexShader: [ THREE.ShaderChunk[ "skinning_pars_vertex" ], THREE.ShaderChunk[ "morphtarget_pars_vertex" ], "void main() {", "vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", THREE.ShaderChunk[ "skinbase_vertex" ], THREE.ShaderChunk[ "skinning_vertex" ], THREE.ShaderChunk[ "morphtarget_vertex" ], THREE.ShaderChunk[ "default_vertex" ], "}" ].join("\n"), fragmentShader: [ "vec4 pack_depth( const in float depth ) {", "const vec4 bit_shift = vec4( 256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0 );", "const vec4 bit_mask = vec4( 0.0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0 );", "vec4 res = fract( depth * bit_shift );", "res -= res.xxyz * bit_mask;", "return res;", "}", "void main() {", "gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z );", //"gl_FragData[ 0 ] = pack_depth( gl_FragCoord.z / gl_FragCoord.w );", //"float z = ( ( gl_FragCoord.z / gl_FragCoord.w ) - 3.0 ) / ( 4000.0 - 3.0 );", //"gl_FragData[ 0 ] = pack_depth( z );", //"gl_FragData[ 0 ] = vec4( z, z, z, 1.0 );", "}" ].join("\n") } };/** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ THREE.WebGLRenderer = function ( parameters ) { console.log( 'THREE.WebGLRenderer', THREE.REVISION ); parameters = parameters || {}; var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElement( 'canvas' ), _precision = parameters.precision !== undefined ? parameters.precision : 'highp', _alpha = parameters.alpha !== undefined ? parameters.alpha : true, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _clearColor = parameters.clearColor !== undefined ? new THREE.Color( parameters.clearColor ) : new THREE.Color( 0x000000 ), _clearAlpha = parameters.clearAlpha !== undefined ? parameters.clearAlpha : 0, _maxLights = parameters.maxLights !== undefined ? parameters.maxLights : 4; // public properties this.domElement = _canvas; this.context = null; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; this.autoUpdateObjects = true; this.autoUpdateScene = true; // physically based shading this.gammaInput = false; this.gammaOutput = false; this.physicallyBasedShading = false; // shadow map this.shadowMapEnabled = false; this.shadowMapAutoUpdate = true; this.shadowMapSoft = true; this.shadowMapCullFrontFaces = true; this.shadowMapDebug = false; this.shadowMapCascade = false; // morphs this.maxMorphTargets = 8; this.maxMorphNormals = 4; // flags this.autoScaleCubemaps = true; // custom render plugins this.renderPluginsPre = []; this.renderPluginsPost = []; // info this.info = { memory: { programs: 0, geometries: 0, textures: 0 }, render: { calls: 0, vertices: 0, faces: 0, points: 0 } }; // internal properties var _this = this, _programs = [], _programs_counter = 0, // internal state cache _currentProgram = null, _currentFramebuffer = null, _currentMaterialId = -1, _currentGeometryGroupHash = null, _currentCamera = null, _geometryGroupCounter = 0, // GL state cache _oldDoubleSided = -1, _oldFlipSided = -1, _oldBlending = -1, _oldBlendEquation = -1, _oldBlendSrc = -1, _oldBlendDst = -1, _oldDepthTest = -1, _oldDepthWrite = -1, _oldPolygonOffset = null, _oldPolygonOffsetFactor = null, _oldPolygonOffsetUnits = null, _oldLineWidth = null, _viewportX = 0, _viewportY = 0, _viewportWidth = 0, _viewportHeight = 0, _currentWidth = 0, _currentHeight = 0, // frustum _frustum = new THREE.Frustum(), // camera matrices cache _projScreenMatrix = new THREE.Matrix4(), _projScreenMatrixPS = new THREE.Matrix4(), _vector3 = new THREE.Vector4(), // light arrays cache _direction = new THREE.Vector3(), _lightsNeedUpdate = true, _lights = { ambient: [ 0, 0, 0 ], directional: { length: 0, colors: new Array(), positions: new Array() }, point: { length: 0, colors: new Array(), positions: new Array(), distances: new Array() }, spot: { length: 0, colors: new Array(), positions: new Array(), distances: new Array(), directions: new Array(), angles: new Array(), exponents: new Array() } }; // initialize var _gl; var _glExtensionTextureFloat; var _glExtensionStandardDerivatives; var _glExtensionTextureFilterAnisotropic; initGL(); setDefaultGLState(); this.context = _gl; // GPU capabilities var _maxVertexTextures = _gl.getParameter( _gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ), _maxTextureSize = _gl.getParameter( _gl.MAX_TEXTURE_SIZE ), _maxCubemapSize = _gl.getParameter( _gl.MAX_CUBE_MAP_TEXTURE_SIZE ); var _maxAnisotropy = _glExtensionTextureFilterAnisotropic ? _gl.getParameter( _glExtensionTextureFilterAnisotropic.MAX_TEXTURE_MAX_ANISOTROPY_EXT ) : 0; var _supportsVertexTextures = ( _maxVertexTextures > 0 ); var _supportsBoneTextures = _supportsVertexTextures && _glExtensionTextureFloat; // API this.getContext = function () { return _gl; }; this.supportsVertexTextures = function () { return _supportsVertexTextures; }; this.getMaxAnisotropy = function () { return _maxAnisotropy; }; this.setSize = function ( width, height ) { _canvas.width = width; _canvas.height = height; this.setViewport( 0, 0, _canvas.width, _canvas.height ); }; this.setViewport = function ( x, y, width, height ) { _viewportX = x; _viewportY = y; _viewportWidth = width; _viewportHeight = height; _gl.viewport( _viewportX, _viewportY, _viewportWidth, _viewportHeight ); }; this.setScissor = function ( x, y, width, height ) { _gl.scissor( x, y, width, height ); }; this.enableScissorTest = function ( enable ) { enable ? _gl.enable( _gl.SCISSOR_TEST ) : _gl.disable( _gl.SCISSOR_TEST ); }; // Clearing this.setClearColorHex = function ( hex, alpha ) { _clearColor.setHex( hex ); _clearAlpha = alpha; _gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.setClearColor = function ( color, alpha ) { _clearColor.copy( color ); _clearAlpha = alpha; _gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; this.getClearColor = function () { return _clearColor; }; this.getClearAlpha = function () { return _clearAlpha; }; this.clear = function ( color, depth, stencil ) { var bits = 0; if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT; if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT; if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT; _gl.clear( bits ); }; this.clearTarget = function ( renderTarget, color, depth, stencil ) { this.setRenderTarget( renderTarget ); this.clear( color, depth, stencil ); }; // Plugins this.addPostPlugin = function ( plugin ) { plugin.init( this ); this.renderPluginsPost.push( plugin ); }; this.addPrePlugin = function ( plugin ) { plugin.init( this ); this.renderPluginsPre.push( plugin ); }; // Deallocation this.deallocateObject = function ( object ) { if ( ! object.__webglInit ) return; object.__webglInit = false; delete object._modelViewMatrix; delete object._normalMatrix; delete object._normalMatrixArray; delete object._modelViewMatrixArray; delete object._objectMatrixArray; if ( object instanceof THREE.Mesh ) { for ( var g in object.geometry.geometryGroups ) { deleteMeshBuffers( object.geometry.geometryGroups[ g ] ); } } else if ( object instanceof THREE.Ribbon ) { deleteRibbonBuffers( object.geometry ); } else if ( object instanceof THREE.Line ) { deleteLineBuffers( object.geometry ); } else if ( object instanceof THREE.ParticleSystem ) { deleteParticleBuffers( object.geometry ); } }; this.deallocateTexture = function ( texture ) { if ( ! texture.__webglInit ) return; texture.__webglInit = false; _gl.deleteTexture( texture.__webglTexture ); _this.info.memory.textures --; }; this.deallocateRenderTarget = function ( renderTarget ) { if ( !renderTarget || ! renderTarget.__webglTexture ) return; _gl.deleteTexture( renderTarget.__webglTexture ); if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) { for ( var i = 0; i < 6; i ++ ) { _gl.deleteFramebuffer( renderTarget.__webglFramebuffer[ i ] ); _gl.deleteRenderbuffer( renderTarget.__webglRenderbuffer[ i ] ); } } else { _gl.deleteFramebuffer( renderTarget.__webglFramebuffer ); _gl.deleteRenderbuffer( renderTarget.__webglRenderbuffer ); } }; this.deallocateMaterial = function ( material ) { var program = material.program; if ( ! program ) return; material.program = undefined; // only deallocate GL program if this was the last use of shared program // assumed there is only single copy of any program in the _programs list // (that's how it's constructed) var i, il, programInfo; var deleteProgram = false; for ( i = 0, il = _programs.length; i < il; i ++ ) { programInfo = _programs[ i ]; if ( programInfo.program === program ) { programInfo.usedTimes --; if ( programInfo.usedTimes === 0 ) { deleteProgram = true; } break; } } if ( deleteProgram ) { // avoid using array.splice, this is costlier than creating new array from scratch var newPrograms = []; for ( i = 0, il = _programs.length; i < il; i ++ ) { programInfo = _programs[ i ]; if ( programInfo.program !== program ) { newPrograms.push( programInfo ); } } _programs = newPrograms; _gl.deleteProgram( program ); _this.info.memory.programs --; } }; // Rendering this.updateShadowMap = function ( scene, camera ) { _currentProgram = null; _oldBlending = -1; _oldDepthTest = -1; _oldDepthWrite = -1; _currentGeometryGroupHash = -1; _currentMaterialId = -1; _lightsNeedUpdate = true; _oldDoubleSided = -1; _oldFlipSided = -1; this.shadowMapPlugin.update( scene, camera ); }; // Internal functions // Buffer allocation function createParticleBuffers ( geometry ) { geometry.__webglVertexBuffer = _gl.createBuffer(); geometry.__webglColorBuffer = _gl.createBuffer(); _this.info.geometries ++; }; function createLineBuffers ( geometry ) { geometry.__webglVertexBuffer = _gl.createBuffer(); geometry.__webglColorBuffer = _gl.createBuffer(); _this.info.memory.geometries ++; }; function createRibbonBuffers ( geometry ) { geometry.__webglVertexBuffer = _gl.createBuffer(); geometry.__webglColorBuffer = _gl.createBuffer(); _this.info.memory.geometries ++; }; function createMeshBuffers ( geometryGroup ) { geometryGroup.__webglVertexBuffer = _gl.createBuffer(); geometryGroup.__webglNormalBuffer = _gl.createBuffer(); geometryGroup.__webglTangentBuffer = _gl.createBuffer(); geometryGroup.__webglColorBuffer = _gl.createBuffer(); geometryGroup.__webglUVBuffer = _gl.createBuffer(); geometryGroup.__webglUV2Buffer = _gl.createBuffer(); geometryGroup.__webglSkinVertexABuffer = _gl.createBuffer(); geometryGroup.__webglSkinVertexBBuffer = _gl.createBuffer(); geometryGroup.__webglSkinIndicesBuffer = _gl.createBuffer(); geometryGroup.__webglSkinWeightsBuffer = _gl.createBuffer(); geometryGroup.__webglFaceBuffer = _gl.createBuffer(); geometryGroup.__webglLineBuffer = _gl.createBuffer(); var m, ml; if ( geometryGroup.numMorphTargets ) { geometryGroup.__webglMorphTargetsBuffers = []; for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) { geometryGroup.__webglMorphTargetsBuffers.push( _gl.createBuffer() ); } } if ( geometryGroup.numMorphNormals ) { geometryGroup.__webglMorphNormalsBuffers = []; for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) { geometryGroup.__webglMorphNormalsBuffers.push( _gl.createBuffer() ); } } _this.info.memory.geometries ++; }; // Buffer deallocation function deleteParticleBuffers ( geometry ) { _gl.deleteBuffer( geometry.__webglVertexBuffer ); _gl.deleteBuffer( geometry.__webglColorBuffer ); _this.info.memory.geometries --; }; function deleteLineBuffers ( geometry ) { _gl.deleteBuffer( geometry.__webglVertexBuffer ); _gl.deleteBuffer( geometry.__webglColorBuffer ); _this.info.memory.geometries --; }; function deleteRibbonBuffers ( geometry ) { _gl.deleteBuffer( geometry.__webglVertexBuffer ); _gl.deleteBuffer( geometry.__webglColorBuffer ); _this.info.memory.geometries --; }; function deleteMeshBuffers ( geometryGroup ) { _gl.deleteBuffer( geometryGroup.__webglVertexBuffer ); _gl.deleteBuffer( geometryGroup.__webglNormalBuffer ); _gl.deleteBuffer( geometryGroup.__webglTangentBuffer ); _gl.deleteBuffer( geometryGroup.__webglColorBuffer ); _gl.deleteBuffer( geometryGroup.__webglUVBuffer ); _gl.deleteBuffer( geometryGroup.__webglUV2Buffer ); _gl.deleteBuffer( geometryGroup.__webglSkinVertexABuffer ); _gl.deleteBuffer( geometryGroup.__webglSkinVertexBBuffer ); _gl.deleteBuffer( geometryGroup.__webglSkinIndicesBuffer ); _gl.deleteBuffer( geometryGroup.__webglSkinWeightsBuffer ); _gl.deleteBuffer( geometryGroup.__webglFaceBuffer ); _gl.deleteBuffer( geometryGroup.__webglLineBuffer ); var m, ml; if ( geometryGroup.numMorphTargets ) { for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) { _gl.deleteBuffer( geometryGroup.__webglMorphTargetsBuffers[ m ] ); } } if ( geometryGroup.numMorphNormals ) { for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) { _gl.deleteBuffer( geometryGroup.__webglMorphNormalsBuffers[ m ] ); } } if ( geometryGroup.__webglCustomAttributesList ) { for ( var id in geometryGroup.__webglCustomAttributesList ) { _gl.deleteBuffer( geometryGroup.__webglCustomAttributesList[ id ].buffer ); } } _this.info.memory.geometries --; }; // Buffer initialization function initCustomAttributes ( geometry, object ) { var nvertices = geometry.vertices.length; var material = object.material; if ( material.attributes ) { if ( geometry.__webglCustomAttributesList === undefined ) { geometry.__webglCustomAttributesList = []; } for ( var a in material.attributes ) { var attribute = material.attributes[ a ]; if( !attribute.__webglInitialized || attribute.createUniqueBuffers ) { attribute.__webglInitialized = true; var size = 1; // "f" and "i" if ( attribute.type === "v2" ) size = 2; else if ( attribute.type === "v3" ) size = 3; else if ( attribute.type === "v4" ) size = 4; else if ( attribute.type === "c" ) size = 3; attribute.size = size; attribute.array = new Float32Array( nvertices * size ); attribute.buffer = _gl.createBuffer(); attribute.buffer.belongsToAttribute = a; attribute.needsUpdate = true; } geometry.__webglCustomAttributesList.push( attribute ); } } }; function initParticleBuffers ( geometry, object ) { var nvertices = geometry.vertices.length; geometry.__vertexArray = new Float32Array( nvertices * 3 ); geometry.__colorArray = new Float32Array( nvertices * 3 ); geometry.__sortArray = []; geometry.__webglParticleCount = nvertices; initCustomAttributes ( geometry, object ); }; function initLineBuffers ( geometry, object ) { var nvertices = geometry.vertices.length; geometry.__vertexArray = new Float32Array( nvertices * 3 ); geometry.__colorArray = new Float32Array( nvertices * 3 ); geometry.__webglLineCount = nvertices; initCustomAttributes ( geometry, object ); }; function initRibbonBuffers ( geometry ) { var nvertices = geometry.vertices.length; geometry.__vertexArray = new Float32Array( nvertices * 3 ); geometry.__colorArray = new Float32Array( nvertices * 3 ); geometry.__webglVertexCount = nvertices; }; function initMeshBuffers ( geometryGroup, object ) { var geometry = object.geometry, faces3 = geometryGroup.faces3, faces4 = geometryGroup.faces4, nvertices = faces3.length * 3 + faces4.length * 4, ntris = faces3.length * 1 + faces4.length * 2, nlines = faces3.length * 3 + faces4.length * 4, material = getBufferMaterial( object, geometryGroup ), uvType = bufferGuessUVType( material ), normalType = bufferGuessNormalType( material ), vertexColorType = bufferGuessVertexColorType( material ); //console.log( "uvType", uvType, "normalType", normalType, "vertexColorType", vertexColorType, object, geometryGroup, material ); geometryGroup.__vertexArray = new Float32Array( nvertices * 3 ); if ( normalType ) { geometryGroup.__normalArray = new Float32Array( nvertices * 3 ); } if ( geometry.hasTangents ) { geometryGroup.__tangentArray = new Float32Array( nvertices * 4 ); } if ( vertexColorType ) { geometryGroup.__colorArray = new Float32Array( nvertices * 3 ); } if ( uvType ) { if ( geometry.faceUvs.length > 0 || geometry.faceVertexUvs.length > 0 ) { geometryGroup.__uvArray = new Float32Array( nvertices * 2 ); } if ( geometry.faceUvs.length > 1 || geometry.faceVertexUvs.length > 1 ) { geometryGroup.__uv2Array = new Float32Array( nvertices * 2 ); } } if ( object.geometry.skinWeights.length && object.geometry.skinIndices.length ) { geometryGroup.__skinVertexAArray = new Float32Array( nvertices * 4 ); geometryGroup.__skinVertexBArray = new Float32Array( nvertices * 4 ); geometryGroup.__skinIndexArray = new Float32Array( nvertices * 4 ); geometryGroup.__skinWeightArray = new Float32Array( nvertices * 4 ); } geometryGroup.__faceArray = new Uint16Array( ntris * 3 ); geometryGroup.__lineArray = new Uint16Array( nlines * 2 ); var m, ml; if ( geometryGroup.numMorphTargets ) { geometryGroup.__morphTargetsArrays = []; for ( m = 0, ml = geometryGroup.numMorphTargets; m < ml; m ++ ) { geometryGroup.__morphTargetsArrays.push( new Float32Array( nvertices * 3 ) ); } } if ( geometryGroup.numMorphNormals ) { geometryGroup.__morphNormalsArrays = []; for ( m = 0, ml = geometryGroup.numMorphNormals; m < ml; m ++ ) { geometryGroup.__morphNormalsArrays.push( new Float32Array( nvertices * 3 ) ); } } geometryGroup.__webglFaceCount = ntris * 3; geometryGroup.__webglLineCount = nlines * 2; // custom attributes if ( material.attributes ) { if ( geometryGroup.__webglCustomAttributesList === undefined ) { geometryGroup.__webglCustomAttributesList = []; } for ( var a in material.attributes ) { // Do a shallow copy of the attribute object so different geometryGroup chunks use different // attribute buffers which are correctly indexed in the setMeshBuffers function var originalAttribute = material.attributes[ a ]; var attribute = {}; for ( var property in originalAttribute ) { attribute[ property ] = originalAttribute[ property ]; } if( !attribute.__webglInitialized || attribute.createUniqueBuffers ) { attribute.__webglInitialized = true; var size = 1; // "f" and "i" if( attribute.type === "v2" ) size = 2; else if( attribute.type === "v3" ) size = 3; else if( attribute.type === "v4" ) size = 4; else if( attribute.type === "c" ) size = 3; attribute.size = size; attribute.array = new Float32Array( nvertices * size ); attribute.buffer = _gl.createBuffer(); attribute.buffer.belongsToAttribute = a; originalAttribute.needsUpdate = true; attribute.__original = originalAttribute; } geometryGroup.__webglCustomAttributesList.push( attribute ); } } geometryGroup.__inittedArrays = true; }; function getBufferMaterial( object, geometryGroup ) { if ( object.material && ! ( object.material instanceof THREE.MeshFaceMaterial ) ) { return object.material; } else if ( geometryGroup.materialIndex >= 0 ) { return object.geometry.materials[ geometryGroup.materialIndex ]; } }; function materialNeedsSmoothNormals ( material ) { return material && material.shading !== undefined && material.shading === THREE.SmoothShading; }; function bufferGuessNormalType ( material ) { // only MeshBasicMaterial and MeshDepthMaterial don't need normals if ( ( material instanceof THREE.MeshBasicMaterial && !material.envMap ) || material instanceof THREE.MeshDepthMaterial ) { return false; } if ( materialNeedsSmoothNormals( material ) ) { return THREE.SmoothShading; } else { return THREE.FlatShading; } }; function bufferGuessVertexColorType ( material ) { if ( material.vertexColors ) { return material.vertexColors; } return false; }; function bufferGuessUVType ( material ) { // material must use some texture to require uvs if ( material.map || material.lightMap || material instanceof THREE.ShaderMaterial ) { return true; } return false; }; // function initDirectBuffers( geometry ) { var a, attribute, type; for ( a in geometry.attributes ) { if ( a === "index" ) { type = _gl.ELEMENT_ARRAY_BUFFER; } else { type = _gl.ARRAY_BUFFER; } attribute = geometry.attributes[ a ]; attribute.buffer = _gl.createBuffer(); _gl.bindBuffer( type, attribute.buffer ); _gl.bufferData( type, attribute.array, _gl.STATIC_DRAW ); } }; // Buffer setting function setParticleBuffers ( geometry, hint, object ) { var v, c, vertex, offset, index, color, vertices = geometry.vertices, vl = vertices.length, colors = geometry.colors, cl = colors.length, vertexArray = geometry.__vertexArray, colorArray = geometry.__colorArray, sortArray = geometry.__sortArray, dirtyVertices = geometry.verticesNeedUpdate, dirtyElements = geometry.elementsNeedUpdate, dirtyColors = geometry.colorsNeedUpdate, customAttributes = geometry.__webglCustomAttributesList, i, il, a, ca, cal, value, customAttribute; if ( object.sortParticles ) { _projScreenMatrixPS.copy( _projScreenMatrix ); _projScreenMatrixPS.multiplySelf( object.matrixWorld ); for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ]; _vector3.copy( vertex ); _projScreenMatrixPS.multiplyVector3( _vector3 ); sortArray[ v ] = [ _vector3.z, v ]; } sortArray.sort( function( a, b ) { return b[ 0 ] - a[ 0 ]; } ); for ( v = 0; v < vl; v ++ ) { vertex = vertices[ sortArray[v][1] ]; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } for ( c = 0; c < cl; c ++ ) { offset = c * 3; color = colors[ sortArray[c][1] ]; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( ! ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) ) continue; offset = 0; cal = customAttribute.value.length; if ( customAttribute.size === 1 ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; customAttribute.array[ ca ] = customAttribute.value[ index ]; } } else if ( customAttribute.size === 2 ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; offset += 2; } } else if ( customAttribute.size === 3 ) { if ( customAttribute.type === "c" ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.r; customAttribute.array[ offset + 1 ] = value.g; customAttribute.array[ offset + 2 ] = value.b; offset += 3; } } else { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; offset += 3; } } } else if ( customAttribute.size === 4 ) { for ( ca = 0; ca < cal; ca ++ ) { index = sortArray[ ca ][ 1 ]; value = customAttribute.value[ index ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; customAttribute.array[ offset + 3 ] = value.w; offset += 4; } } } } } else { if ( dirtyVertices ) { for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ]; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } } if ( dirtyColors ) { for ( c = 0; c < cl; c ++ ) { color = colors[ c ]; offset = c * 3; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( customAttribute.needsUpdate && ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices") ) { cal = customAttribute.value.length; offset = 0; if ( customAttribute.size === 1 ) { for ( ca = 0; ca < cal; ca ++ ) { customAttribute.array[ ca ] = customAttribute.value[ ca ]; } } else if ( customAttribute.size === 2 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; offset += 2; } } else if ( customAttribute.size === 3 ) { if ( customAttribute.type === "c" ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.r; customAttribute.array[ offset + 1 ] = value.g; customAttribute.array[ offset + 2 ] = value.b; offset += 3; } } else { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; offset += 3; } } } else if ( customAttribute.size === 4 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; customAttribute.array[ offset + 3 ] = value.w; offset += 4; } } } } } } if ( dirtyVertices || object.sortParticles ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyColors || object.sortParticles ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( customAttribute.needsUpdate || object.sortParticles ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint ); } } } }; function setLineBuffers ( geometry, hint ) { var v, c, vertex, offset, color, vertices = geometry.vertices, colors = geometry.colors, vl = vertices.length, cl = colors.length, vertexArray = geometry.__vertexArray, colorArray = geometry.__colorArray, dirtyVertices = geometry.verticesNeedUpdate, dirtyColors = geometry.colorsNeedUpdate, customAttributes = geometry.__webglCustomAttributesList, i, il, a, ca, cal, value, customAttribute; if ( dirtyVertices ) { for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ]; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyColors ) { for ( c = 0; c < cl; c ++ ) { color = colors[ c ]; offset = c * 3; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( customAttribute.needsUpdate && ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) ) { offset = 0; cal = customAttribute.value.length; if ( customAttribute.size === 1 ) { for ( ca = 0; ca < cal; ca ++ ) { customAttribute.array[ ca ] = customAttribute.value[ ca ]; } } else if ( customAttribute.size === 2 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; offset += 2; } } else if ( customAttribute.size === 3 ) { if ( customAttribute.type === "c" ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.r; customAttribute.array[ offset + 1 ] = value.g; customAttribute.array[ offset + 2 ] = value.b; offset += 3; } } else { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; offset += 3; } } } else if ( customAttribute.size === 4 ) { for ( ca = 0; ca < cal; ca ++ ) { value = customAttribute.value[ ca ]; customAttribute.array[ offset ] = value.x; customAttribute.array[ offset + 1 ] = value.y; customAttribute.array[ offset + 2 ] = value.z; customAttribute.array[ offset + 3 ] = value.w; offset += 4; } } _gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint ); } } } }; function setRibbonBuffers ( geometry, hint ) { var v, c, vertex, offset, color, vertices = geometry.vertices, colors = geometry.colors, vl = vertices.length, cl = colors.length, vertexArray = geometry.__vertexArray, colorArray = geometry.__colorArray, dirtyVertices = geometry.verticesNeedUpdate, dirtyColors = geometry.colorsNeedUpdate; if ( dirtyVertices ) { for ( v = 0; v < vl; v ++ ) { vertex = vertices[ v ]; offset = v * 3; vertexArray[ offset ] = vertex.x; vertexArray[ offset + 1 ] = vertex.y; vertexArray[ offset + 2 ] = vertex.z; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyColors ) { for ( c = 0; c < cl; c ++ ) { color = colors[ c ]; offset = c * 3; colorArray[ offset ] = color.r; colorArray[ offset + 1 ] = color.g; colorArray[ offset + 2 ] = color.b; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometry.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } }; function setMeshBuffers( geometryGroup, object, hint, dispose, material ) { if ( ! geometryGroup.__inittedArrays ) { // console.log( object ); return; } var normalType = bufferGuessNormalType( material ), vertexColorType = bufferGuessVertexColorType( material ), uvType = bufferGuessUVType( material ), needsSmoothNormals = ( normalType === THREE.SmoothShading ); var f, fl, fi, face, vertexNormals, faceNormal, normal, vertexColors, faceColor, vertexTangents, uv, uv2, v1, v2, v3, v4, t1, t2, t3, t4, n1, n2, n3, n4, c1, c2, c3, c4, sw1, sw2, sw3, sw4, si1, si2, si3, si4, sa1, sa2, sa3, sa4, sb1, sb2, sb3, sb4, m, ml, i, il, vn, uvi, uv2i, vk, vkl, vka, nka, chf, faceVertexNormals, a, vertexIndex = 0, offset = 0, offset_uv = 0, offset_uv2 = 0, offset_face = 0, offset_normal = 0, offset_tangent = 0, offset_line = 0, offset_color = 0, offset_skin = 0, offset_morphTarget = 0, offset_custom = 0, offset_customSrc = 0, value, vertexArray = geometryGroup.__vertexArray, uvArray = geometryGroup.__uvArray, uv2Array = geometryGroup.__uv2Array, normalArray = geometryGroup.__normalArray, tangentArray = geometryGroup.__tangentArray, colorArray = geometryGroup.__colorArray, skinVertexAArray = geometryGroup.__skinVertexAArray, skinVertexBArray = geometryGroup.__skinVertexBArray, skinIndexArray = geometryGroup.__skinIndexArray, skinWeightArray = geometryGroup.__skinWeightArray, morphTargetsArrays = geometryGroup.__morphTargetsArrays, morphNormalsArrays = geometryGroup.__morphNormalsArrays, customAttributes = geometryGroup.__webglCustomAttributesList, customAttribute, faceArray = geometryGroup.__faceArray, lineArray = geometryGroup.__lineArray, geometry = object.geometry, // this is shared for all chunks dirtyVertices = geometry.verticesNeedUpdate, dirtyElements = geometry.elementsNeedUpdate, dirtyUvs = geometry.uvsNeedUpdate, dirtyNormals = geometry.normalsNeedUpdate, dirtyTangents = geometry.tangentsNeedUpdate, dirtyColors = geometry.colorsNeedUpdate, dirtyMorphTargets = geometry.morphTargetsNeedUpdate, vertices = geometry.vertices, chunk_faces3 = geometryGroup.faces3, chunk_faces4 = geometryGroup.faces4, obj_faces = geometry.faces, obj_uvs = geometry.faceVertexUvs[ 0 ], obj_uvs2 = geometry.faceVertexUvs[ 1 ], obj_colors = geometry.colors, obj_skinVerticesA = geometry.skinVerticesA, obj_skinVerticesB = geometry.skinVerticesB, obj_skinIndices = geometry.skinIndices, obj_skinWeights = geometry.skinWeights, morphTargets = geometry.morphTargets, morphNormals = geometry.morphNormals; if ( dirtyVertices ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = vertices[ face.a ]; v2 = vertices[ face.b ]; v3 = vertices[ face.c ]; vertexArray[ offset ] = v1.x; vertexArray[ offset + 1 ] = v1.y; vertexArray[ offset + 2 ] = v1.z; vertexArray[ offset + 3 ] = v2.x; vertexArray[ offset + 4 ] = v2.y; vertexArray[ offset + 5 ] = v2.z; vertexArray[ offset + 6 ] = v3.x; vertexArray[ offset + 7 ] = v3.y; vertexArray[ offset + 8 ] = v3.z; offset += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; v1 = vertices[ face.a ]; v2 = vertices[ face.b ]; v3 = vertices[ face.c ]; v4 = vertices[ face.d ]; vertexArray[ offset ] = v1.x; vertexArray[ offset + 1 ] = v1.y; vertexArray[ offset + 2 ] = v1.z; vertexArray[ offset + 3 ] = v2.x; vertexArray[ offset + 4 ] = v2.y; vertexArray[ offset + 5 ] = v2.z; vertexArray[ offset + 6 ] = v3.x; vertexArray[ offset + 7 ] = v3.y; vertexArray[ offset + 8 ] = v3.z; vertexArray[ offset + 9 ] = v4.x; vertexArray[ offset + 10 ] = v4.y; vertexArray[ offset + 11 ] = v4.z; offset += 12; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, vertexArray, hint ); } if ( dirtyMorphTargets ) { for ( vk = 0, vkl = morphTargets.length; vk < vkl; vk ++ ) { offset_morphTarget = 0; for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { chf = chunk_faces3[ f ]; face = obj_faces[ chf ]; // morph positions v1 = morphTargets[ vk ].vertices[ face.a ]; v2 = morphTargets[ vk ].vertices[ face.b ]; v3 = morphTargets[ vk ].vertices[ face.c ]; vka = morphTargetsArrays[ vk ]; vka[ offset_morphTarget ] = v1.x; vka[ offset_morphTarget + 1 ] = v1.y; vka[ offset_morphTarget + 2 ] = v1.z; vka[ offset_morphTarget + 3 ] = v2.x; vka[ offset_morphTarget + 4 ] = v2.y; vka[ offset_morphTarget + 5 ] = v2.z; vka[ offset_morphTarget + 6 ] = v3.x; vka[ offset_morphTarget + 7 ] = v3.y; vka[ offset_morphTarget + 8 ] = v3.z; // morph normals if ( material.morphNormals ) { if ( needsSmoothNormals ) { faceVertexNormals = morphNormals[ vk ].vertexNormals[ chf ]; n1 = faceVertexNormals.a; n2 = faceVertexNormals.b; n3 = faceVertexNormals.c; } else { n1 = morphNormals[ vk ].faceNormals[ chf ]; n2 = n1; n3 = n1; } nka = morphNormalsArrays[ vk ]; nka[ offset_morphTarget ] = n1.x; nka[ offset_morphTarget + 1 ] = n1.y; nka[ offset_morphTarget + 2 ] = n1.z; nka[ offset_morphTarget + 3 ] = n2.x; nka[ offset_morphTarget + 4 ] = n2.y; nka[ offset_morphTarget + 5 ] = n2.z; nka[ offset_morphTarget + 6 ] = n3.x; nka[ offset_morphTarget + 7 ] = n3.y; nka[ offset_morphTarget + 8 ] = n3.z; } // offset_morphTarget += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { chf = chunk_faces4[ f ]; face = obj_faces[ chf ]; // morph positions v1 = morphTargets[ vk ].vertices[ face.a ]; v2 = morphTargets[ vk ].vertices[ face.b ]; v3 = morphTargets[ vk ].vertices[ face.c ]; v4 = morphTargets[ vk ].vertices[ face.d ]; vka = morphTargetsArrays[ vk ]; vka[ offset_morphTarget ] = v1.x; vka[ offset_morphTarget + 1 ] = v1.y; vka[ offset_morphTarget + 2 ] = v1.z; vka[ offset_morphTarget + 3 ] = v2.x; vka[ offset_morphTarget + 4 ] = v2.y; vka[ offset_morphTarget + 5 ] = v2.z; vka[ offset_morphTarget + 6 ] = v3.x; vka[ offset_morphTarget + 7 ] = v3.y; vka[ offset_morphTarget + 8 ] = v3.z; vka[ offset_morphTarget + 9 ] = v4.x; vka[ offset_morphTarget + 10 ] = v4.y; vka[ offset_morphTarget + 11 ] = v4.z; // morph normals if ( material.morphNormals ) { if ( needsSmoothNormals ) { faceVertexNormals = morphNormals[ vk ].vertexNormals[ chf ]; n1 = faceVertexNormals.a; n2 = faceVertexNormals.b; n3 = faceVertexNormals.c; n4 = faceVertexNormals.d; } else { n1 = morphNormals[ vk ].faceNormals[ chf ]; n2 = n1; n3 = n1; n4 = n1; } nka = morphNormalsArrays[ vk ]; nka[ offset_morphTarget ] = n1.x; nka[ offset_morphTarget + 1 ] = n1.y; nka[ offset_morphTarget + 2 ] = n1.z; nka[ offset_morphTarget + 3 ] = n2.x; nka[ offset_morphTarget + 4 ] = n2.y; nka[ offset_morphTarget + 5 ] = n2.z; nka[ offset_morphTarget + 6 ] = n3.x; nka[ offset_morphTarget + 7 ] = n3.y; nka[ offset_morphTarget + 8 ] = n3.z; nka[ offset_morphTarget + 9 ] = n4.x; nka[ offset_morphTarget + 10 ] = n4.y; nka[ offset_morphTarget + 11 ] = n4.z; } // offset_morphTarget += 12; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ vk ] ); _gl.bufferData( _gl.ARRAY_BUFFER, morphTargetsArrays[ vk ], hint ); if ( material.morphNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ vk ] ); _gl.bufferData( _gl.ARRAY_BUFFER, morphNormalsArrays[ vk ], hint ); } } } if ( obj_skinWeights.length ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; // weights sw1 = obj_skinWeights[ face.a ]; sw2 = obj_skinWeights[ face.b ]; sw3 = obj_skinWeights[ face.c ]; skinWeightArray[ offset_skin ] = sw1.x; skinWeightArray[ offset_skin + 1 ] = sw1.y; skinWeightArray[ offset_skin + 2 ] = sw1.z; skinWeightArray[ offset_skin + 3 ] = sw1.w; skinWeightArray[ offset_skin + 4 ] = sw2.x; skinWeightArray[ offset_skin + 5 ] = sw2.y; skinWeightArray[ offset_skin + 6 ] = sw2.z; skinWeightArray[ offset_skin + 7 ] = sw2.w; skinWeightArray[ offset_skin + 8 ] = sw3.x; skinWeightArray[ offset_skin + 9 ] = sw3.y; skinWeightArray[ offset_skin + 10 ] = sw3.z; skinWeightArray[ offset_skin + 11 ] = sw3.w; // indices si1 = obj_skinIndices[ face.a ]; si2 = obj_skinIndices[ face.b ]; si3 = obj_skinIndices[ face.c ]; skinIndexArray[ offset_skin ] = si1.x; skinIndexArray[ offset_skin + 1 ] = si1.y; skinIndexArray[ offset_skin + 2 ] = si1.z; skinIndexArray[ offset_skin + 3 ] = si1.w; skinIndexArray[ offset_skin + 4 ] = si2.x; skinIndexArray[ offset_skin + 5 ] = si2.y; skinIndexArray[ offset_skin + 6 ] = si2.z; skinIndexArray[ offset_skin + 7 ] = si2.w; skinIndexArray[ offset_skin + 8 ] = si3.x; skinIndexArray[ offset_skin + 9 ] = si3.y; skinIndexArray[ offset_skin + 10 ] = si3.z; skinIndexArray[ offset_skin + 11 ] = si3.w; // vertices A sa1 = obj_skinVerticesA[ face.a ]; sa2 = obj_skinVerticesA[ face.b ]; sa3 = obj_skinVerticesA[ face.c ]; skinVertexAArray[ offset_skin ] = sa1.x; skinVertexAArray[ offset_skin + 1 ] = sa1.y; skinVertexAArray[ offset_skin + 2 ] = sa1.z; skinVertexAArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader skinVertexAArray[ offset_skin + 4 ] = sa2.x; skinVertexAArray[ offset_skin + 5 ] = sa2.y; skinVertexAArray[ offset_skin + 6 ] = sa2.z; skinVertexAArray[ offset_skin + 7 ] = 1; skinVertexAArray[ offset_skin + 8 ] = sa3.x; skinVertexAArray[ offset_skin + 9 ] = sa3.y; skinVertexAArray[ offset_skin + 10 ] = sa3.z; skinVertexAArray[ offset_skin + 11 ] = 1; // vertices B sb1 = obj_skinVerticesB[ face.a ]; sb2 = obj_skinVerticesB[ face.b ]; sb3 = obj_skinVerticesB[ face.c ]; skinVertexBArray[ offset_skin ] = sb1.x; skinVertexBArray[ offset_skin + 1 ] = sb1.y; skinVertexBArray[ offset_skin + 2 ] = sb1.z; skinVertexBArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader skinVertexBArray[ offset_skin + 4 ] = sb2.x; skinVertexBArray[ offset_skin + 5 ] = sb2.y; skinVertexBArray[ offset_skin + 6 ] = sb2.z; skinVertexBArray[ offset_skin + 7 ] = 1; skinVertexBArray[ offset_skin + 8 ] = sb3.x; skinVertexBArray[ offset_skin + 9 ] = sb3.y; skinVertexBArray[ offset_skin + 10 ] = sb3.z; skinVertexBArray[ offset_skin + 11 ] = 1; offset_skin += 12; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; // weights sw1 = obj_skinWeights[ face.a ]; sw2 = obj_skinWeights[ face.b ]; sw3 = obj_skinWeights[ face.c ]; sw4 = obj_skinWeights[ face.d ]; skinWeightArray[ offset_skin ] = sw1.x; skinWeightArray[ offset_skin + 1 ] = sw1.y; skinWeightArray[ offset_skin + 2 ] = sw1.z; skinWeightArray[ offset_skin + 3 ] = sw1.w; skinWeightArray[ offset_skin + 4 ] = sw2.x; skinWeightArray[ offset_skin + 5 ] = sw2.y; skinWeightArray[ offset_skin + 6 ] = sw2.z; skinWeightArray[ offset_skin + 7 ] = sw2.w; skinWeightArray[ offset_skin + 8 ] = sw3.x; skinWeightArray[ offset_skin + 9 ] = sw3.y; skinWeightArray[ offset_skin + 10 ] = sw3.z; skinWeightArray[ offset_skin + 11 ] = sw3.w; skinWeightArray[ offset_skin + 12 ] = sw4.x; skinWeightArray[ offset_skin + 13 ] = sw4.y; skinWeightArray[ offset_skin + 14 ] = sw4.z; skinWeightArray[ offset_skin + 15 ] = sw4.w; // indices si1 = obj_skinIndices[ face.a ]; si2 = obj_skinIndices[ face.b ]; si3 = obj_skinIndices[ face.c ]; si4 = obj_skinIndices[ face.d ]; skinIndexArray[ offset_skin ] = si1.x; skinIndexArray[ offset_skin + 1 ] = si1.y; skinIndexArray[ offset_skin + 2 ] = si1.z; skinIndexArray[ offset_skin + 3 ] = si1.w; skinIndexArray[ offset_skin + 4 ] = si2.x; skinIndexArray[ offset_skin + 5 ] = si2.y; skinIndexArray[ offset_skin + 6 ] = si2.z; skinIndexArray[ offset_skin + 7 ] = si2.w; skinIndexArray[ offset_skin + 8 ] = si3.x; skinIndexArray[ offset_skin + 9 ] = si3.y; skinIndexArray[ offset_skin + 10 ] = si3.z; skinIndexArray[ offset_skin + 11 ] = si3.w; skinIndexArray[ offset_skin + 12 ] = si4.x; skinIndexArray[ offset_skin + 13 ] = si4.y; skinIndexArray[ offset_skin + 14 ] = si4.z; skinIndexArray[ offset_skin + 15 ] = si4.w; // vertices A sa1 = obj_skinVerticesA[ face.a ]; sa2 = obj_skinVerticesA[ face.b ]; sa3 = obj_skinVerticesA[ face.c ]; sa4 = obj_skinVerticesA[ face.d ]; skinVertexAArray[ offset_skin ] = sa1.x; skinVertexAArray[ offset_skin + 1 ] = sa1.y; skinVertexAArray[ offset_skin + 2 ] = sa1.z; skinVertexAArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader skinVertexAArray[ offset_skin + 4 ] = sa2.x; skinVertexAArray[ offset_skin + 5 ] = sa2.y; skinVertexAArray[ offset_skin + 6 ] = sa2.z; skinVertexAArray[ offset_skin + 7 ] = 1; skinVertexAArray[ offset_skin + 8 ] = sa3.x; skinVertexAArray[ offset_skin + 9 ] = sa3.y; skinVertexAArray[ offset_skin + 10 ] = sa3.z; skinVertexAArray[ offset_skin + 11 ] = 1; skinVertexAArray[ offset_skin + 12 ] = sa4.x; skinVertexAArray[ offset_skin + 13 ] = sa4.y; skinVertexAArray[ offset_skin + 14 ] = sa4.z; skinVertexAArray[ offset_skin + 15 ] = 1; // vertices B sb1 = obj_skinVerticesB[ face.a ]; sb2 = obj_skinVerticesB[ face.b ]; sb3 = obj_skinVerticesB[ face.c ]; sb4 = obj_skinVerticesB[ face.d ]; skinVertexBArray[ offset_skin ] = sb1.x; skinVertexBArray[ offset_skin + 1 ] = sb1.y; skinVertexBArray[ offset_skin + 2 ] = sb1.z; skinVertexBArray[ offset_skin + 3 ] = 1; // pad for faster vertex shader skinVertexBArray[ offset_skin + 4 ] = sb2.x; skinVertexBArray[ offset_skin + 5 ] = sb2.y; skinVertexBArray[ offset_skin + 6 ] = sb2.z; skinVertexBArray[ offset_skin + 7 ] = 1; skinVertexBArray[ offset_skin + 8 ] = sb3.x; skinVertexBArray[ offset_skin + 9 ] = sb3.y; skinVertexBArray[ offset_skin + 10 ] = sb3.z; skinVertexBArray[ offset_skin + 11 ] = 1; skinVertexBArray[ offset_skin + 12 ] = sb4.x; skinVertexBArray[ offset_skin + 13 ] = sb4.y; skinVertexBArray[ offset_skin + 14 ] = sb4.z; skinVertexBArray[ offset_skin + 15 ] = 1; offset_skin += 16; } if ( offset_skin > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexABuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinVertexAArray, hint ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexBBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinVertexBArray, hint ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinIndicesBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinIndexArray, hint ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinWeightsBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, skinWeightArray, hint ); } } if ( dirtyColors && vertexColorType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; vertexColors = face.vertexColors; faceColor = face.color; if ( vertexColors.length === 3 && vertexColorType === THREE.VertexColors ) { c1 = vertexColors[ 0 ]; c2 = vertexColors[ 1 ]; c3 = vertexColors[ 2 ]; } else { c1 = faceColor; c2 = faceColor; c3 = faceColor; } colorArray[ offset_color ] = c1.r; colorArray[ offset_color + 1 ] = c1.g; colorArray[ offset_color + 2 ] = c1.b; colorArray[ offset_color + 3 ] = c2.r; colorArray[ offset_color + 4 ] = c2.g; colorArray[ offset_color + 5 ] = c2.b; colorArray[ offset_color + 6 ] = c3.r; colorArray[ offset_color + 7 ] = c3.g; colorArray[ offset_color + 8 ] = c3.b; offset_color += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; vertexColors = face.vertexColors; faceColor = face.color; if ( vertexColors.length === 4 && vertexColorType === THREE.VertexColors ) { c1 = vertexColors[ 0 ]; c2 = vertexColors[ 1 ]; c3 = vertexColors[ 2 ]; c4 = vertexColors[ 3 ]; } else { c1 = faceColor; c2 = faceColor; c3 = faceColor; c4 = faceColor; } colorArray[ offset_color ] = c1.r; colorArray[ offset_color + 1 ] = c1.g; colorArray[ offset_color + 2 ] = c1.b; colorArray[ offset_color + 3 ] = c2.r; colorArray[ offset_color + 4 ] = c2.g; colorArray[ offset_color + 5 ] = c2.b; colorArray[ offset_color + 6 ] = c3.r; colorArray[ offset_color + 7 ] = c3.g; colorArray[ offset_color + 8 ] = c3.b; colorArray[ offset_color + 9 ] = c4.r; colorArray[ offset_color + 10 ] = c4.g; colorArray[ offset_color + 11 ] = c4.b; offset_color += 12; } if ( offset_color > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, colorArray, hint ); } } if ( dirtyTangents && geometry.hasTangents ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; vertexTangents = face.vertexTangents; t1 = vertexTangents[ 0 ]; t2 = vertexTangents[ 1 ]; t3 = vertexTangents[ 2 ]; tangentArray[ offset_tangent ] = t1.x; tangentArray[ offset_tangent + 1 ] = t1.y; tangentArray[ offset_tangent + 2 ] = t1.z; tangentArray[ offset_tangent + 3 ] = t1.w; tangentArray[ offset_tangent + 4 ] = t2.x; tangentArray[ offset_tangent + 5 ] = t2.y; tangentArray[ offset_tangent + 6 ] = t2.z; tangentArray[ offset_tangent + 7 ] = t2.w; tangentArray[ offset_tangent + 8 ] = t3.x; tangentArray[ offset_tangent + 9 ] = t3.y; tangentArray[ offset_tangent + 10 ] = t3.z; tangentArray[ offset_tangent + 11 ] = t3.w; offset_tangent += 12; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; vertexTangents = face.vertexTangents; t1 = vertexTangents[ 0 ]; t2 = vertexTangents[ 1 ]; t3 = vertexTangents[ 2 ]; t4 = vertexTangents[ 3 ]; tangentArray[ offset_tangent ] = t1.x; tangentArray[ offset_tangent + 1 ] = t1.y; tangentArray[ offset_tangent + 2 ] = t1.z; tangentArray[ offset_tangent + 3 ] = t1.w; tangentArray[ offset_tangent + 4 ] = t2.x; tangentArray[ offset_tangent + 5 ] = t2.y; tangentArray[ offset_tangent + 6 ] = t2.z; tangentArray[ offset_tangent + 7 ] = t2.w; tangentArray[ offset_tangent + 8 ] = t3.x; tangentArray[ offset_tangent + 9 ] = t3.y; tangentArray[ offset_tangent + 10 ] = t3.z; tangentArray[ offset_tangent + 11 ] = t3.w; tangentArray[ offset_tangent + 12 ] = t4.x; tangentArray[ offset_tangent + 13 ] = t4.y; tangentArray[ offset_tangent + 14 ] = t4.z; tangentArray[ offset_tangent + 15 ] = t4.w; offset_tangent += 16; } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglTangentBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, tangentArray, hint ); } if ( dirtyNormals && normalType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; vertexNormals = face.vertexNormals; faceNormal = face.normal; if ( vertexNormals.length === 3 && needsSmoothNormals ) { for ( i = 0; i < 3; i ++ ) { vn = vertexNormals[ i ]; normalArray[ offset_normal ] = vn.x; normalArray[ offset_normal + 1 ] = vn.y; normalArray[ offset_normal + 2 ] = vn.z; offset_normal += 3; } } else { for ( i = 0; i < 3; i ++ ) { normalArray[ offset_normal ] = faceNormal.x; normalArray[ offset_normal + 1 ] = faceNormal.y; normalArray[ offset_normal + 2 ] = faceNormal.z; offset_normal += 3; } } } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; vertexNormals = face.vertexNormals; faceNormal = face.normal; if ( vertexNormals.length === 4 && needsSmoothNormals ) { for ( i = 0; i < 4; i ++ ) { vn = vertexNormals[ i ]; normalArray[ offset_normal ] = vn.x; normalArray[ offset_normal + 1 ] = vn.y; normalArray[ offset_normal + 2 ] = vn.z; offset_normal += 3; } } else { for ( i = 0; i < 4; i ++ ) { normalArray[ offset_normal ] = faceNormal.x; normalArray[ offset_normal + 1 ] = faceNormal.y; normalArray[ offset_normal + 2 ] = faceNormal.z; offset_normal += 3; } } } _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglNormalBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, normalArray, hint ); } if ( dirtyUvs && obj_uvs && uvType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { fi = chunk_faces3[ f ]; face = obj_faces[ fi ]; uv = obj_uvs[ fi ]; if ( uv === undefined ) continue; for ( i = 0; i < 3; i ++ ) { uvi = uv[ i ]; uvArray[ offset_uv ] = uvi.u; uvArray[ offset_uv + 1 ] = uvi.v; offset_uv += 2; } } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { fi = chunk_faces4[ f ]; face = obj_faces[ fi ]; uv = obj_uvs[ fi ]; if ( uv === undefined ) continue; for ( i = 0; i < 4; i ++ ) { uvi = uv[ i ]; uvArray[ offset_uv ] = uvi.u; uvArray[ offset_uv + 1 ] = uvi.v; offset_uv += 2; } } if ( offset_uv > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUVBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, uvArray, hint ); } } if ( dirtyUvs && obj_uvs2 && uvType ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { fi = chunk_faces3[ f ]; face = obj_faces[ fi ]; uv2 = obj_uvs2[ fi ]; if ( uv2 === undefined ) continue; for ( i = 0; i < 3; i ++ ) { uv2i = uv2[ i ]; uv2Array[ offset_uv2 ] = uv2i.u; uv2Array[ offset_uv2 + 1 ] = uv2i.v; offset_uv2 += 2; } } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { fi = chunk_faces4[ f ]; face = obj_faces[ fi ]; uv2 = obj_uvs2[ fi ]; if ( uv2 === undefined ) continue; for ( i = 0; i < 4; i ++ ) { uv2i = uv2[ i ]; uv2Array[ offset_uv2 ] = uv2i.u; uv2Array[ offset_uv2 + 1 ] = uv2i.v; offset_uv2 += 2; } } if ( offset_uv2 > 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUV2Buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, uv2Array, hint ); } } if ( dirtyElements ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; faceArray[ offset_face ] = vertexIndex; faceArray[ offset_face + 1 ] = vertexIndex + 1; faceArray[ offset_face + 2 ] = vertexIndex + 2; offset_face += 3; lineArray[ offset_line ] = vertexIndex; lineArray[ offset_line + 1 ] = vertexIndex + 1; lineArray[ offset_line + 2 ] = vertexIndex; lineArray[ offset_line + 3 ] = vertexIndex + 2; lineArray[ offset_line + 4 ] = vertexIndex + 1; lineArray[ offset_line + 5 ] = vertexIndex + 2; offset_line += 6; vertexIndex += 3; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; faceArray[ offset_face ] = vertexIndex; faceArray[ offset_face + 1 ] = vertexIndex + 1; faceArray[ offset_face + 2 ] = vertexIndex + 3; faceArray[ offset_face + 3 ] = vertexIndex + 1; faceArray[ offset_face + 4 ] = vertexIndex + 2; faceArray[ offset_face + 5 ] = vertexIndex + 3; offset_face += 6; lineArray[ offset_line ] = vertexIndex; lineArray[ offset_line + 1 ] = vertexIndex + 1; lineArray[ offset_line + 2 ] = vertexIndex; lineArray[ offset_line + 3 ] = vertexIndex + 3; lineArray[ offset_line + 4 ] = vertexIndex + 1; lineArray[ offset_line + 5 ] = vertexIndex + 2; lineArray[ offset_line + 6 ] = vertexIndex + 2; lineArray[ offset_line + 7 ] = vertexIndex + 3; offset_line += 8; vertexIndex += 4; } _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglFaceBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, faceArray, hint ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglLineBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, lineArray, hint ); } if ( customAttributes ) { for ( i = 0, il = customAttributes.length; i < il; i ++ ) { customAttribute = customAttributes[ i ]; if ( ! customAttribute.__original.needsUpdate ) continue; offset_custom = 0; offset_customSrc = 0; if ( customAttribute.size === 1 ) { if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; customAttribute.array[ offset_custom ] = customAttribute.value[ face.a ]; customAttribute.array[ offset_custom + 1 ] = customAttribute.value[ face.b ]; customAttribute.array[ offset_custom + 2 ] = customAttribute.value[ face.c ]; offset_custom += 3; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; customAttribute.array[ offset_custom ] = customAttribute.value[ face.a ]; customAttribute.array[ offset_custom + 1 ] = customAttribute.value[ face.b ]; customAttribute.array[ offset_custom + 2 ] = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom + 3 ] = customAttribute.value[ face.d ]; offset_custom += 4; } } else if ( customAttribute.boundTo === "faces" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; customAttribute.array[ offset_custom ] = value; customAttribute.array[ offset_custom + 1 ] = value; customAttribute.array[ offset_custom + 2 ] = value; offset_custom += 3; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces4[ f ] ]; customAttribute.array[ offset_custom ] = value; customAttribute.array[ offset_custom + 1 ] = value; customAttribute.array[ offset_custom + 2 ] = value; customAttribute.array[ offset_custom + 3 ] = value; offset_custom += 4; } } } else if ( customAttribute.size === 2 ) { if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; offset_custom += 6; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; v4 = customAttribute.value[ face.d ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; customAttribute.array[ offset_custom + 6 ] = v4.x; customAttribute.array[ offset_custom + 7 ] = v4.y; offset_custom += 8; } } else if ( customAttribute.boundTo === "faces" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value; v2 = value; v3 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; offset_custom += 6; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces4[ f ] ]; v1 = value; v2 = value; v3 = value; v4 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v2.x; customAttribute.array[ offset_custom + 3 ] = v2.y; customAttribute.array[ offset_custom + 4 ] = v3.x; customAttribute.array[ offset_custom + 5 ] = v3.y; customAttribute.array[ offset_custom + 6 ] = v4.x; customAttribute.array[ offset_custom + 7 ] = v4.y; offset_custom += 8; } } } else if ( customAttribute.size === 3 ) { var pp; if ( customAttribute.type === "c" ) { pp = [ "r", "g", "b" ]; } else { pp = [ "x", "y", "z" ]; } if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; offset_custom += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; v4 = customAttribute.value[ face.d ]; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 9 ] = v4[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 10 ] = v4[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 11 ] = v4[ pp[ 2 ] ]; offset_custom += 12; } } else if ( customAttribute.boundTo === "faces" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value; v2 = value; v3 = value; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; offset_custom += 9; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces4[ f ] ]; v1 = value; v2 = value; v3 = value; v4 = value; customAttribute.array[ offset_custom ] = v1[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 1 ] = v1[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 2 ] = v1[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 3 ] = v2[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 4 ] = v2[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 5 ] = v2[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 6 ] = v3[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 7 ] = v3[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 8 ] = v3[ pp[ 2 ] ]; customAttribute.array[ offset_custom + 9 ] = v4[ pp[ 0 ] ]; customAttribute.array[ offset_custom + 10 ] = v4[ pp[ 1 ] ]; customAttribute.array[ offset_custom + 11 ] = v4[ pp[ 2 ] ]; offset_custom += 12; } } } else if ( customAttribute.size === 4 ) { if ( customAttribute.boundTo === undefined || customAttribute.boundTo === "vertices" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces3[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; offset_custom += 12; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { face = obj_faces[ chunk_faces4[ f ] ]; v1 = customAttribute.value[ face.a ]; v2 = customAttribute.value[ face.b ]; v3 = customAttribute.value[ face.c ]; v4 = customAttribute.value[ face.d ]; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; customAttribute.array[ offset_custom + 12 ] = v4.x; customAttribute.array[ offset_custom + 13 ] = v4.y; customAttribute.array[ offset_custom + 14 ] = v4.z; customAttribute.array[ offset_custom + 15 ] = v4.w; offset_custom += 16; } } else if ( customAttribute.boundTo === "faces" ) { for ( f = 0, fl = chunk_faces3.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces3[ f ] ]; v1 = value; v2 = value; v3 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; offset_custom += 12; } for ( f = 0, fl = chunk_faces4.length; f < fl; f ++ ) { value = customAttribute.value[ chunk_faces4[ f ] ]; v1 = value; v2 = value; v3 = value; v4 = value; customAttribute.array[ offset_custom ] = v1.x; customAttribute.array[ offset_custom + 1 ] = v1.y; customAttribute.array[ offset_custom + 2 ] = v1.z; customAttribute.array[ offset_custom + 3 ] = v1.w; customAttribute.array[ offset_custom + 4 ] = v2.x; customAttribute.array[ offset_custom + 5 ] = v2.y; customAttribute.array[ offset_custom + 6 ] = v2.z; customAttribute.array[ offset_custom + 7 ] = v2.w; customAttribute.array[ offset_custom + 8 ] = v3.x; customAttribute.array[ offset_custom + 9 ] = v3.y; customAttribute.array[ offset_custom + 10 ] = v3.z; customAttribute.array[ offset_custom + 11 ] = v3.w; customAttribute.array[ offset_custom + 12 ] = v4.x; customAttribute.array[ offset_custom + 13 ] = v4.y; customAttribute.array[ offset_custom + 14 ] = v4.z; customAttribute.array[ offset_custom + 15 ] = v4.w; offset_custom += 16; } } } _gl.bindBuffer( _gl.ARRAY_BUFFER, customAttribute.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, customAttribute.array, hint ); } } if ( dispose ) { delete geometryGroup.__inittedArrays; delete geometryGroup.__colorArray; delete geometryGroup.__normalArray; delete geometryGroup.__tangentArray; delete geometryGroup.__uvArray; delete geometryGroup.__uv2Array; delete geometryGroup.__faceArray; delete geometryGroup.__vertexArray; delete geometryGroup.__lineArray; delete geometryGroup.__skinVertexAArray; delete geometryGroup.__skinVertexBArray; delete geometryGroup.__skinIndexArray; delete geometryGroup.__skinWeightArray; } }; function setDirectBuffers ( geometry, hint, dispose ) { var attributes = geometry.attributes; var index = attributes[ "index" ]; var position = attributes[ "position" ]; var normal = attributes[ "normal" ]; var uv = attributes[ "uv" ]; var color = attributes[ "color" ]; var tangent = attributes[ "tangent" ]; if ( geometry.elementsNeedUpdate && index !== undefined ) { _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, index.buffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, index.array, hint ); } if ( geometry.verticesNeedUpdate && position !== undefined ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, position.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, position.array, hint ); } if ( geometry.normalsNeedUpdate && normal !== undefined ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, normal.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, normal.array, hint ); } if ( geometry.uvsNeedUpdate && uv !== undefined ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, uv.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, uv.array, hint ); } if ( geometry.colorsNeedUpdate && color !== undefined ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, color.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, color.array, hint ); } if ( geometry.tangentsNeedUpdate && tangent !== undefined ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, tangent.buffer ); _gl.bufferData( _gl.ARRAY_BUFFER, tangent.array, hint ); } if ( dispose ) { for ( var i in geometry.attributes ) { delete geometry.attributes[ i ].array; } } }; // Buffer rendering this.renderBufferImmediate = function ( object, program, material ) { if ( object.hasPositions && ! object.__webglVertexBuffer ) object.__webglVertexBuffer = _gl.createBuffer(); if ( object.hasNormals && ! object.__webglNormalBuffer ) object.__webglNormalBuffer = _gl.createBuffer(); if ( object.hasUvs && ! object.__webglUvBuffer ) object.__webglUvBuffer = _gl.createBuffer(); if ( object.hasColors && ! object.__webglColorBuffer ) object.__webglColorBuffer = _gl.createBuffer(); if ( object.hasPositions ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglVertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW ); _gl.enableVertexAttribArray( program.attributes.position ); _gl.vertexAttribPointer( program.attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglNormalBuffer ); if ( material.shading === THREE.FlatShading ) { var nx, ny, nz, nax, nbx, ncx, nay, nby, ncy, naz, nbz, ncz, normalArray, i, il = object.count * 3; for( i = 0; i < il; i += 9 ) { normalArray = object.normalArray; nax = normalArray[ i ]; nay = normalArray[ i + 1 ]; naz = normalArray[ i + 2 ]; nbx = normalArray[ i + 3 ]; nby = normalArray[ i + 4 ]; nbz = normalArray[ i + 5 ]; ncx = normalArray[ i + 6 ]; ncy = normalArray[ i + 7 ]; ncz = normalArray[ i + 8 ]; nx = ( nax + nbx + ncx ) / 3; ny = ( nay + nby + ncy ) / 3; nz = ( naz + nbz + ncz ) / 3; normalArray[ i ] = nx; normalArray[ i + 1 ] = ny; normalArray[ i + 2 ] = nz; normalArray[ i + 3 ] = nx; normalArray[ i + 4 ] = ny; normalArray[ i + 5 ] = nz; normalArray[ i + 6 ] = nx; normalArray[ i + 7 ] = ny; normalArray[ i + 8 ] = nz; } } _gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW ); _gl.enableVertexAttribArray( program.attributes.normal ); _gl.vertexAttribPointer( program.attributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.hasUvs && material.map ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglUvBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW ); _gl.enableVertexAttribArray( program.attributes.uv ); _gl.vertexAttribPointer( program.attributes.uv, 2, _gl.FLOAT, false, 0, 0 ); } if ( object.hasColors && material.vertexColors !== THREE.NoColors ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, object.__webglColorBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW ); _gl.enableVertexAttribArray( program.attributes.color ); _gl.vertexAttribPointer( program.attributes.color, 3, _gl.FLOAT, false, 0, 0 ); } _gl.drawArrays( _gl.TRIANGLES, 0, object.count ); object.count = 0; }; this.renderBufferDirect = function ( camera, lights, fog, material, geometry, object ) { if ( material.visible === false ) return; var program, attributes, linewidth, primitives, a, attribute; program = setProgram( camera, lights, fog, material, object ); attributes = program.attributes; var updateBuffers = false, wireframeBit = material.wireframe ? 1 : 0, geometryHash = ( geometry.id * 0xffffff ) + ( program.id * 2 ) + wireframeBit; if ( geometryHash !== _currentGeometryGroupHash ) { _currentGeometryGroupHash = geometryHash; updateBuffers = true; } // render mesh if ( object instanceof THREE.Mesh ) { var offsets = geometry.offsets; // if there is more than 1 chunk // must set attribute pointers to use new offsets for each chunk // even if geometry and materials didn't change if ( offsets.length > 1 ) updateBuffers = true; for ( var i = 0, il = offsets.length; i < il; ++ i ) { var startIndex = offsets[ i ].index; if ( updateBuffers ) { // vertices var position = geometry.attributes[ "position" ]; var positionSize = position.itemSize; _gl.bindBuffer( _gl.ARRAY_BUFFER, position.buffer ); _gl.vertexAttribPointer( attributes.position, positionSize, _gl.FLOAT, false, 0, startIndex * positionSize * 4 ); // 4 bytes per Float32 // normals var normal = geometry.attributes[ "normal" ]; if ( attributes.normal >= 0 && normal ) { var normalSize = normal.itemSize; _gl.bindBuffer( _gl.ARRAY_BUFFER, normal.buffer ); _gl.vertexAttribPointer( attributes.normal, normalSize, _gl.FLOAT, false, 0, startIndex * normalSize * 4 ); } // uvs var uv = geometry.attributes[ "uv" ]; if ( attributes.uv >= 0 && uv ) { if ( uv.buffer ) { var uvSize = uv.itemSize; _gl.bindBuffer( _gl.ARRAY_BUFFER, uv.buffer ); _gl.vertexAttribPointer( attributes.uv, uvSize, _gl.FLOAT, false, 0, startIndex * uvSize * 4 ); _gl.enableVertexAttribArray( attributes.uv ); } else { _gl.disableVertexAttribArray( attributes.uv ); } } // colors var color = geometry.attributes[ "color" ]; if ( attributes.color >= 0 && color ) { var colorSize = color.itemSize; _gl.bindBuffer( _gl.ARRAY_BUFFER, color.buffer ); _gl.vertexAttribPointer( attributes.color, colorSize, _gl.FLOAT, false, 0, startIndex * colorSize * 4 ); } // tangents var tangent = geometry.attributes[ "tangent" ]; if ( attributes.tangent >= 0 && tangent ) { var tangentSize = tangent.itemSize; _gl.bindBuffer( _gl.ARRAY_BUFFER, tangent.buffer ); _gl.vertexAttribPointer( attributes.tangent, tangentSize, _gl.FLOAT, false, 0, startIndex * tangentSize * 4 ); } // indices var index = geometry.attributes[ "index" ]; _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, index.buffer ); } // render indexed triangles _gl.drawElements( _gl.TRIANGLES, offsets[ i ].count, _gl.UNSIGNED_SHORT, offsets[ i ].start * 2 ); // 2 bytes per Uint16 _this.info.render.calls ++; _this.info.render.vertices += offsets[ i ].count; // not really true, here vertices can be shared _this.info.render.faces += offsets[ i ].count / 3; } } }; this.renderBuffer = function ( camera, lights, fog, material, geometryGroup, object ) { if ( material.visible === false ) return; var program, attributes, linewidth, primitives, a, attribute, i, il; program = setProgram( camera, lights, fog, material, object ); attributes = program.attributes; var updateBuffers = false, wireframeBit = material.wireframe ? 1 : 0, geometryGroupHash = ( geometryGroup.id * 0xffffff ) + ( program.id * 2 ) + wireframeBit; if ( geometryGroupHash !== _currentGeometryGroupHash ) { _currentGeometryGroupHash = geometryGroupHash; updateBuffers = true; } // vertices if ( !material.morphTargets && attributes.position >= 0 ) { if ( updateBuffers ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } } else { if ( object.morphTargetBase ) { setupMorphTargets( material, geometryGroup, object ); } } if ( updateBuffers ) { // custom attributes // Use the per-geometryGroup custom attribute arrays which are setup in initMeshBuffers if ( geometryGroup.__webglCustomAttributesList ) { for ( i = 0, il = geometryGroup.__webglCustomAttributesList.length; i < il; i ++ ) { attribute = geometryGroup.__webglCustomAttributesList[ i ]; if( attributes[ attribute.buffer.belongsToAttribute ] >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, attribute.buffer ); _gl.vertexAttribPointer( attributes[ attribute.buffer.belongsToAttribute ], attribute.size, _gl.FLOAT, false, 0, 0 ); } } } // colors if ( attributes.color >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglColorBuffer ); _gl.vertexAttribPointer( attributes.color, 3, _gl.FLOAT, false, 0, 0 ); } // normals if ( attributes.normal >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglNormalBuffer ); _gl.vertexAttribPointer( attributes.normal, 3, _gl.FLOAT, false, 0, 0 ); } // tangents if ( attributes.tangent >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglTangentBuffer ); _gl.vertexAttribPointer( attributes.tangent, 4, _gl.FLOAT, false, 0, 0 ); } // uvs if ( attributes.uv >= 0 ) { if ( geometryGroup.__webglUVBuffer ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUVBuffer ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 0, 0 ); _gl.enableVertexAttribArray( attributes.uv ); } else { _gl.disableVertexAttribArray( attributes.uv ); } } if ( attributes.uv2 >= 0 ) { if ( geometryGroup.__webglUV2Buffer ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglUV2Buffer ); _gl.vertexAttribPointer( attributes.uv2, 2, _gl.FLOAT, false, 0, 0 ); _gl.enableVertexAttribArray( attributes.uv2 ); } else { _gl.disableVertexAttribArray( attributes.uv2 ); } } if ( material.skinning && attributes.skinVertexA >= 0 && attributes.skinVertexB >= 0 && attributes.skinIndex >= 0 && attributes.skinWeight >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexABuffer ); _gl.vertexAttribPointer( attributes.skinVertexA, 4, _gl.FLOAT, false, 0, 0 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinVertexBBuffer ); _gl.vertexAttribPointer( attributes.skinVertexB, 4, _gl.FLOAT, false, 0, 0 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinIndicesBuffer ); _gl.vertexAttribPointer( attributes.skinIndex, 4, _gl.FLOAT, false, 0, 0 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglSkinWeightsBuffer ); _gl.vertexAttribPointer( attributes.skinWeight, 4, _gl.FLOAT, false, 0, 0 ); } } // render mesh if ( object instanceof THREE.Mesh ) { // wireframe if ( material.wireframe ) { setLineWidth( material.wireframeLinewidth ); if ( updateBuffers ) _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglLineBuffer ); _gl.drawElements( _gl.LINES, geometryGroup.__webglLineCount, _gl.UNSIGNED_SHORT, 0 ); // triangles } else { if ( updateBuffers ) _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, geometryGroup.__webglFaceBuffer ); _gl.drawElements( _gl.TRIANGLES, geometryGroup.__webglFaceCount, _gl.UNSIGNED_SHORT, 0 ); } _this.info.render.calls ++; _this.info.render.vertices += geometryGroup.__webglFaceCount; _this.info.render.faces += geometryGroup.__webglFaceCount / 3; // render lines } else if ( object instanceof THREE.Line ) { primitives = ( object.type === THREE.LineStrip ) ? _gl.LINE_STRIP : _gl.LINES; setLineWidth( material.linewidth ); _gl.drawArrays( primitives, 0, geometryGroup.__webglLineCount ); _this.info.render.calls ++; // render particles } else if ( object instanceof THREE.ParticleSystem ) { _gl.drawArrays( _gl.POINTS, 0, geometryGroup.__webglParticleCount ); _this.info.render.calls ++; _this.info.render.points += geometryGroup.__webglParticleCount; // render ribbon } else if ( object instanceof THREE.Ribbon ) { _gl.drawArrays( _gl.TRIANGLE_STRIP, 0, geometryGroup.__webglVertexCount ); _this.info.render.calls ++; } }; function setupMorphTargets ( material, geometryGroup, object ) { // set base var attributes = material.program.attributes; if ( object.morphTargetBase !== -1 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ object.morphTargetBase ] ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } else if ( attributes.position >= 0 ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglVertexBuffer ); _gl.vertexAttribPointer( attributes.position, 3, _gl.FLOAT, false, 0, 0 ); } if ( object.morphTargetForcedOrder.length ) { // set forced order var m = 0; var order = object.morphTargetForcedOrder; var influences = object.morphTargetInfluences; while ( m < material.numSupportedMorphTargets && m < order.length ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ order[ m ] ] ); _gl.vertexAttribPointer( attributes[ "morphTarget" + m ], 3, _gl.FLOAT, false, 0, 0 ); if ( material.morphNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ order[ m ] ] ); _gl.vertexAttribPointer( attributes[ "morphNormal" + m ], 3, _gl.FLOAT, false, 0, 0 ); } object.__webglMorphTargetInfluences[ m ] = influences[ order[ m ] ]; m ++; } } else { // find the most influencing var influence, activeInfluenceIndices = []; var influences = object.morphTargetInfluences; var i, il = influences.length; for ( i = 0; i < il; i ++ ) { influence = influences[ i ]; if ( influence > 0 ) { activeInfluenceIndices.push( [ i, influence ] ); } } if ( activeInfluenceIndices.length > material.numSupportedMorphTargets ) { activeInfluenceIndices.sort( numericalSort ); activeInfluenceIndices.length = material.numSupportedMorphTargets; } else if ( activeInfluenceIndices.length > material.numSupportedMorphNormals ) { activeInfluenceIndices.sort( numericalSort ); } else if ( activeInfluenceIndices.length === 0 ) { activeInfluenceIndices.push( [ 0, 0 ] ); }; var influenceIndex, m = 0; while ( m < material.numSupportedMorphTargets ) { if ( activeInfluenceIndices[ m ] ) { influenceIndex = activeInfluenceIndices[ m ][ 0 ]; _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphTargetsBuffers[ influenceIndex ] ); _gl.vertexAttribPointer( attributes[ "morphTarget" + m ], 3, _gl.FLOAT, false, 0, 0 ); if ( material.morphNormals ) { _gl.bindBuffer( _gl.ARRAY_BUFFER, geometryGroup.__webglMorphNormalsBuffers[ influenceIndex ] ); _gl.vertexAttribPointer( attributes[ "morphNormal" + m ], 3, _gl.FLOAT, false, 0, 0 ); } object.__webglMorphTargetInfluences[ m ] = influences[ influenceIndex ]; } else { _gl.vertexAttribPointer( attributes[ "morphTarget" + m ], 3, _gl.FLOAT, false, 0, 0 ); if ( material.morphNormals ) { _gl.vertexAttribPointer( attributes[ "morphNormal" + m ], 3, _gl.FLOAT, false, 0, 0 ); } object.__webglMorphTargetInfluences[ m ] = 0; } m ++; } } // load updated influences uniform if ( material.program.uniforms.morphTargetInfluences !== null ) { _gl.uniform1fv( material.program.uniforms.morphTargetInfluences, object.__webglMorphTargetInfluences ); } }; // Sorting function painterSort ( a, b ) { return b.z - a.z; }; function numericalSort ( a, b ) { return b[ 1 ] - a[ 1 ]; }; // Rendering this.render = function ( scene, camera, renderTarget, forceClear ) { var i, il, webglObject, object, renderList, lights = scene.__lights, fog = scene.fog; // reset caching for this frame _currentMaterialId = -1; _lightsNeedUpdate = true; // update scene graph if ( camera.parent === undefined ) { console.warn( 'DEPRECATED: Camera hasn\'t been added to a Scene. Adding it...' ); scene.add( camera ); } if ( this.autoUpdateScene ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( ! camera._viewMatrixArray ) camera._viewMatrixArray = new Float32Array( 16 ); if ( ! camera._projectionMatrixArray ) camera._projectionMatrixArray = new Float32Array( 16 ); camera.matrixWorldInverse.getInverse( camera.matrixWorld ); camera.matrixWorldInverse.flattenToArray( camera._viewMatrixArray ); camera.projectionMatrix.flattenToArray( camera._projectionMatrixArray ); _projScreenMatrix.multiply( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // update WebGL objects if ( this.autoUpdateObjects ) this.initWebGLObjects( scene ); // custom render plugins (pre pass) renderPlugins( this.renderPluginsPre, scene, camera ); // _this.info.render.calls = 0; _this.info.render.vertices = 0; _this.info.render.faces = 0; _this.info.render.points = 0; this.setRenderTarget( renderTarget ); if ( this.autoClear || forceClear ) { this.clear( this.autoClearColor, this.autoClearDepth, this.autoClearStencil ); } // set matrices for regular objects (frustum culled) renderList = scene.__webglObjects; for ( i = 0, il = renderList.length; i < il; i ++ ) { webglObject = renderList[ i ]; object = webglObject.object; webglObject.render = false; if ( object.visible ) { if ( ! ( object instanceof THREE.Mesh || object instanceof THREE.ParticleSystem ) || ! ( object.frustumCulled ) || _frustum.contains( object ) ) { //object.matrixWorld.flattenToArray( object._objectMatrixArray ); setupMatrices( object, camera ); unrollBufferMaterial( webglObject ); webglObject.render = true; if ( this.sortObjects ) { if ( object.renderDepth ) { webglObject.z = object.renderDepth; } else { _vector3.copy( object.matrixWorld.getPosition() ); _projScreenMatrix.multiplyVector3( _vector3 ); webglObject.z = _vector3.z; } } } } } if ( this.sortObjects ) { renderList.sort( painterSort ); } // set matrices for immediate objects renderList = scene.__webglObjectsImmediate; for ( i = 0, il = renderList.length; i < il; i ++ ) { webglObject = renderList[ i ]; object = webglObject.object; if ( object.visible ) { /* if ( object.matrixAutoUpdate ) { object.matrixWorld.flattenToArray( object._objectMatrixArray ); } */ setupMatrices( object, camera ); unrollImmediateBufferMaterial( webglObject ); } } if ( scene.overrideMaterial ) { var material = scene.overrideMaterial; this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); this.setDepthTest( material.depthTest ); this.setDepthWrite( material.depthWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); renderObjects( scene.__webglObjects, false, "", camera, lights, fog, true, material ); renderObjectsImmediate( scene.__webglObjectsImmediate, "", camera, lights, fog, false, material ); } else { // opaque pass (front-to-back order) this.setBlending( THREE.NormalBlending ); renderObjects( scene.__webglObjects, true, "opaque", camera, lights, fog, false ); renderObjectsImmediate( scene.__webglObjectsImmediate, "opaque", camera, lights, fog, false ); // transparent pass (back-to-front order) renderObjects( scene.__webglObjects, false, "transparent", camera, lights, fog, true ); renderObjectsImmediate( scene.__webglObjectsImmediate, "transparent", camera, lights, fog, true ); } // custom render plugins (post pass) renderPlugins( this.renderPluginsPost, scene, camera ); // Generate mipmap if we're using any kind of mipmap filtering if ( renderTarget && renderTarget.generateMipmaps && renderTarget.minFilter !== THREE.NearestFilter && renderTarget.minFilter !== THREE.LinearFilter ) { updateRenderTargetMipmap( renderTarget ); } // Ensure depth buffer writing is enabled so it can be cleared on next render this.setDepthTest( true ); this.setDepthWrite( true ); // _gl.finish(); }; function renderPlugins( plugins, scene, camera ) { if ( ! plugins.length ) return; for ( var i = 0, il = plugins.length; i < il; i ++ ) { // reset state for plugin (to start from clean slate) _currentProgram = null; _currentCamera = null; _oldBlending = -1; _oldDepthTest = -1; _oldDepthWrite = -1; _oldDoubleSided = -1; _oldFlipSided = -1; _currentGeometryGroupHash = -1; _currentMaterialId = -1; _lightsNeedUpdate = true; plugins[ i ].render( scene, camera, _currentWidth, _currentHeight ); // reset state after plugin (anything could have changed) _currentProgram = null; _currentCamera = null; _oldBlending = -1; _oldDepthTest = -1; _oldDepthWrite = -1; _oldDoubleSided = -1; _oldFlipSided = -1; _currentGeometryGroupHash = -1; _currentMaterialId = -1; _lightsNeedUpdate = true; } }; function renderObjects ( renderList, reverse, materialType, camera, lights, fog, useBlending, overrideMaterial ) { var webglObject, object, buffer, material, start, end, delta; if ( reverse ) { start = renderList.length - 1; end = -1; delta = -1; } else { start = 0; end = renderList.length; delta = 1; } for ( var i = start; i !== end; i += delta ) { webglObject = renderList[ i ]; if ( webglObject.render ) { object = webglObject.object; buffer = webglObject.buffer; if ( overrideMaterial ) { material = overrideMaterial; } else { material = webglObject[ materialType ]; if ( ! material ) continue; if ( useBlending ) _this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); _this.setDepthTest( material.depthTest ); _this.setDepthWrite( material.depthWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } _this.setObjectFaces( object ); if ( buffer instanceof THREE.BufferGeometry ) { _this.renderBufferDirect( camera, lights, fog, material, buffer, object ); } else { _this.renderBuffer( camera, lights, fog, material, buffer, object ); } } } }; function renderObjectsImmediate ( renderList, materialType, camera, lights, fog, useBlending, overrideMaterial ) { var webglObject, object, material, program; for ( var i = 0, il = renderList.length; i < il; i ++ ) { webglObject = renderList[ i ]; object = webglObject.object; if ( object.visible ) { if ( overrideMaterial ) { material = overrideMaterial; } else { material = webglObject[ materialType ]; if ( ! material ) continue; if ( useBlending ) _this.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst ); _this.setDepthTest( material.depthTest ); _this.setDepthWrite( material.depthWrite ); setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); } _this.renderImmediateObject( camera, lights, fog, material, object ); } } }; this.renderImmediateObject = function ( camera, lights, fog, material, object ) { var program = setProgram( camera, lights, fog, material, object ); _currentGeometryGroupHash = -1; _this.setObjectFaces( object ); if ( object.immediateRenderCallback ) { object.immediateRenderCallback( program, _gl, _frustum ); } else { object.render( function( object ) { _this.renderBufferImmediate( object, program, material ); } ); } }; function unrollImmediateBufferMaterial ( globject ) { var object = globject.object, material = object.material; if ( material.transparent ) { globject.transparent = material; globject.opaque = null; } else { globject.opaque = material; globject.transparent = null; } }; function unrollBufferMaterial ( globject ) { var object = globject.object, buffer = globject.buffer, material, materialIndex, meshMaterial; meshMaterial = object.material; if ( meshMaterial instanceof THREE.MeshFaceMaterial ) { materialIndex = buffer.materialIndex; if ( materialIndex >= 0 ) { material = object.geometry.materials[ materialIndex ]; if ( material.transparent ) { globject.transparent = material; globject.opaque = null; } else { globject.opaque = material; globject.transparent = null; } } } else { material = meshMaterial; if ( material ) { if ( material.transparent ) { globject.transparent = material; globject.opaque = null; } else { globject.opaque = material; globject.transparent = null; } } } }; // Geometry splitting function sortFacesByMaterial ( geometry ) { var f, fl, face, materialIndex, vertices, materialHash, groupHash, hash_map = {}; var numMorphTargets = geometry.morphTargets.length; var numMorphNormals = geometry.morphNormals.length; geometry.geometryGroups = {}; for ( f = 0, fl = geometry.faces.length; f < fl; f ++ ) { face = geometry.faces[ f ]; materialIndex = face.materialIndex; materialHash = ( materialIndex !== undefined ) ? materialIndex : -1; if ( hash_map[ materialHash ] === undefined ) { hash_map[ materialHash ] = { 'hash': materialHash, 'counter': 0 }; } groupHash = hash_map[ materialHash ].hash + '_' + hash_map[ materialHash ].counter; if ( geometry.geometryGroups[ groupHash ] === undefined ) { geometry.geometryGroups[ groupHash ] = { 'faces3': [], 'faces4': [], 'materialIndex': materialIndex, 'vertices': 0, 'numMorphTargets': numMorphTargets, 'numMorphNormals': numMorphNormals }; } vertices = face instanceof THREE.Face3 ? 3 : 4; if ( geometry.geometryGroups[ groupHash ].vertices + vertices > 65535 ) { hash_map[ materialHash ].counter += 1; groupHash = hash_map[ materialHash ].hash + '_' + hash_map[ materialHash ].counter; if ( geometry.geometryGroups[ groupHash ] === undefined ) { geometry.geometryGroups[ groupHash ] = { 'faces3': [], 'faces4': [], 'materialIndex': materialIndex, 'vertices': 0, 'numMorphTargets': numMorphTargets, 'numMorphNormals': numMorphNormals }; } } if ( face instanceof THREE.Face3 ) { geometry.geometryGroups[ groupHash ].faces3.push( f ); } else { geometry.geometryGroups[ groupHash ].faces4.push( f ); } geometry.geometryGroups[ groupHash ].vertices += vertices; } geometry.geometryGroupsList = []; for ( var g in geometry.geometryGroups ) { geometry.geometryGroups[ g ].id = _geometryGroupCounter ++; geometry.geometryGroupsList.push( geometry.geometryGroups[ g ] ); } }; // Objects refresh this.initWebGLObjects = function ( scene ) { if ( !scene.__webglObjects ) { scene.__webglObjects = []; scene.__webglObjectsImmediate = []; scene.__webglSprites = []; scene.__webglFlares = []; } while ( scene.__objectsAdded.length ) { addObject( scene.__objectsAdded[ 0 ], scene ); scene.__objectsAdded.splice( 0, 1 ); } while ( scene.__objectsRemoved.length ) { removeObject( scene.__objectsRemoved[ 0 ], scene ); scene.__objectsRemoved.splice( 0, 1 ); } // update must be called after objects adding / removal for ( var o = 0, ol = scene.__webglObjects.length; o < ol; o ++ ) { updateObject( scene.__webglObjects[ o ].object ); } }; // Objects adding function addObject ( object, scene ) { var g, geometry, geometryGroup; if ( ! object.__webglInit ) { object.__webglInit = true; object._modelViewMatrix = new THREE.Matrix4(); object._normalMatrix = new THREE.Matrix3(); if ( object instanceof THREE.Mesh ) { geometry = object.geometry; if ( geometry instanceof THREE.Geometry ) { if ( geometry.geometryGroups === undefined ) { sortFacesByMaterial( geometry ); } // create separate VBOs per geometry chunk for ( g in geometry.geometryGroups ) { geometryGroup = geometry.geometryGroups[ g ]; // initialise VBO on the first access if ( ! geometryGroup.__webglVertexBuffer ) { createMeshBuffers( geometryGroup ); initMeshBuffers( geometryGroup, object ); geometry.verticesNeedUpdate = true; geometry.morphTargetsNeedUpdate = true; geometry.elementsNeedUpdate = true; geometry.uvsNeedUpdate = true; geometry.normalsNeedUpdate = true; geometry.tangentsNeedUpdate = true; geometry.colorsNeedUpdate = true; } } } else if ( geometry instanceof THREE.BufferGeometry ) { initDirectBuffers( geometry ); } } else if ( object instanceof THREE.Ribbon ) { geometry = object.geometry; if( ! geometry.__webglVertexBuffer ) { createRibbonBuffers( geometry ); initRibbonBuffers( geometry ); geometry.verticesNeedUpdate = true; geometry.colorsNeedUpdate = true; } } else if ( object instanceof THREE.Line ) { geometry = object.geometry; if( ! geometry.__webglVertexBuffer ) { createLineBuffers( geometry ); initLineBuffers( geometry, object ); geometry.verticesNeedUpdate = true; geometry.colorsNeedUpdate = true; } } else if ( object instanceof THREE.ParticleSystem ) { geometry = object.geometry; if ( ! geometry.__webglVertexBuffer ) { createParticleBuffers( geometry ); initParticleBuffers( geometry, object ); geometry.verticesNeedUpdate = true; geometry.colorsNeedUpdate = true; } } } if ( ! object.__webglActive ) { if ( object instanceof THREE.Mesh ) { geometry = object.geometry; if ( geometry instanceof THREE.BufferGeometry ) { addBuffer( scene.__webglObjects, geometry, object ); } else { for ( g in geometry.geometryGroups ) { geometryGroup = geometry.geometryGroups[ g ]; addBuffer( scene.__webglObjects, geometryGroup, object ); } } } else if ( object instanceof THREE.Ribbon || object instanceof THREE.Line || object instanceof THREE.ParticleSystem ) { geometry = object.geometry; addBuffer( scene.__webglObjects, geometry, object ); } else if ( object instanceof THREE.ImmediateRenderObject || object.immediateRenderCallback ) { addBufferImmediate( scene.__webglObjectsImmediate, object ); } else if ( object instanceof THREE.Sprite ) { scene.__webglSprites.push( object ); } else if ( object instanceof THREE.LensFlare ) { scene.__webglFlares.push( object ); } object.__webglActive = true; } }; function addBuffer ( objlist, buffer, object ) { objlist.push( { buffer: buffer, object: object, opaque: null, transparent: null } ); }; function addBufferImmediate ( objlist, object ) { objlist.push( { object: object, opaque: null, transparent: null } ); }; // Objects updates function updateObject ( object ) { var geometry = object.geometry, geometryGroup, customAttributesDirty, material; if ( object instanceof THREE.Mesh ) { if ( geometry instanceof THREE.BufferGeometry ) { if ( geometry.verticesNeedUpdate || geometry.elementsNeedUpdate || geometry.uvsNeedUpdate || geometry.normalsNeedUpdate || geometry.colorsNeedUpdate || geometry.tangentsNeedUpdate ) { setDirectBuffers( geometry, _gl.DYNAMIC_DRAW, !geometry.dynamic ); } geometry.verticesNeedUpdate = false; geometry.elementsNeedUpdate = false; geometry.uvsNeedUpdate = false; geometry.normalsNeedUpdate = false; geometry.colorsNeedUpdate = false; geometry.tangentsNeedUpdate = false; } else { // check all geometry groups for( var i = 0, il = geometry.geometryGroupsList.length; i < il; i ++ ) { geometryGroup = geometry.geometryGroupsList[ i ]; material = getBufferMaterial( object, geometryGroup ); customAttributesDirty = material.attributes && areCustomAttributesDirty( material ); if ( geometry.verticesNeedUpdate || geometry.morphTargetsNeedUpdate || geometry.elementsNeedUpdate || geometry.uvsNeedUpdate || geometry.normalsNeedUpdate || geometry.colorsNeedUpdate || geometry.tangentsNeedUpdate || customAttributesDirty ) { setMeshBuffers( geometryGroup, object, _gl.DYNAMIC_DRAW, !geometry.dynamic, material ); } } geometry.verticesNeedUpdate = false; geometry.morphTargetsNeedUpdate = false; geometry.elementsNeedUpdate = false; geometry.uvsNeedUpdate = false; geometry.normalsNeedUpdate = false; geometry.colorsNeedUpdate = false; geometry.tangentsNeedUpdate = false; material.attributes && clearCustomAttributes( material ); } } else if ( object instanceof THREE.Ribbon ) { if ( geometry.verticesNeedUpdate || geometry.colorsNeedUpdate ) { setRibbonBuffers( geometry, _gl.DYNAMIC_DRAW ); } geometry.verticesNeedUpdate = false; geometry.colorsNeedUpdate = false; } else if ( object instanceof THREE.Line ) { material = getBufferMaterial( object, geometryGroup ); customAttributesDirty = material.attributes && areCustomAttributesDirty( material ); if ( geometry.verticesNeedUpdate || geometry.colorsNeedUpdate || customAttributesDirty ) { setLineBuffers( geometry, _gl.DYNAMIC_DRAW ); } geometry.verticesNeedUpdate = false; geometry.colorsNeedUpdate = false; material.attributes && clearCustomAttributes( material ); } else if ( object instanceof THREE.ParticleSystem ) { material = getBufferMaterial( object, geometryGroup ); customAttributesDirty = material.attributes && areCustomAttributesDirty( material ); if ( geometry.verticesNeedUpdate || geometry.colorsNeedUpdate || object.sortParticles || customAttributesDirty ) { setParticleBuffers( geometry, _gl.DYNAMIC_DRAW, object ); } geometry.verticesNeedUpdate = false; geometry.colorsNeedUpdate = false; material.attributes && clearCustomAttributes( material ); } }; // Objects updates - custom attributes check function areCustomAttributesDirty ( material ) { for ( var a in material.attributes ) { if ( material.attributes[ a ].needsUpdate ) return true; } return false; }; function clearCustomAttributes ( material ) { for ( var a in material.attributes ) { material.attributes[ a ].needsUpdate = false; } }; // Objects removal function removeObject ( object, scene ) { if ( object instanceof THREE.Mesh || object instanceof THREE.ParticleSystem || object instanceof THREE.Ribbon || object instanceof THREE.Line ) { removeInstances( scene.__webglObjects, object ); } else if ( object instanceof THREE.Sprite ) { removeInstancesDirect( scene.__webglSprites, object ); } else if ( object instanceof THREE.LensFlare ) { removeInstancesDirect( scene.__webglFlares, object ); } else if ( object instanceof THREE.ImmediateRenderObject || object.immediateRenderCallback ) { removeInstances( scene.__webglObjectsImmediate, object ); } object.__webglActive = false; }; function removeInstances ( objlist, object ) { for ( var o = objlist.length - 1; o >= 0; o -- ) { if ( objlist[ o ].object === object ) { objlist.splice( o, 1 ); } } }; function removeInstancesDirect ( objlist, object ) { for ( var o = objlist.length - 1; o >= 0; o -- ) { if ( objlist[ o ] === object ) { objlist.splice( o, 1 ); } } }; // Materials this.initMaterial = function ( material, lights, fog, object ) { var u, a, identifiers, i, parameters, maxLightCount, maxBones, maxShadows, shaderID; if ( material instanceof THREE.MeshDepthMaterial ) { shaderID = 'depth'; } else if ( material instanceof THREE.MeshNormalMaterial ) { shaderID = 'normal'; } else if ( material instanceof THREE.MeshBasicMaterial ) { shaderID = 'basic'; } else if ( material instanceof THREE.MeshLambertMaterial ) { shaderID = 'lambert'; } else if ( material instanceof THREE.MeshPhongMaterial ) { shaderID = 'phong'; } else if ( material instanceof THREE.LineBasicMaterial ) { shaderID = 'basic'; } else if ( material instanceof THREE.ParticleBasicMaterial ) { shaderID = 'particle_basic'; } if ( shaderID ) { setMaterialShaders( material, THREE.ShaderLib[ shaderID ] ); } // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) maxLightCount = allocateLights( lights ); maxShadows = allocateShadows( lights ); maxBones = allocateBones( object ); parameters = { map: !!material.map, envMap: !!material.envMap, lightMap: !!material.lightMap, vertexColors: material.vertexColors, fog: fog, useFog: material.fog, sizeAttenuation: material.sizeAttenuation, skinning: material.skinning, maxBones: maxBones, useVertexTexture: _supportsBoneTextures && object.useVertexTexture, boneTextureWidth: object.boneTextureWidth, boneTextureHeight: object.boneTextureHeight, morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: this.maxMorphTargets, maxMorphNormals: this.maxMorphNormals, maxDirLights: maxLightCount.directional, maxPointLights: maxLightCount.point, maxSpotLights: maxLightCount.spot, maxShadows: maxShadows, shadowMapEnabled: this.shadowMapEnabled && object.receiveShadow, shadowMapSoft: this.shadowMapSoft, shadowMapDebug: this.shadowMapDebug, shadowMapCascade: this.shadowMapCascade, alphaTest: material.alphaTest, metal: material.metal, perPixel: material.perPixel, wrapAround: material.wrapAround, doubleSided: object && object.doubleSided }; material.program = buildProgram( shaderID, material.fragmentShader, material.vertexShader, material.uniforms, material.attributes, parameters ); var attributes = material.program.attributes; if ( attributes.position >= 0 ) _gl.enableVertexAttribArray( attributes.position ); if ( attributes.color >= 0 ) _gl.enableVertexAttribArray( attributes.color ); if ( attributes.normal >= 0 ) _gl.enableVertexAttribArray( attributes.normal ); if ( attributes.tangent >= 0 ) _gl.enableVertexAttribArray( attributes.tangent ); if ( material.skinning && attributes.skinVertexA >=0 && attributes.skinVertexB >= 0 && attributes.skinIndex >= 0 && attributes.skinWeight >= 0 ) { _gl.enableVertexAttribArray( attributes.skinVertexA ); _gl.enableVertexAttribArray( attributes.skinVertexB ); _gl.enableVertexAttribArray( attributes.skinIndex ); _gl.enableVertexAttribArray( attributes.skinWeight ); } if ( material.attributes ) { for ( a in material.attributes ) { if( attributes[ a ] !== undefined && attributes[ a ] >= 0 ) _gl.enableVertexAttribArray( attributes[ a ] ); } } if ( material.morphTargets ) { material.numSupportedMorphTargets = 0; var id, base = "morphTarget"; for ( i = 0; i < this.maxMorphTargets; i ++ ) { id = base + i; if ( attributes[ id ] >= 0 ) { _gl.enableVertexAttribArray( attributes[ id ] ); material.numSupportedMorphTargets ++; } } } if ( material.morphNormals ) { material.numSupportedMorphNormals = 0; var id, base = "morphNormal"; for ( i = 0; i < this.maxMorphNormals; i ++ ) { id = base + i; if ( attributes[ id ] >= 0 ) { _gl.enableVertexAttribArray( attributes[ id ] ); material.numSupportedMorphNormals ++; } } } material.uniformsList = []; for ( u in material.uniforms ) { material.uniformsList.push( [ material.uniforms[ u ], u ] ); } }; function setMaterialShaders( material, shaders ) { material.uniforms = THREE.UniformsUtils.clone( shaders.uniforms ); material.vertexShader = shaders.vertexShader; material.fragmentShader = shaders.fragmentShader; }; function setProgram( camera, lights, fog, material, object ) { if ( material.needsUpdate ) { if ( material.program ) _this.deallocateMaterial( material ); _this.initMaterial( material, lights, fog, object ); material.needsUpdate = false; } if ( material.morphTargets ) { if ( ! object.__webglMorphTargetInfluences ) { object.__webglMorphTargetInfluences = new Float32Array( _this.maxMorphTargets ); } } var refreshMaterial = false; var program = material.program, p_uniforms = program.uniforms, m_uniforms = material.uniforms; if ( program !== _currentProgram ) { _gl.useProgram( program ); _currentProgram = program; refreshMaterial = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshMaterial || camera !== _currentCamera ) { _gl.uniformMatrix4fv( p_uniforms.projectionMatrix, false, camera._projectionMatrixArray ); if ( camera !== _currentCamera ) _currentCamera = camera; } if ( refreshMaterial ) { // refresh uniforms common to several materials if ( fog && material.fog ) { refreshUniformsFog( m_uniforms, fog ); } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material.lights ) { if ( _lightsNeedUpdate ) { setupLights( program, lights ); _lightsNeedUpdate = false; } refreshUniformsLights( m_uniforms, _lights ); } if ( material instanceof THREE.MeshBasicMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.MeshPhongMaterial ) { refreshUniformsCommon( m_uniforms, material ); } // refresh single material specific uniforms if ( material instanceof THREE.LineBasicMaterial ) { refreshUniformsLine( m_uniforms, material ); } else if ( material instanceof THREE.ParticleBasicMaterial ) { refreshUniformsParticle( m_uniforms, material ); } else if ( material instanceof THREE.MeshPhongMaterial ) { refreshUniformsPhong( m_uniforms, material ); } else if ( material instanceof THREE.MeshLambertMaterial ) { refreshUniformsLambert( m_uniforms, material ); } else if ( material instanceof THREE.MeshDepthMaterial ) { m_uniforms.mNear.value = camera.near; m_uniforms.mFar.value = camera.far; m_uniforms.opacity.value = material.opacity; } else if ( material instanceof THREE.MeshNormalMaterial ) { m_uniforms.opacity.value = material.opacity; } if ( object.receiveShadow && ! material._shadowPass ) { refreshUniformsShadow( m_uniforms, lights ); } // load common uniforms loadUniformsGeneric( program, material.uniformsList ); // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material instanceof THREE.ShaderMaterial || material instanceof THREE.MeshPhongMaterial || material.envMap ) { if ( p_uniforms.cameraPosition !== null ) { var position = camera.matrixWorld.getPosition(); _gl.uniform3f( p_uniforms.cameraPosition, position.x, position.y, position.z ); } } if ( material instanceof THREE.MeshPhongMaterial || material instanceof THREE.MeshLambertMaterial || material instanceof THREE.ShaderMaterial || material.skinning ) { if ( p_uniforms.viewMatrix !== null ) { _gl.uniformMatrix4fv( p_uniforms.viewMatrix, false, camera._viewMatrixArray ); } } } if ( material.skinning ) { if ( _supportsBoneTextures && object.useVertexTexture ) { if ( p_uniforms.boneTexture !== null ) { // shadowMap texture array starts from 6 // texture unit 12 should leave space for 6 shadowmaps var textureUnit = 12; _gl.uniform1i( p_uniforms.boneTexture, textureUnit ); _this.setTexture( object.boneTexture, textureUnit ); } } else { if ( p_uniforms.boneGlobalMatrices !== null ) { _gl.uniformMatrix4fv( p_uniforms.boneGlobalMatrices, false, object.boneMatrices ); } } } loadUniformsMatrices( p_uniforms, object ); if ( p_uniforms.objectMatrix !== null ) { _gl.uniformMatrix4fv( p_uniforms.objectMatrix, false, object.matrixWorld.elements ); } return program; }; // Uniforms (refresh uniforms objects) function refreshUniformsCommon ( uniforms, material ) { uniforms.opacity.value = material.opacity; if ( _this.gammaInput ) { uniforms.diffuse.value.copyGammaToLinear( material.color ); } else { uniforms.diffuse.value = material.color; } uniforms.map.texture = material.map; if ( material.map ) { uniforms.offsetRepeat.value.set( material.map.offset.x, material.map.offset.y, material.map.repeat.x, material.map.repeat.y ); } uniforms.lightMap.texture = material.lightMap; uniforms.envMap.texture = material.envMap; uniforms.flipEnvMap.value = ( material.envMap instanceof THREE.WebGLRenderTargetCube ) ? 1 : -1; if ( _this.gammaInput ) { //uniforms.reflectivity.value = material.reflectivity * material.reflectivity; uniforms.reflectivity.value = material.reflectivity; } else { uniforms.reflectivity.value = material.reflectivity; } uniforms.refractionRatio.value = material.refractionRatio; uniforms.combine.value = material.combine; uniforms.useRefract.value = material.envMap && material.envMap.mapping instanceof THREE.CubeRefractionMapping; }; function refreshUniformsLine ( uniforms, material ) { uniforms.diffuse.value = material.color; uniforms.opacity.value = material.opacity; }; function refreshUniformsParticle ( uniforms, material ) { uniforms.psColor.value = material.color; uniforms.opacity.value = material.opacity; uniforms.size.value = material.size; uniforms.scale.value = _canvas.height / 2.0; // TODO: Cache this. uniforms.map.texture = material.map; }; function refreshUniformsFog ( uniforms, fog ) { uniforms.fogColor.value = fog.color; if ( fog instanceof THREE.Fog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog instanceof THREE.FogExp2 ) { uniforms.fogDensity.value = fog.density; } }; function refreshUniformsPhong ( uniforms, material ) { uniforms.shininess.value = material.shininess; if ( _this.gammaInput ) { uniforms.ambient.value.copyGammaToLinear( material.ambient ); uniforms.emissive.value.copyGammaToLinear( material.emissive ); uniforms.specular.value.copyGammaToLinear( material.specular ); } else { uniforms.ambient.value = material.ambient; uniforms.emissive.value = material.emissive; uniforms.specular.value = material.specular; } if ( material.wrapAround ) { uniforms.wrapRGB.value.copy( material.wrapRGB ); } }; function refreshUniformsLambert ( uniforms, material ) { if ( _this.gammaInput ) { uniforms.ambient.value.copyGammaToLinear( material.ambient ); uniforms.emissive.value.copyGammaToLinear( material.emissive ); } else { uniforms.ambient.value = material.ambient; uniforms.emissive.value = material.emissive; } if ( material.wrapAround ) { uniforms.wrapRGB.value.copy( material.wrapRGB ); } }; function refreshUniformsLights ( uniforms, lights ) { uniforms.ambientLightColor.value = lights.ambient; uniforms.directionalLightColor.value = lights.directional.colors; uniforms.directionalLightDirection.value = lights.directional.positions; uniforms.pointLightColor.value = lights.point.colors; uniforms.pointLightPosition.value = lights.point.positions; uniforms.pointLightDistance.value = lights.point.distances; uniforms.spotLightColor.value = lights.spot.colors; uniforms.spotLightPosition.value = lights.spot.positions; uniforms.spotLightDistance.value = lights.spot.distances; uniforms.spotLightDirection.value = lights.spot.directions; uniforms.spotLightAngle.value = lights.spot.angles; uniforms.spotLightExponent.value = lights.spot.exponents; }; function refreshUniformsShadow ( uniforms, lights ) { if ( uniforms.shadowMatrix ) { var j = 0; for ( var i = 0, il = lights.length; i < il; i ++ ) { var light = lights[ i ]; if ( ! light.castShadow ) continue; if ( light instanceof THREE.SpotLight || ( light instanceof THREE.DirectionalLight && ! light.shadowCascade ) ) { uniforms.shadowMap.texture[ j ] = light.shadowMap; uniforms.shadowMapSize.value[ j ] = light.shadowMapSize; uniforms.shadowMatrix.value[ j ] = light.shadowMatrix; uniforms.shadowDarkness.value[ j ] = light.shadowDarkness; uniforms.shadowBias.value[ j ] = light.shadowBias; j ++; } } } }; // Uniforms (load to GPU) function loadUniformsMatrices ( uniforms, object ) { _gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, object._modelViewMatrix.elements ); if ( uniforms.normalMatrix ) { _gl.uniformMatrix3fv( uniforms.normalMatrix, false, object._normalMatrix.elements ); } }; function loadUniformsGeneric ( program, uniforms ) { var uniform, value, type, location, texture, i, il, j, jl, offset; for ( j = 0, jl = uniforms.length; j < jl; j ++ ) { location = program.uniforms[ uniforms[ j ][ 1 ] ]; if ( !location ) continue; uniform = uniforms[ j ][ 0 ]; type = uniform.type; value = uniform.value; if ( type === "i" ) { // single integer _gl.uniform1i( location, value ); } else if ( type === "f" ) { // single float _gl.uniform1f( location, value ); } else if ( type === "v2" ) { // single THREE.Vector2 _gl.uniform2f( location, value.x, value.y ); } else if ( type === "v3" ) { // single THREE.Vector3 _gl.uniform3f( location, value.x, value.y, value.z ); } else if ( type === "v4" ) { // single THREE.Vector4 _gl.uniform4f( location, value.x, value.y, value.z, value.w ); } else if ( type === "c" ) { // single THREE.Color _gl.uniform3f( location, value.r, value.g, value.b ); } else if ( type === "iv1" ) { // flat array of integers (JS or typed array) _gl.uniform1iv( location, value ); } else if ( type === "iv" ) { // flat array of integers with 3 x N size (JS or typed array) _gl.uniform3iv( location, value ); } else if ( type === "fv1" ) { // flat array of floats (JS or typed array) _gl.uniform1fv( location, value ); } else if ( type === "fv" ) { // flat array of floats with 3 x N size (JS or typed array) _gl.uniform3fv( location, value ); } else if ( type === "v2v" ) { // array of THREE.Vector2 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 2 * value.length ); } for ( i = 0, il = value.length; i < il; i ++ ) { offset = i * 2; uniform._array[ offset ] = value[ i ].x; uniform._array[ offset + 1 ] = value[ i ].y; } _gl.uniform2fv( location, uniform._array ); } else if ( type === "v3v" ) { // array of THREE.Vector3 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 3 * value.length ); } for ( i = 0, il = value.length; i < il; i ++ ) { offset = i * 3; uniform._array[ offset ] = value[ i ].x; uniform._array[ offset + 1 ] = value[ i ].y; uniform._array[ offset + 2 ] = value[ i ].z; } _gl.uniform3fv( location, uniform._array ); } else if ( type === "v4v" ) { // array of THREE.Vector4 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 4 * value.length ); } for ( i = 0, il = value.length; i < il; i ++ ) { offset = i * 4; uniform._array[ offset ] = value[ i ].x; uniform._array[ offset + 1 ] = value[ i ].y; uniform._array[ offset + 2 ] = value[ i ].z; uniform._array[ offset + 3 ] = value[ i ].w; } _gl.uniform4fv( location, uniform._array ); } else if ( type === "m4") { // single THREE.Matrix4 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 16 ); } value.flattenToArray( uniform._array ); _gl.uniformMatrix4fv( location, false, uniform._array ); } else if ( type === "m4v" ) { // array of THREE.Matrix4 if ( uniform._array === undefined ) { uniform._array = new Float32Array( 16 * value.length ); } for ( i = 0, il = value.length; i < il; i ++ ) { value[ i ].flattenToArrayOffset( uniform._array, i * 16 ); } _gl.uniformMatrix4fv( location, false, uniform._array ); } else if ( type === "t" ) { // single THREE.Texture (2d or cube) _gl.uniform1i( location, value ); texture = uniform.texture; if ( !texture ) continue; if ( texture.image instanceof Array && texture.image.length === 6 ) { setCubeTexture( texture, value ); } else if ( texture instanceof THREE.WebGLRenderTargetCube ) { setCubeTextureDynamic( texture, value ); } else { _this.setTexture( texture, value ); } } else if ( type === "tv" ) { // array of THREE.Texture (2d) if ( uniform._array === undefined ) { uniform._array = []; for( i = 0, il = uniform.texture.length; i < il; i ++ ) { uniform._array[ i ] = value + i; } } _gl.uniform1iv( location, uniform._array ); for( i = 0, il = uniform.texture.length; i < il; i ++ ) { texture = uniform.texture[ i ]; if ( !texture ) continue; _this.setTexture( texture, uniform._array[ i ] ); } } } }; function setupMatrices ( object, camera ) { object._modelViewMatrix.multiply( camera.matrixWorldInverse, object.matrixWorld); object._normalMatrix.getInverse( object._modelViewMatrix ); object._normalMatrix.transpose(); }; function setupLights ( program, lights ) { var l, ll, light, n, r = 0, g = 0, b = 0, color, position, intensity, distance, zlights = _lights, dcolors = zlights.directional.colors, dpositions = zlights.directional.positions, pcolors = zlights.point.colors, ppositions = zlights.point.positions, pdistances = zlights.point.distances, scolors = zlights.spot.colors, spositions = zlights.spot.positions, sdistances = zlights.spot.distances, sdirections = zlights.spot.directions, sangles = zlights.spot.angles, sexponents = zlights.spot.exponents, dlength = 0, plength = 0, slength = 0, doffset = 0, poffset = 0, soffset = 0; for ( l = 0, ll = lights.length; l < ll; l ++ ) { light = lights[ l ]; if ( light.onlyShadow || ! light.visible ) continue; color = light.color; intensity = light.intensity; distance = light.distance; if ( light instanceof THREE.AmbientLight ) { if ( _this.gammaInput ) { r += color.r * color.r; g += color.g * color.g; b += color.b * color.b; } else { r += color.r; g += color.g; b += color.b; } } else if ( light instanceof THREE.DirectionalLight ) { doffset = dlength * 3; if ( _this.gammaInput ) { dcolors[ doffset ] = color.r * color.r * intensity * intensity; dcolors[ doffset + 1 ] = color.g * color.g * intensity * intensity; dcolors[ doffset + 2 ] = color.b * color.b * intensity * intensity; } else { dcolors[ doffset ] = color.r * intensity; dcolors[ doffset + 1 ] = color.g * intensity; dcolors[ doffset + 2 ] = color.b * intensity; } _direction.copy( light.matrixWorld.getPosition() ); _direction.subSelf( light.target.matrixWorld.getPosition() ); _direction.normalize(); dpositions[ doffset ] = _direction.x; dpositions[ doffset + 1 ] = _direction.y; dpositions[ doffset + 2 ] = _direction.z; dlength += 1; } else if( light instanceof THREE.PointLight ) { poffset = plength * 3; if ( _this.gammaInput ) { pcolors[ poffset ] = color.r * color.r * intensity * intensity; pcolors[ poffset + 1 ] = color.g * color.g * intensity * intensity; pcolors[ poffset + 2 ] = color.b * color.b * intensity * intensity; } else { pcolors[ poffset ] = color.r * intensity; pcolors[ poffset + 1 ] = color.g * intensity; pcolors[ poffset + 2 ] = color.b * intensity; } position = light.matrixWorld.getPosition(); ppositions[ poffset ] = position.x; ppositions[ poffset + 1 ] = position.y; ppositions[ poffset + 2 ] = position.z; pdistances[ plength ] = distance; plength += 1; } else if( light instanceof THREE.SpotLight ) { soffset = slength * 3; if ( _this.gammaInput ) { scolors[ soffset ] = color.r * color.r * intensity * intensity; scolors[ soffset + 1 ] = color.g * color.g * intensity * intensity; scolors[ soffset + 2 ] = color.b * color.b * intensity * intensity; } else { scolors[ soffset ] = color.r * intensity; scolors[ soffset + 1 ] = color.g * intensity; scolors[ soffset + 2 ] = color.b * intensity; } position = light.matrixWorld.getPosition(); spositions[ soffset ] = position.x; spositions[ soffset + 1 ] = position.y; spositions[ soffset + 2 ] = position.z; sdistances[ slength ] = distance; _direction.copy( position ); _direction.subSelf( light.target.matrixWorld.getPosition() ); _direction.normalize(); sdirections[ soffset ] = _direction.x; sdirections[ soffset + 1 ] = _direction.y; sdirections[ soffset + 2 ] = _direction.z; sangles[ slength ] = Math.cos( light.angle ); sexponents[ slength ] = light.exponent; slength += 1; } } // null eventual remains from removed lights // (this is to avoid if in shader) for ( l = dlength * 3, ll = dcolors.length; l < ll; l ++ ) dcolors[ l ] = 0.0; for ( l = plength * 3, ll = pcolors.length; l < ll; l ++ ) pcolors[ l ] = 0.0; for ( l = slength * 3, ll = scolors.length; l < ll; l ++ ) scolors[ l ] = 0.0; zlights.directional.length = dlength; zlights.point.length = plength; zlights.spot.length = slength; zlights.ambient[ 0 ] = r; zlights.ambient[ 1 ] = g; zlights.ambient[ 2 ] = b; }; // GL state setting this.setFaceCulling = function ( cullFace, frontFace ) { if ( cullFace ) { if ( !frontFace || frontFace === "ccw" ) { _gl.frontFace( _gl.CCW ); } else { _gl.frontFace( _gl.CW ); } if( cullFace === "back" ) { _gl.cullFace( _gl.BACK ); } else if( cullFace === "front" ) { _gl.cullFace( _gl.FRONT ); } else { _gl.cullFace( _gl.FRONT_AND_BACK ); } _gl.enable( _gl.CULL_FACE ); } else { _gl.disable( _gl.CULL_FACE ); } }; this.setObjectFaces = function ( object ) { if ( _oldDoubleSided !== object.doubleSided ) { if ( object.doubleSided ) { _gl.disable( _gl.CULL_FACE ); } else { _gl.enable( _gl.CULL_FACE ); } _oldDoubleSided = object.doubleSided; } if ( _oldFlipSided !== object.flipSided ) { if ( object.flipSided ) { _gl.frontFace( _gl.CW ); } else { _gl.frontFace( _gl.CCW ); } _oldFlipSided = object.flipSided; } }; this.setDepthTest = function ( depthTest ) { if ( _oldDepthTest !== depthTest ) { if ( depthTest ) { _gl.enable( _gl.DEPTH_TEST ); } else { _gl.disable( _gl.DEPTH_TEST ); } _oldDepthTest = depthTest; } }; this.setDepthWrite = function ( depthWrite ) { if ( _oldDepthWrite !== depthWrite ) { _gl.depthMask( depthWrite ); _oldDepthWrite = depthWrite; } }; function setLineWidth ( width ) { if ( width !== _oldLineWidth ) { _gl.lineWidth( width ); _oldLineWidth = width; } }; function setPolygonOffset ( polygonoffset, factor, units ) { if ( _oldPolygonOffset !== polygonoffset ) { if ( polygonoffset ) { _gl.enable( _gl.POLYGON_OFFSET_FILL ); } else { _gl.disable( _gl.POLYGON_OFFSET_FILL ); } _oldPolygonOffset = polygonoffset; } if ( polygonoffset && ( _oldPolygonOffsetFactor !== factor || _oldPolygonOffsetUnits !== units ) ) { _gl.polygonOffset( factor, units ); _oldPolygonOffsetFactor = factor; _oldPolygonOffsetUnits = units; } }; this.setBlending = function ( blending, blendEquation, blendSrc, blendDst ) { if ( blending !== _oldBlending ) { if ( blending === THREE.NoBlending ) { _gl.disable( _gl.BLEND ); } else if ( blending === THREE.AdditiveBlending ) { _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.SRC_ALPHA, _gl.ONE ); } else if ( blending === THREE.SubtractiveBlending ) { // TODO: Find blendFuncSeparate() combination _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.ZERO, _gl.ONE_MINUS_SRC_COLOR ); } else if ( blending === THREE.MultiplyBlending ) { // TODO: Find blendFuncSeparate() combination _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.ZERO, _gl.SRC_COLOR ); } else if ( blending === THREE.CustomBlending ) { _gl.enable( _gl.BLEND ); } else { _gl.enable( _gl.BLEND ); _gl.blendEquationSeparate( _gl.FUNC_ADD, _gl.FUNC_ADD ); _gl.blendFuncSeparate( _gl.SRC_ALPHA, _gl.ONE_MINUS_SRC_ALPHA, _gl.ONE, _gl.ONE_MINUS_SRC_ALPHA ); } _oldBlending = blending; } if ( blending === THREE.CustomBlending ) { if ( blendEquation !== _oldBlendEquation ) { _gl.blendEquation( paramThreeToGL( blendEquation ) ); _oldBlendEquation = blendEquation; } if ( blendSrc !== _oldBlendSrc || blendDst !== _oldBlendDst ) { _gl.blendFunc( paramThreeToGL( blendSrc ), paramThreeToGL( blendDst ) ); _oldBlendSrc = blendSrc; _oldBlendDst = blendDst; } } else { _oldBlendEquation = null; _oldBlendSrc = null; _oldBlendDst = null; } }; // Shaders function buildProgram ( shaderID, fragmentShader, vertexShader, uniforms, attributes, parameters ) { var p, pl, program, code; var chunks = []; // Generate code if ( shaderID ) { chunks.push( shaderID ); } else { chunks.push( fragmentShader ); chunks.push( vertexShader ); } for ( p in parameters ) { chunks.push( p ); chunks.push( parameters[ p ] ); } code = chunks.join(); // Check if code has been already compiled for ( p = 0, pl = _programs.length; p < pl; p ++ ) { var programInfo = _programs[ p ]; if ( programInfo.code === code ) { // console.log( "Code already compiled." /*: \n\n" + code*/ ); programInfo.usedTimes ++; return programInfo.program; } } //console.log( "building new program " ); // program = _gl.createProgram(); var prefix_vertex = [ "precision " + _precision + " float;", _supportsVertexTextures ? "#define VERTEX_TEXTURES" : "", _this.gammaInput ? "#define GAMMA_INPUT" : "", _this.gammaOutput ? "#define GAMMA_OUTPUT" : "", _this.physicallyBasedShading ? "#define PHYSICALLY_BASED_SHADING" : "", "#define MAX_DIR_LIGHTS " + parameters.maxDirLights, "#define MAX_POINT_LIGHTS " + parameters.maxPointLights, "#define MAX_SPOT_LIGHTS " + parameters.maxSpotLights, "#define MAX_SHADOWS " + parameters.maxShadows, "#define MAX_BONES " + parameters.maxBones, parameters.map ? "#define USE_MAP" : "", parameters.envMap ? "#define USE_ENVMAP" : "", parameters.lightMap ? "#define USE_LIGHTMAP" : "", parameters.vertexColors ? "#define USE_COLOR" : "", parameters.skinning ? "#define USE_SKINNING" : "", parameters.useVertexTexture ? "#define BONE_TEXTURE" : "", parameters.boneTextureWidth ? "#define N_BONE_PIXEL_X " + parameters.boneTextureWidth.toFixed( 1 ) : "", parameters.boneTextureHeight ? "#define N_BONE_PIXEL_Y " + parameters.boneTextureHeight.toFixed( 1 ) : "", parameters.morphTargets ? "#define USE_MORPHTARGETS" : "", parameters.morphNormals ? "#define USE_MORPHNORMALS" : "", parameters.perPixel ? "#define PHONG_PER_PIXEL" : "", parameters.wrapAround ? "#define WRAP_AROUND" : "", parameters.doubleSided ? "#define DOUBLE_SIDED" : "", parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "", parameters.shadowMapSoft ? "#define SHADOWMAP_SOFT" : "", parameters.shadowMapDebug ? "#define SHADOWMAP_DEBUG" : "", parameters.shadowMapCascade ? "#define SHADOWMAP_CASCADE" : "", parameters.sizeAttenuation ? "#define USE_SIZEATTENUATION" : "", "uniform mat4 objectMatrix;", "uniform mat4 modelViewMatrix;", "uniform mat4 projectionMatrix;", "uniform mat4 viewMatrix;", "uniform mat3 normalMatrix;", "uniform vec3 cameraPosition;", "attribute vec3 position;", "attribute vec3 normal;", "attribute vec2 uv;", "attribute vec2 uv2;", "#ifdef USE_COLOR", "attribute vec3 color;", "#endif", "#ifdef USE_MORPHTARGETS", "attribute vec3 morphTarget0;", "attribute vec3 morphTarget1;", "attribute vec3 morphTarget2;", "attribute vec3 morphTarget3;", "#ifdef USE_MORPHNORMALS", "attribute vec3 morphNormal0;", "attribute vec3 morphNormal1;", "attribute vec3 morphNormal2;", "attribute vec3 morphNormal3;", "#else", "attribute vec3 morphTarget4;", "attribute vec3 morphTarget5;", "attribute vec3 morphTarget6;", "attribute vec3 morphTarget7;", "#endif", "#endif", "#ifdef USE_SKINNING", "attribute vec4 skinVertexA;", "attribute vec4 skinVertexB;", "attribute vec4 skinIndex;", "attribute vec4 skinWeight;", "#endif", "" ].join("\n"); var prefix_fragment = [ "precision " + _precision + " float;", "#define MAX_DIR_LIGHTS " + parameters.maxDirLights, "#define MAX_POINT_LIGHTS " + parameters.maxPointLights, "#define MAX_SPOT_LIGHTS " + parameters.maxSpotLights, "#define MAX_SHADOWS " + parameters.maxShadows, parameters.alphaTest ? "#define ALPHATEST " + parameters.alphaTest: "", _this.gammaInput ? "#define GAMMA_INPUT" : "", _this.gammaOutput ? "#define GAMMA_OUTPUT" : "", _this.physicallyBasedShading ? "#define PHYSICALLY_BASED_SHADING" : "", ( parameters.useFog && parameters.fog ) ? "#define USE_FOG" : "", ( parameters.useFog && parameters.fog instanceof THREE.FogExp2 ) ? "#define FOG_EXP2" : "", parameters.map ? "#define USE_MAP" : "", parameters.envMap ? "#define USE_ENVMAP" : "", parameters.lightMap ? "#define USE_LIGHTMAP" : "", parameters.vertexColors ? "#define USE_COLOR" : "", parameters.metal ? "#define METAL" : "", parameters.perPixel ? "#define PHONG_PER_PIXEL" : "", parameters.wrapAround ? "#define WRAP_AROUND" : "", parameters.doubleSided ? "#define DOUBLE_SIDED" : "", parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "", parameters.shadowMapSoft ? "#define SHADOWMAP_SOFT" : "", parameters.shadowMapDebug ? "#define SHADOWMAP_DEBUG" : "", parameters.shadowMapCascade ? "#define SHADOWMAP_CASCADE" : "", "uniform mat4 viewMatrix;", "uniform vec3 cameraPosition;", "" ].join("\n"); var glFragmentShader = getShader( "fragment", prefix_fragment + fragmentShader ); var glVertexShader = getShader( "vertex", prefix_vertex + vertexShader ); _gl.attachShader( program, glVertexShader ); _gl.attachShader( program, glFragmentShader ); _gl.linkProgram( program ); if ( !_gl.getProgramParameter( program, _gl.LINK_STATUS ) ) { console.error( "Could not initialise shader\n" + "VALIDATE_STATUS: " + _gl.getProgramParameter( program, _gl.VALIDATE_STATUS ) + ", gl error [" + _gl.getError() + "]" ); } // clean up _gl.deleteShader( glFragmentShader ); _gl.deleteShader( glVertexShader ); //console.log( prefix_fragment + fragmentShader ); //console.log( prefix_vertex + vertexShader ); program.uniforms = {}; program.attributes = {}; var identifiers, u, a, i; // cache uniform locations identifiers = [ 'viewMatrix', 'modelViewMatrix', 'projectionMatrix', 'normalMatrix', 'objectMatrix', 'cameraPosition', 'morphTargetInfluences' ]; if ( parameters.useVertexTexture ) { identifiers.push( 'boneTexture' ); } else { identifiers.push( 'boneGlobalMatrices' ); } for ( u in uniforms ) { identifiers.push( u ); } cacheUniformLocations( program, identifiers ); // cache attributes locations identifiers = [ "position", "normal", "uv", "uv2", "tangent", "color", "skinVertexA", "skinVertexB", "skinIndex", "skinWeight" ]; for ( i = 0; i < parameters.maxMorphTargets; i ++ ) { identifiers.push( "morphTarget" + i ); } for ( i = 0; i < parameters.maxMorphNormals; i ++ ) { identifiers.push( "morphNormal" + i ); } for ( a in attributes ) { identifiers.push( a ); } cacheAttributeLocations( program, identifiers ); program.id = _programs_counter ++; _programs.push( { program: program, code: code, usedTimes: 1 } ); _this.info.memory.programs = _programs.length; return program; }; // Shader parameters cache function cacheUniformLocations ( program, identifiers ) { var i, l, id; for( i = 0, l = identifiers.length; i < l; i ++ ) { id = identifiers[ i ]; program.uniforms[ id ] = _gl.getUniformLocation( program, id ); } }; function cacheAttributeLocations ( program, identifiers ) { var i, l, id; for( i = 0, l = identifiers.length; i < l; i ++ ) { id = identifiers[ i ]; program.attributes[ id ] = _gl.getAttribLocation( program, id ); } }; function getShader ( type, string ) { var shader; if ( type === "fragment" ) { shader = _gl.createShader( _gl.FRAGMENT_SHADER ); } else if ( type === "vertex" ) { shader = _gl.createShader( _gl.VERTEX_SHADER ); } _gl.shaderSource( shader, string ); _gl.compileShader( shader ); if ( !_gl.getShaderParameter( shader, _gl.COMPILE_STATUS ) ) { console.error( _gl.getShaderInfoLog( shader ) ); console.error( string ); return null; } return shader; }; // Textures function isPowerOfTwo ( value ) { return ( value & ( value - 1 ) ) === 0; }; function setTextureParameters ( textureType, texture, isImagePowerOfTwo ) { if ( isImagePowerOfTwo ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, paramThreeToGL( texture.wrapS ) ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, paramThreeToGL( texture.wrapT ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, paramThreeToGL( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, paramThreeToGL( texture.minFilter ) ); } else { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) ); } if ( _glExtensionTextureFilterAnisotropic ) { _gl.texParameterf( textureType, _glExtensionTextureFilterAnisotropic.TEXTURE_MAX_ANISOTROPY_EXT, texture.anisotropy ); } }; this.setTexture = function ( texture, slot ) { if ( texture.needsUpdate ) { if ( ! texture.__webglInit ) { texture.__webglInit = true; texture.__webglTexture = _gl.createTexture(); _this.info.memory.textures ++; } _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_2D, texture.__webglTexture ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); var image = texture.image, isImagePowerOfTwo = isPowerOfTwo( image.width ) && isPowerOfTwo( image.height ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_2D, texture, isImagePowerOfTwo ); if ( texture instanceof THREE.DataTexture ) { _gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data ); } else { _gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, texture.image ); } if ( texture.generateMipmaps && isImagePowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D ); texture.needsUpdate = false; if ( texture.onUpdate ) texture.onUpdate(); } else { _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_2D, texture.__webglTexture ); } }; function clampToMaxSize ( image, maxSize ) { if ( image.width <= maxSize && image.height <= maxSize ) { return image; } // Warning: Scaling through the canvas will only work with images that use // premultiplied alpha. var maxDimension = Math.max( image.width, image.height ); var newWidth = Math.floor( image.width * maxSize / maxDimension ); var newHeight = Math.floor( image.height * maxSize / maxDimension ); var canvas = document.createElement( 'canvas' ); canvas.width = newWidth; canvas.height = newHeight; var ctx = canvas.getContext( "2d" ); ctx.drawImage( image, 0, 0, image.width, image.height, 0, 0, newWidth, newHeight ); return canvas; } function setCubeTexture ( texture, slot ) { if ( texture.image.length === 6 ) { if ( texture.needsUpdate ) { if ( ! texture.image.__webglTextureCube ) { texture.image.__webglTextureCube = _gl.createTexture(); } _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.image.__webglTextureCube ); _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); var cubeImage = []; for ( var i = 0; i < 6; i ++ ) { if ( _this.autoScaleCubemaps ) { cubeImage[ i ] = clampToMaxSize( texture.image[ i ], _maxCubemapSize ); } else { cubeImage[ i ] = texture.image[ i ]; } } var image = cubeImage[ 0 ], isImagePowerOfTwo = isPowerOfTwo( image.width ) && isPowerOfTwo( image.height ), glFormat = paramThreeToGL( texture.format ), glType = paramThreeToGL( texture.type ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isImagePowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { _gl.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] ); } if ( texture.generateMipmaps && isImagePowerOfTwo ) { _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); } texture.needsUpdate = false; if ( texture.onUpdate ) texture.onUpdate(); } else { _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.image.__webglTextureCube ); } } }; function setCubeTextureDynamic ( texture, slot ) { _gl.activeTexture( _gl.TEXTURE0 + slot ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, texture.__webglTexture ); }; // Render targets function setupFrameBuffer ( framebuffer, renderTarget, textureTarget ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureTarget, renderTarget.__webglTexture, 0 ); }; function setupRenderBuffer ( renderbuffer, renderTarget ) { _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); /* For some reason this is not working. Defaulting to RGBA4. } else if( ! renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.STENCIL_INDEX8, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); */ } else if( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ); } else { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height ); } }; this.setRenderTarget = function ( renderTarget ) { var isCube = ( renderTarget instanceof THREE.WebGLRenderTargetCube ); if ( renderTarget && ! renderTarget.__webglFramebuffer ) { if ( renderTarget.depthBuffer === undefined ) renderTarget.depthBuffer = true; if ( renderTarget.stencilBuffer === undefined ) renderTarget.stencilBuffer = true; renderTarget.__webglTexture = _gl.createTexture(); // Setup texture, create render and frame buffers var isTargetPowerOfTwo = isPowerOfTwo( renderTarget.width ) && isPowerOfTwo( renderTarget.height ), glFormat = paramThreeToGL( renderTarget.format ), glType = paramThreeToGL( renderTarget.type ); if ( isCube ) { renderTarget.__webglFramebuffer = []; renderTarget.__webglRenderbuffer = []; _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, renderTarget.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget, isTargetPowerOfTwo ); for ( var i = 0; i < 6; i ++ ) { renderTarget.__webglFramebuffer[ i ] = _gl.createFramebuffer(); renderTarget.__webglRenderbuffer[ i ] = _gl.createRenderbuffer(); _gl.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); setupFrameBuffer( renderTarget.__webglFramebuffer[ i ], renderTarget, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i ); setupRenderBuffer( renderTarget.__webglRenderbuffer[ i ], renderTarget ); } if ( isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); } else { renderTarget.__webglFramebuffer = _gl.createFramebuffer(); renderTarget.__webglRenderbuffer = _gl.createRenderbuffer(); _gl.bindTexture( _gl.TEXTURE_2D, renderTarget.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, renderTarget, isTargetPowerOfTwo ); _gl.texImage2D( _gl.TEXTURE_2D, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); setupFrameBuffer( renderTarget.__webglFramebuffer, renderTarget, _gl.TEXTURE_2D ); setupRenderBuffer( renderTarget.__webglRenderbuffer, renderTarget ); if ( isTargetPowerOfTwo ) _gl.generateMipmap( _gl.TEXTURE_2D ); } // Release everything if ( isCube ) { _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { _gl.bindTexture( _gl.TEXTURE_2D, null ); } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); _gl.bindFramebuffer( _gl.FRAMEBUFFER, null); } var framebuffer, width, height, vx, vy; if ( renderTarget ) { if ( isCube ) { framebuffer = renderTarget.__webglFramebuffer[ renderTarget.activeCubeFace ]; } else { framebuffer = renderTarget.__webglFramebuffer; } width = renderTarget.width; height = renderTarget.height; vx = 0; vy = 0; } else { framebuffer = null; width = _viewportWidth; height = _viewportHeight; vx = _viewportX; vy = _viewportY; } if ( framebuffer !== _currentFramebuffer ) { _gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); _gl.viewport( vx, vy, width, height ); _currentFramebuffer = framebuffer; } _currentWidth = width; _currentHeight = height; }; function updateRenderTargetMipmap ( renderTarget ) { if ( renderTarget instanceof THREE.WebGLRenderTargetCube ) { _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, renderTarget.__webglTexture ); _gl.generateMipmap( _gl.TEXTURE_CUBE_MAP ); _gl.bindTexture( _gl.TEXTURE_CUBE_MAP, null ); } else { _gl.bindTexture( _gl.TEXTURE_2D, renderTarget.__webglTexture ); _gl.generateMipmap( _gl.TEXTURE_2D ); _gl.bindTexture( _gl.TEXTURE_2D, null ); } }; // Fallback filters for non-power-of-2 textures function filterFallback ( f ) { if ( f === THREE.NearestFilter || f === THREE.NearestMipMapNearestFilter || f === THREE.NearestMipMapLinearFilter ) { return _gl.NEAREST; } return _gl.LINEAR; }; // Map three.js constants to WebGL constants function paramThreeToGL ( p ) { if ( p === THREE.RepeatWrapping ) return _gl.REPEAT; if ( p === THREE.ClampToEdgeWrapping ) return _gl.CLAMP_TO_EDGE; if ( p === THREE.MirroredRepeatWrapping ) return _gl.MIRRORED_REPEAT; if ( p === THREE.NearestFilter ) return _gl.NEAREST; if ( p === THREE.NearestMipMapNearestFilter ) return _gl.NEAREST_MIPMAP_NEAREST; if ( p === THREE.NearestMipMapLinearFilter ) return _gl.NEAREST_MIPMAP_LINEAR; if ( p === THREE.LinearFilter ) return _gl.LINEAR; if ( p === THREE.LinearMipMapNearestFilter ) return _gl.LINEAR_MIPMAP_NEAREST; if ( p === THREE.LinearMipMapLinearFilter ) return _gl.LINEAR_MIPMAP_LINEAR; if ( p === THREE.UnsignedByteType ) return _gl.UNSIGNED_BYTE; if ( p === THREE.UnsignedShort4444Type ) return _gl.UNSIGNED_SHORT_4_4_4_4; if ( p === THREE.UnsignedShort5551Type ) return _gl.UNSIGNED_SHORT_5_5_5_1; if ( p === THREE.UnsignedShort565Type ) return _gl.UNSIGNED_SHORT_5_6_5; if ( p === THREE.ByteType ) return _gl.BYTE; if ( p === THREE.ShortType ) return _gl.SHORT; if ( p === THREE.UnsignedShortType ) return _gl.UNSIGNED_SHORT; if ( p === THREE.IntType ) return _gl.INT; if ( p === THREE.UnsignedIntType ) return _gl.UNSIGNED_INT; if ( p === THREE.FloatType ) return _gl.FLOAT; if ( p === THREE.AlphaFormat ) return _gl.ALPHA; if ( p === THREE.RGBFormat ) return _gl.RGB; if ( p === THREE.RGBAFormat ) return _gl.RGBA; if ( p === THREE.LuminanceFormat ) return _gl.LUMINANCE; if ( p === THREE.LuminanceAlphaFormat ) return _gl.LUMINANCE_ALPHA; if ( p === THREE.AddEquation ) return _gl.FUNC_ADD; if ( p === THREE.SubtractEquation ) return _gl.FUNC_SUBTRACT; if ( p === THREE.ReverseSubtractEquation ) return _gl.FUNC_REVERSE_SUBTRACT; if ( p === THREE.ZeroFactor ) return _gl.ZERO; if ( p === THREE.OneFactor ) return _gl.ONE; if ( p === THREE.SrcColorFactor ) return _gl.SRC_COLOR; if ( p === THREE.OneMinusSrcColorFactor ) return _gl.ONE_MINUS_SRC_COLOR; if ( p === THREE.SrcAlphaFactor ) return _gl.SRC_ALPHA; if ( p === THREE.OneMinusSrcAlphaFactor ) return _gl.ONE_MINUS_SRC_ALPHA; if ( p === THREE.DstAlphaFactor ) return _gl.DST_ALPHA; if ( p === THREE.OneMinusDstAlphaFactor ) return _gl.ONE_MINUS_DST_ALPHA; if ( p === THREE.DstColorFactor ) return _gl.DST_COLOR; if ( p === THREE.OneMinusDstColorFactor ) return _gl.ONE_MINUS_DST_COLOR; if ( p === THREE.SrcAlphaSaturateFactor ) return _gl.SRC_ALPHA_SATURATE; return 0; }; // Allocations function allocateBones ( object ) { if ( _supportsBoneTextures && object.useVertexTexture ) { return 1024; } else { // default for when object is not specified // ( for example when prebuilding shader // to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) var nVertexUniforms = _gl.getParameter( _gl.MAX_VERTEX_UNIFORM_VECTORS ); var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 ); var maxBones = nVertexMatrices; if ( object !== undefined && object instanceof THREE.SkinnedMesh ) { maxBones = Math.min( object.bones.length, maxBones ); if ( maxBones < object.bones.length ) { console.warn( "WebGLRenderer: too many bones - " + object.bones.length + ", this GPU supports just " + maxBones + " (try OpenGL instead of ANGLE)" ); } } return maxBones; } }; function allocateLights ( lights ) { var l, ll, light, dirLights, pointLights, spotLights, maxDirLights, maxPointLights, maxSpotLights; dirLights = pointLights = spotLights = maxDirLights = maxPointLights = maxSpotLights = 0; for ( l = 0, ll = lights.length; l < ll; l ++ ) { light = lights[ l ]; if ( light.onlyShadow ) continue; if ( light instanceof THREE.DirectionalLight ) dirLights ++; if ( light instanceof THREE.PointLight ) pointLights ++; if ( light instanceof THREE.SpotLight ) spotLights ++; } if ( ( pointLights + spotLights + dirLights ) <= _maxLights ) { maxDirLights = dirLights; maxPointLights = pointLights; maxSpotLights = spotLights; } else { maxDirLights = Math.ceil( _maxLights * dirLights / ( pointLights + dirLights ) ); maxPointLights = _maxLights - maxDirLights; maxSpotLights = maxPointLights; // this is not really correct } return { 'directional' : maxDirLights, 'point' : maxPointLights, 'spot': maxSpotLights }; }; function allocateShadows ( lights ) { var l, ll, light, maxShadows = 0; for ( l = 0, ll = lights.length; l < ll; l++ ) { light = lights[ l ]; if ( ! light.castShadow ) continue; if ( light instanceof THREE.SpotLight ) maxShadows ++; if ( light instanceof THREE.DirectionalLight && ! light.shadowCascade ) maxShadows ++; } return maxShadows; }; // Initialization function initGL () { try { if ( ! ( _gl = _canvas.getContext( 'experimental-webgl', { alpha: _alpha, premultipliedAlpha: _premultipliedAlpha, antialias: _antialias, stencil: _stencil, preserveDrawingBuffer: _preserveDrawingBuffer } ) ) ) { throw 'Error creating WebGL context.'; } } catch ( error ) { console.error( error ); } _glExtensionTextureFloat = _gl.getExtension( 'OES_texture_float' ); _glExtensionStandardDerivatives = _gl.getExtension( 'OES_standard_derivatives' ); _glExtensionTextureFilterAnisotropic = _gl.getExtension( 'EXT_texture_filter_anisotropic' ) || _gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || _gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); if ( ! _glExtensionTextureFloat ) { console.log( 'THREE.WebGLRenderer: Float textures not supported.' ); } if ( ! _glExtensionStandardDerivatives ) { console.log( 'THREE.WebGLRenderer: Standard derivatives not supported.' ); } if ( ! _glExtensionTextureFilterAnisotropic ) { console.log( 'THREE.WebGLRenderer: Anisotropic texture filtering not supported.' ); } }; function setDefaultGLState () { _gl.clearColor( 0, 0, 0, 1 ); _gl.clearDepth( 1 ); _gl.clearStencil( 0 ); _gl.enable( _gl.DEPTH_TEST ); _gl.depthFunc( _gl.LEQUAL ); _gl.frontFace( _gl.CCW ); _gl.cullFace( _gl.BACK ); _gl.enable( _gl.CULL_FACE ); _gl.enable( _gl.BLEND ); _gl.blendEquation( _gl.FUNC_ADD ); _gl.blendFunc( _gl.SRC_ALPHA, _gl.ONE_MINUS_SRC_ALPHA ); _gl.clearColor( _clearColor.r, _clearColor.g, _clearColor.b, _clearAlpha ); }; // default plugins (order is important) this.shadowMapPlugin = new THREE.ShadowMapPlugin(); this.addPrePlugin( this.shadowMapPlugin ); this.addPostPlugin( new THREE.SpritePlugin() ); this.addPostPlugin( new THREE.LensFlarePlugin() ); }; /** * @author szimek / https://github.com/szimek/ */ THREE.WebGLRenderTarget = function ( width, height, options ) { this.width = width; this.height = height; options = options || {}; this.wrapS = options.wrapS !== undefined ? options.wrapS : THREE.ClampToEdgeWrapping; this.wrapT = options.wrapT !== undefined ? options.wrapT : THREE.ClampToEdgeWrapping; this.magFilter = options.magFilter !== undefined ? options.magFilter : THREE.LinearFilter; this.minFilter = options.minFilter !== undefined ? options.minFilter : THREE.LinearMipMapLinearFilter; this.offset = new THREE.Vector2( 0, 0 ); this.repeat = new THREE.Vector2( 1, 1 ); this.format = options.format !== undefined ? options.format : THREE.RGBAFormat; this.type = options.type !== undefined ? options.type : THREE.UnsignedByteType; this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true; this.generateMipmaps = true; }; THREE.WebGLRenderTarget.prototype.clone = function() { var tmp = new THREE.WebGLRenderTarget( this.width, this.height ); tmp.wrapS = this.wrapS; tmp.wrapT = this.wrapT; tmp.magFilter = this.magFilter; tmp.minFilter = this.minFilter; tmp.offset.copy( this.offset ); tmp.repeat.copy( this.repeat ); tmp.format = this.format; tmp.type = this.type; tmp.depthBuffer = this.depthBuffer; tmp.stencilBuffer = this.stencilBuffer; return tmp; }; /** * @author alteredq / http://alteredqualia.com */ THREE.WebGLRenderTargetCube = function ( width, height, options ) { THREE.WebGLRenderTarget.call( this, width, height, options ); this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5 }; THREE.WebGLRenderTargetCube.prototype = Object.create( THREE.WebGLRenderTarget.prototype ); /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableVertex = function () { this.positionWorld = new THREE.Vector3(); this.positionScreen = new THREE.Vector4(); this.visible = true; }; THREE.RenderableVertex.prototype.copy = function ( vertex ) { this.positionWorld.copy( vertex.positionWorld ); this.positionScreen.copy( vertex.positionScreen ); } /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableFace3 = function () { this.v1 = new THREE.RenderableVertex(); this.v2 = new THREE.RenderableVertex(); this.v3 = new THREE.RenderableVertex(); this.centroidWorld = new THREE.Vector3(); this.centroidScreen = new THREE.Vector3(); this.normalWorld = new THREE.Vector3(); this.vertexNormalsWorld = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; this.material = null; this.faceMaterial = null; this.uvs = [[]]; this.z = null; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableFace4 = function () { this.v1 = new THREE.RenderableVertex(); this.v2 = new THREE.RenderableVertex(); this.v3 = new THREE.RenderableVertex(); this.v4 = new THREE.RenderableVertex(); this.centroidWorld = new THREE.Vector3(); this.centroidScreen = new THREE.Vector3(); this.normalWorld = new THREE.Vector3(); this.vertexNormalsWorld = [ new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3(), new THREE.Vector3() ]; this.material = null; this.faceMaterial = null; this.uvs = [[]]; this.z = null; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableObject = function () { this.object = null; this.z = null; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableParticle = function () { this.x = null; this.y = null; this.z = null; this.rotation = null; this.scale = new THREE.Vector2(); this.material = null; }; /** * @author mr.doob / http://mrdoob.com/ */ THREE.RenderableLine = function () { this.z = null; this.v1 = new THREE.RenderableVertex(); this.v2 = new THREE.RenderableVertex(); this.material = null; }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.BufferGeometry = function () { this.id = THREE.GeometryCount ++; // attributes this.attributes = {}; // attributes typed arrays are kept only if dynamic flag is set this.dynamic = false; // boundings this.boundingBox = null; this.boundingSphere = null; this.hasTangents = false; // for compatibility this.morphTargets = []; }; THREE.BufferGeometry.prototype = { constructor : THREE.BufferGeometry, applyMatrix: function ( matrix ) { var positionArray; var normalArray; if ( this.attributes[ "position" ] ) positionArray = this.attributes[ "position" ].array; if ( this.attributes[ "normal" ] ) normalArray = this.attributes[ "normal" ].array; if ( positionArray !== undefined ) { matrix.multiplyVector3Array( positionArray ); this.verticesNeedUpdate = true; } if ( normalArray !== undefined ) { var matrixRotation = new THREE.Matrix4(); matrixRotation.extractRotation( matrix ); matrixRotation.multiplyVector3Array( normalArray ); this.normalsNeedUpdate = true; } }, computeBoundingBox: function () { if ( ! this.boundingBox ) { this.boundingBox = { min: new THREE.Vector3( Infinity, Infinity, Infinity ), max: new THREE.Vector3( -Infinity, -Infinity, -Infinity ) }; } var positions = this.attributes[ "position" ].array; if ( positions ) { var bb = this.boundingBox; var x, y, z; for ( var i = 0, il = positions.length; i < il; i += 3 ) { x = positions[ i ]; y = positions[ i + 1 ]; z = positions[ i + 2 ]; // bounding box if ( x < bb.min.x ) { bb.min.x = x; } else if ( x > bb.max.x ) { bb.max.x = x; } if ( y < bb.min.y ) { bb.min.y = y; } else if ( y > bb.max.y ) { bb.max.y = y; } if ( z < bb.min.z ) { bb.min.z = z; } else if ( z > bb.max.z ) { bb.max.z = z; } } } if ( positions === undefined || positions.length === 0 ) { this.boundingBox.min.set( 0, 0, 0 ); this.boundingBox.max.set( 0, 0, 0 ); } }, computeBoundingSphere: function () { if ( ! this.boundingSphere ) this.boundingSphere = { radius: 0 }; var positions = this.attributes[ "position" ].array; if ( positions ) { var radius, maxRadius = 0; var x, y, z; for ( var i = 0, il = positions.length; i < il; i += 3 ) { x = positions[ i ]; y = positions[ i + 1 ]; z = positions[ i + 2 ]; radius = Math.sqrt( x * x + y * y + z * z ); if ( radius > maxRadius ) maxRadius = radius; } this.boundingSphere.radius = maxRadius; } }, computeVertexNormals: function () { if ( this.attributes[ "position" ] && this.attributes[ "index" ] ) { var i, il; var j, jl; var nVertexElements = this.attributes[ "position" ].array.length; if ( this.attributes[ "normal" ] === undefined ) { this.attributes[ "normal" ] = { itemSize: 3, array: new Float32Array( nVertexElements ), numItems: nVertexElements }; } else { // reset existing normals to zero for ( i = 0, il = this.attributes[ "normal" ].array.length; i < il; i ++ ) { this.attributes[ "normal" ].array[ i ] = 0; } } var offsets = this.offsets; var indices = this.attributes[ "index" ].array; var positions = this.attributes[ "position" ].array; var normals = this.attributes[ "normal" ].array; var vA, vB, vC, x, y, z, pA = new THREE.Vector3(), pB = new THREE.Vector3(), pC = new THREE.Vector3(), cb = new THREE.Vector3(), ab = new THREE.Vector3(); for ( j = 0, jl = offsets.length; j < jl; ++ j ) { var start = offsets[ j ].start; var count = offsets[ j ].count; var index = offsets[ j ].index; for ( i = start, il = start + count; i < il; i += 3 ) { vA = index + indices[ i ]; vB = index + indices[ i + 1 ]; vC = index + indices[ i + 2 ]; x = positions[ vA * 3 ]; y = positions[ vA * 3 + 1 ]; z = positions[ vA * 3 + 2 ]; pA.set( x, y, z ); x = positions[ vB * 3 ]; y = positions[ vB * 3 + 1 ]; z = positions[ vB * 3 + 2 ]; pB.set( x, y, z ); x = positions[ vC * 3 ]; y = positions[ vC * 3 + 1 ]; z = positions[ vC * 3 + 2 ]; pC.set( x, y, z ); cb.sub( pC, pB ); ab.sub( pA, pB ); cb.crossSelf( ab ); normals[ vA * 3 ] += cb.x; normals[ vA * 3 + 1 ] += cb.y; normals[ vA * 3 + 2 ] += cb.z; normals[ vB * 3 ] += cb.x; normals[ vB * 3 + 1 ] += cb.y; normals[ vB * 3 + 2 ] += cb.z; normals[ vC * 3 ] += cb.x; normals[ vC * 3 + 1 ] += cb.y; normals[ vC * 3 + 2 ] += cb.z; } } // normalize normals for ( i = 0, il = normals.length; i < il; i += 3 ) { x = normals[ i ]; y = normals[ i + 1 ]; z = normals[ i + 2 ]; var n = 1.0 / Math.sqrt( x * x + y * y + z * z ); normals[ i ] *= n; normals[ i + 1 ] *= n; normals[ i + 2 ] *= n; } this.normalsNeedUpdate = true; } }, computeTangents: function () { // based on http://www.terathon.com/code/tangent.html // (per vertex tangents) if ( this.attributes[ "index" ] === undefined || this.attributes[ "position" ] === undefined || this.attributes[ "normal" ] === undefined || this.attributes[ "uv" ] === undefined ) { console.warn( "Missing required attributes (index, position, normal or uv) in BufferGeometry.computeTangents()" ); return; } var indices = this.attributes[ "index" ].array; var positions = this.attributes[ "position" ].array; var normals = this.attributes[ "normal" ].array; var uvs = this.attributes[ "uv" ].array; var nVertices = positions.length / 3; if ( this.attributes[ "tangent" ] === undefined ) { var nTangentElements = 4 * nVertices; this.attributes[ "tangent" ] = { itemSize: 4, array: new Float32Array( nTangentElements ), numItems: nTangentElements }; } var tangents = this.attributes[ "tangent" ].array; var tan1 = [], tan2 = []; for ( var k = 0; k < nVertices; k ++ ) { tan1[ k ] = new THREE.Vector3(); tan2[ k ] = new THREE.Vector3(); } var xA, yA, zA, xB, yB, zB, xC, yC, zC, uA, vA, uB, vB, uC, vC, x1, x2, y1, y2, z1, z2, s1, s2, t1, t2, r; var sdir = new THREE.Vector3(), tdir = new THREE.Vector3(); function handleTriangle( a, b, c ) { xA = positions[ a * 3 ]; yA = positions[ a * 3 + 1 ]; zA = positions[ a * 3 + 2 ]; xB = positions[ b * 3 ]; yB = positions[ b * 3 + 1 ]; zB = positions[ b * 3 + 2 ]; xC = positions[ c * 3 ]; yC = positions[ c * 3 + 1 ]; zC = positions[ c * 3 + 2 ]; uA = uvs[ a * 2 ]; vA = uvs[ a * 2 + 1 ]; uB = uvs[ b * 2 ]; vB = uvs[ b * 2 + 1 ]; uC = uvs[ c * 2 ]; vC = uvs[ c * 2 + 1 ]; x1 = xB - xA; x2 = xC - xA; y1 = yB - yA; y2 = yC - yA; z1 = zB - zA; z2 = zC - zA; s1 = uB - uA; s2 = uC - uA; t1 = vB - vA; t2 = vC - vA; r = 1.0 / ( s1 * t2 - s2 * t1 ); sdir.set( ( t2 * x1 - t1 * x2 ) * r, ( t2 * y1 - t1 * y2 ) * r, ( t2 * z1 - t1 * z2 ) * r ); tdir.set( ( s1 * x2 - s2 * x1 ) * r, ( s1 * y2 - s2 * y1 ) * r, ( s1 * z2 - s2 * z1 ) * r ); tan1[ a ].addSelf( sdir ); tan1[ b ].addSelf( sdir ); tan1[ c ].addSelf( sdir ); tan2[ a ].addSelf( tdir ); tan2[ b ].addSelf( tdir ); tan2[ c ].addSelf( tdir ); } var i, il; var j, jl; var iA, iB, iC; var offsets = this.offsets; for ( j = 0, jl = offsets.length; j < jl; ++ j ) { var start = offsets[ j ].start; var count = offsets[ j ].count; var index = offsets[ j ].index; for ( i = start, il = start + count; i < il; i += 3 ) { iA = index + indices[ i ]; iB = index + indices[ i + 1 ]; iC = index + indices[ i + 2 ]; handleTriangle( iA, iB, iC ); } } var tmp = new THREE.Vector3(), tmp2 = new THREE.Vector3(); var n = new THREE.Vector3(), n2 = new THREE.Vector3(); var w, t, test; var nx, ny, nz; function handleVertex( v ) { n.x = normals[ v * 3 ]; n.y = normals[ v * 3 + 1 ]; n.z = normals[ v * 3 + 2 ]; n2.copy( n ); t = tan1[ v ]; // Gram-Schmidt orthogonalize tmp.copy( t ); tmp.subSelf( n.multiplyScalar( n.dot( t ) ) ).normalize(); // Calculate handedness tmp2.cross( n2, t ); test = tmp2.dot( tan2[ v ] ); w = ( test < 0.0 ) ? -1.0 : 1.0; tangents[ v * 4 ] = tmp.x; tangents[ v * 4 + 1 ] = tmp.y; tangents[ v * 4 + 2 ] = tmp.z; tangents[ v * 4 + 3 ] = w; } for ( j = 0, jl = offsets.length; j < jl; ++ j ) { var start = offsets[ j ].start; var count = offsets[ j ].count; var index = offsets[ j ].index; for ( i = start, il = start + count; i < il; i += 3 ) { iA = index + indices[ i ]; iB = index + indices[ i + 1 ]; iC = index + indices[ i + 2 ]; handleVertex( iA ); handleVertex( iB ); handleVertex( iC ); } } this.hasTangents = true; this.tangentsNeedUpdate = true; } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.Gyroscope = function () { THREE.Object3D.call( this ); }; THREE.Gyroscope.prototype = Object.create( THREE.Object3D.prototype ); THREE.Gyroscope.prototype.updateMatrixWorld = function ( force ) { this.matrixAutoUpdate && this.updateMatrix(); // update matrixWorld if ( this.matrixWorldNeedsUpdate || force ) { if ( this.parent ) { this.matrixWorld.multiply( this.parent.matrixWorld, this.matrix ); this.matrixWorld.decompose( this.translationWorld, this.rotationWorld, this.scaleWorld ); this.matrix.decompose( this.translationObject, this.rotationObject, this.scaleObject ); this.matrixWorld.compose( this.translationWorld, this.rotationObject, this.scaleWorld ); } else { this.matrixWorld.copy( this.matrix ); } this.matrixWorldNeedsUpdate = false; force = true; } // update children for ( var i = 0, l = this.children.length; i < l; i ++ ) { this.children[ i ].updateMatrixWorld( force ); } }; THREE.Gyroscope.prototype.translationWorld = new THREE.Vector3(); THREE.Gyroscope.prototype.translationObject = new THREE.Vector3(); THREE.Gyroscope.prototype.rotationWorld = new THREE.Quaternion(); THREE.Gyroscope.prototype.rotationObject = new THREE.Quaternion(); THREE.Gyroscope.prototype.scaleWorld = new THREE.Vector3(); THREE.Gyroscope.prototype.scaleObject = new THREE.Vector3(); /** * @author alteredq / http://alteredqualia.com/ * * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ THREE.CameraHelper = function ( camera ) { THREE.Object3D.call( this ); var _this = this; this.lineGeometry = new THREE.Geometry(); this.lineMaterial = new THREE.LineBasicMaterial( { color: 0xffffff, vertexColors: THREE.FaceColors } ); this.pointMap = {}; // colors var hexFrustum = 0xffaa00, hexCone = 0xff0000, hexUp = 0x00aaff, hexTarget = 0xffffff, hexCross = 0x333333; // near addLine( "n1", "n2", hexFrustum ); addLine( "n2", "n4", hexFrustum ); addLine( "n4", "n3", hexFrustum ); addLine( "n3", "n1", hexFrustum ); // far addLine( "f1", "f2", hexFrustum ); addLine( "f2", "f4", hexFrustum ); addLine( "f4", "f3", hexFrustum ); addLine( "f3", "f1", hexFrustum ); // sides addLine( "n1", "f1", hexFrustum ); addLine( "n2", "f2", hexFrustum ); addLine( "n3", "f3", hexFrustum ); addLine( "n4", "f4", hexFrustum ); // cone addLine( "p", "n1", hexCone ); addLine( "p", "n2", hexCone ); addLine( "p", "n3", hexCone ); addLine( "p", "n4", hexCone ); // up addLine( "u1", "u2", hexUp ); addLine( "u2", "u3", hexUp ); addLine( "u3", "u1", hexUp ); // target addLine( "c", "t", hexTarget ); addLine( "p", "c", hexCross ); // cross addLine( "cn1", "cn2", hexCross ); addLine( "cn3", "cn4", hexCross ); addLine( "cf1", "cf2", hexCross ); addLine( "cf3", "cf4", hexCross ); this.camera = camera; function addLine( a, b, hex ) { addPoint( a, hex ); addPoint( b, hex ); } function addPoint( id, hex ) { _this.lineGeometry.vertices.push( new THREE.Vector3() ); _this.lineGeometry.colors.push( new THREE.Color( hex ) ); if ( _this.pointMap[ id ] === undefined ) _this.pointMap[ id ] = []; _this.pointMap[ id ].push( _this.lineGeometry.vertices.length - 1 ); } this.update( camera ); this.lines = new THREE.Line( this.lineGeometry, this.lineMaterial, THREE.LinePieces ); this.add( this.lines ); }; THREE.CameraHelper.prototype = Object.create( THREE.Object3D.prototype ); THREE.CameraHelper.prototype.update = function () { var camera = this.camera; var w = 1; var h = 1; var _this = this; // we need just camera projection matrix // world matrix must be identity THREE.CameraHelper.__c.projectionMatrix.copy( camera.projectionMatrix ); // center / target setPoint( "c", 0, 0, -1 ); setPoint( "t", 0, 0, 1 ); // near setPoint( "n1", -w, -h, -1 ); setPoint( "n2", w, -h, -1 ); setPoint( "n3", -w, h, -1 ); setPoint( "n4", w, h, -1 ); // far setPoint( "f1", -w, -h, 1 ); setPoint( "f2", w, -h, 1 ); setPoint( "f3", -w, h, 1 ); setPoint( "f4", w, h, 1 ); // up setPoint( "u1", w * 0.7, h * 1.1, -1 ); setPoint( "u2", -w * 0.7, h * 1.1, -1 ); setPoint( "u3", 0, h * 2, -1 ); // cross setPoint( "cf1", -w, 0, 1 ); setPoint( "cf2", w, 0, 1 ); setPoint( "cf3", 0, -h, 1 ); setPoint( "cf4", 0, h, 1 ); setPoint( "cn1", -w, 0, -1 ); setPoint( "cn2", w, 0, -1 ); setPoint( "cn3", 0, -h, -1 ); setPoint( "cn4", 0, h, -1 ); function setPoint( point, x, y, z ) { THREE.CameraHelper.__v.set( x, y, z ); THREE.CameraHelper.__projector.unprojectVector( THREE.CameraHelper.__v, THREE.CameraHelper.__c ); var points = _this.pointMap[ point ]; if ( points !== undefined ) { for ( var i = 0, il = points.length; i < il; i ++ ) { var j = points[ i ]; _this.lineGeometry.vertices[ j ].copy( THREE.CameraHelper.__v ); } } } this.lineGeometry.verticesNeedUpdate = true; }; THREE.CameraHelper.__projector = new THREE.Projector(); THREE.CameraHelper.__v = new THREE.Vector3(); THREE.CameraHelper.__c = new THREE.Camera(); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlare = function ( texture, size, distance, blending, color ) { THREE.Object3D.call( this ); this.lensFlares = []; this.positionScreen = new THREE.Vector3(); this.customUpdateCallback = undefined; if( texture !== undefined ) { this.add( texture, size, distance, blending, color ); } }; THREE.LensFlare.prototype = Object.create( THREE.Object3D.prototype ); /* * Add: adds another flare */ THREE.LensFlare.prototype.add = function ( texture, size, distance, blending, color, opacity ) { if( size === undefined ) size = -1; if( distance === undefined ) distance = 0; if( opacity === undefined ) opacity = 1; if( color === undefined ) color = new THREE.Color( 0xffffff ); if( blending === undefined ) blending = THREE.NormalBlending; distance = Math.min( distance, Math.max( 0, distance ) ); this.lensFlares.push( { texture: texture, // THREE.Texture size: size, // size in pixels (-1 = use texture.width) distance: distance, // distance (0-1) from light source (0=at light source) x: 0, y: 0, z: 0, // screen position (-1 => 1) z = 0 is ontop z = 1 is back scale: 1, // scale rotation: 1, // rotation opacity: opacity, // opacity color: color, // color blending: blending } ); // blending }; /* * Update lens flares update positions on all flares based on the screen position * Set myLensFlare.customUpdateCallback to alter the flares in your project specific way. */ THREE.LensFlare.prototype.updateLensFlares = function () { var f, fl = this.lensFlares.length; var flare; var vecX = -this.positionScreen.x * 2; var vecY = -this.positionScreen.y * 2; for( f = 0; f < fl; f ++ ) { flare = this.lensFlares[ f ]; flare.x = this.positionScreen.x + vecX * flare.distance; flare.y = this.positionScreen.y + vecY * flare.distance; flare.wantedRotation = flare.x * Math.PI * 0.25; flare.rotation += ( flare.wantedRotation - flare.rotation ) * 0.25; } }; /** * @author alteredq / http://alteredqualia.com/ */ THREE.ImmediateRenderObject = function ( ) { THREE.Object3D.call( this ); this.render = function ( renderCallback ) { }; }; THREE.ImmediateRenderObject.prototype = Object.create( THREE.Object3D.prototype ); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.LensFlarePlugin = function ( ) { var _gl, _renderer, _lensFlare = {}; this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; _lensFlare.vertices = new Float32Array( 8 + 8 ); _lensFlare.faces = new Uint16Array( 6 ); var i = 0; _lensFlare.vertices[ i++ ] = -1; _lensFlare.vertices[ i++ ] = -1; // vertex _lensFlare.vertices[ i++ ] = 0; _lensFlare.vertices[ i++ ] = 0; // uv... etc. _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = -1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 0; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = -1; _lensFlare.vertices[ i++ ] = 1; _lensFlare.vertices[ i++ ] = 0; _lensFlare.vertices[ i++ ] = 1; i = 0; _lensFlare.faces[ i++ ] = 0; _lensFlare.faces[ i++ ] = 1; _lensFlare.faces[ i++ ] = 2; _lensFlare.faces[ i++ ] = 0; _lensFlare.faces[ i++ ] = 2; _lensFlare.faces[ i++ ] = 3; // buffers _lensFlare.vertexBuffer = _gl.createBuffer(); _lensFlare.elementBuffer = _gl.createBuffer(); _gl.bindBuffer( _gl.ARRAY_BUFFER, _lensFlare.vertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, _lensFlare.vertices, _gl.STATIC_DRAW ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.elementBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.faces, _gl.STATIC_DRAW ); // textures _lensFlare.tempTexture = _gl.createTexture(); _lensFlare.occlusionTexture = _gl.createTexture(); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture ); _gl.texImage2D( _gl.TEXTURE_2D, 0, _gl.RGB, 16, 16, 0, _gl.RGB, _gl.UNSIGNED_BYTE, null ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MAG_FILTER, _gl.NEAREST ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MIN_FILTER, _gl.NEAREST ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.occlusionTexture ); _gl.texImage2D( _gl.TEXTURE_2D, 0, _gl.RGBA, 16, 16, 0, _gl.RGBA, _gl.UNSIGNED_BYTE, null ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MAG_FILTER, _gl.NEAREST ); _gl.texParameteri( _gl.TEXTURE_2D, _gl.TEXTURE_MIN_FILTER, _gl.NEAREST ); if ( _gl.getParameter( _gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ) <= 0 ) { _lensFlare.hasVertexTexture = false; _lensFlare.program = createProgram( THREE.ShaderFlares[ "lensFlare" ] ); } else { _lensFlare.hasVertexTexture = true; _lensFlare.program = createProgram( THREE.ShaderFlares[ "lensFlareVertexTexture" ] ); } _lensFlare.attributes = {}; _lensFlare.uniforms = {}; _lensFlare.attributes.vertex = _gl.getAttribLocation ( _lensFlare.program, "position" ); _lensFlare.attributes.uv = _gl.getAttribLocation ( _lensFlare.program, "uv" ); _lensFlare.uniforms.renderType = _gl.getUniformLocation( _lensFlare.program, "renderType" ); _lensFlare.uniforms.map = _gl.getUniformLocation( _lensFlare.program, "map" ); _lensFlare.uniforms.occlusionMap = _gl.getUniformLocation( _lensFlare.program, "occlusionMap" ); _lensFlare.uniforms.opacity = _gl.getUniformLocation( _lensFlare.program, "opacity" ); _lensFlare.uniforms.color = _gl.getUniformLocation( _lensFlare.program, "color" ); _lensFlare.uniforms.scale = _gl.getUniformLocation( _lensFlare.program, "scale" ); _lensFlare.uniforms.rotation = _gl.getUniformLocation( _lensFlare.program, "rotation" ); _lensFlare.uniforms.screenPosition = _gl.getUniformLocation( _lensFlare.program, "screenPosition" ); _lensFlare.attributesEnabled = false; }; /* * Render lens flares * Method: renders 16x16 0xff00ff-colored points scattered over the light source area, * reads these back and calculates occlusion. * Then _lensFlare.update_lensFlares() is called to re-position and * update transparency of flares. Then they are rendered. * */ this.render = function ( scene, camera, viewportWidth, viewportHeight ) { var flares = scene.__webglFlares, nFlares = flares.length; if ( ! nFlares ) return; var tempPosition = new THREE.Vector3(); var invAspect = viewportHeight / viewportWidth, halfViewportWidth = viewportWidth * 0.5, halfViewportHeight = viewportHeight * 0.5; var size = 16 / viewportHeight, scale = new THREE.Vector2( size * invAspect, size ); var screenPosition = new THREE.Vector3( 1, 1, 0 ), screenPositionPixels = new THREE.Vector2( 1, 1 ); var uniforms = _lensFlare.uniforms, attributes = _lensFlare.attributes; // set _lensFlare program and reset blending _gl.useProgram( _lensFlare.program ); if ( ! _lensFlare.attributesEnabled ) { _gl.enableVertexAttribArray( _lensFlare.attributes.vertex ); _gl.enableVertexAttribArray( _lensFlare.attributes.uv ); _lensFlare.attributesEnabled = true; } // loop through all lens flares to update their occlusion and positions // setup gl and common used attribs/unforms _gl.uniform1i( uniforms.occlusionMap, 0 ); _gl.uniform1i( uniforms.map, 1 ); _gl.bindBuffer( _gl.ARRAY_BUFFER, _lensFlare.vertexBuffer ); _gl.vertexAttribPointer( attributes.vertex, 2, _gl.FLOAT, false, 2 * 8, 0 ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 2 * 8, 8 ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _lensFlare.elementBuffer ); _gl.disable( _gl.CULL_FACE ); _gl.depthMask( false ); var i, j, jl, flare, sprite; for ( i = 0; i < nFlares; i ++ ) { size = 16 / viewportHeight; scale.set( size * invAspect, size ); // calc object screen position flare = flares[ i ]; tempPosition.set( flare.matrixWorld.elements[12], flare.matrixWorld.elements[13], flare.matrixWorld.elements[14] ); camera.matrixWorldInverse.multiplyVector3( tempPosition ); camera.projectionMatrix.multiplyVector3( tempPosition ); // setup arrays for gl programs screenPosition.copy( tempPosition ) screenPositionPixels.x = screenPosition.x * halfViewportWidth + halfViewportWidth; screenPositionPixels.y = screenPosition.y * halfViewportHeight + halfViewportHeight; // screen cull if ( _lensFlare.hasVertexTexture || ( screenPositionPixels.x > 0 && screenPositionPixels.x < viewportWidth && screenPositionPixels.y > 0 && screenPositionPixels.y < viewportHeight ) ) { // save current RGB to temp texture _gl.activeTexture( _gl.TEXTURE1 ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture ); _gl.copyTexImage2D( _gl.TEXTURE_2D, 0, _gl.RGB, screenPositionPixels.x - 8, screenPositionPixels.y - 8, 16, 16, 0 ); // render pink quad _gl.uniform1i( uniforms.renderType, 0 ); _gl.uniform2f( uniforms.scale, scale.x, scale.y ); _gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); _gl.disable( _gl.BLEND ); _gl.enable( _gl.DEPTH_TEST ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); // copy result to occlusionMap _gl.activeTexture( _gl.TEXTURE0 ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.occlusionTexture ); _gl.copyTexImage2D( _gl.TEXTURE_2D, 0, _gl.RGBA, screenPositionPixels.x - 8, screenPositionPixels.y - 8, 16, 16, 0 ); // restore graphics _gl.uniform1i( uniforms.renderType, 1 ); _gl.disable( _gl.DEPTH_TEST ); _gl.activeTexture( _gl.TEXTURE1 ); _gl.bindTexture( _gl.TEXTURE_2D, _lensFlare.tempTexture ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); // update object positions flare.positionScreen.copy( screenPosition ) if ( flare.customUpdateCallback ) { flare.customUpdateCallback( flare ); } else { flare.updateLensFlares(); } // render flares _gl.uniform1i( uniforms.renderType, 2 ); _gl.enable( _gl.BLEND ); for ( j = 0, jl = flare.lensFlares.length; j < jl; j ++ ) { sprite = flare.lensFlares[ j ]; if ( sprite.opacity > 0.001 && sprite.scale > 0.001 ) { screenPosition.x = sprite.x; screenPosition.y = sprite.y; screenPosition.z = sprite.z; size = sprite.size * sprite.scale / viewportHeight; scale.x = size * invAspect; scale.y = size; _gl.uniform3f( uniforms.screenPosition, screenPosition.x, screenPosition.y, screenPosition.z ); _gl.uniform2f( uniforms.scale, scale.x, scale.y ); _gl.uniform1f( uniforms.rotation, sprite.rotation ); _gl.uniform1f( uniforms.opacity, sprite.opacity ); _gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b ); _renderer.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst ); _renderer.setTexture( sprite.texture, 1 ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); } } } } // restore gl _gl.enable( _gl.CULL_FACE ); _gl.enable( _gl.DEPTH_TEST ); _gl.depthMask( true ); }; function createProgram ( shader ) { var program = _gl.createProgram(); var fragmentShader = _gl.createShader( _gl.FRAGMENT_SHADER ); var vertexShader = _gl.createShader( _gl.VERTEX_SHADER ); _gl.shaderSource( fragmentShader, shader.fragmentShader ); _gl.shaderSource( vertexShader, shader.vertexShader ); _gl.compileShader( fragmentShader ); _gl.compileShader( vertexShader ); _gl.attachShader( program, fragmentShader ); _gl.attachShader( program, vertexShader ); _gl.linkProgram( program ); return program; }; };/** * @author alteredq / http://alteredqualia.com/ */ THREE.ShadowMapPlugin = function ( ) { var _gl, _renderer, _depthMaterial, _depthMaterialMorph, _depthMaterialSkin, _frustum = new THREE.Frustum(), _projScreenMatrix = new THREE.Matrix4(), _min = new THREE.Vector3(), _max = new THREE.Vector3(); this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; var depthShader = THREE.ShaderLib[ "depthRGBA" ]; var depthUniforms = THREE.UniformsUtils.clone( depthShader.uniforms ); _depthMaterial = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms } ); _depthMaterialMorph = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, morphTargets: true } ); _depthMaterialSkin = new THREE.ShaderMaterial( { fragmentShader: depthShader.fragmentShader, vertexShader: depthShader.vertexShader, uniforms: depthUniforms, skinning: true } ); _depthMaterial._shadowPass = true; _depthMaterialMorph._shadowPass = true; _depthMaterialSkin._shadowPass = true; }; this.render = function ( scene, camera ) { if ( ! ( _renderer.shadowMapEnabled && _renderer.shadowMapAutoUpdate ) ) return; this.update( scene, camera ); }; this.update = function ( scene, camera ) { var i, il, j, jl, n, shadowMap, shadowMatrix, shadowCamera, program, buffer, material, webglObject, object, light, renderList, lights = [], k = 0, fog = null; // set GL state for depth map _gl.clearColor( 1, 1, 1, 1 ); _gl.disable( _gl.BLEND ); _gl.enable( _gl.CULL_FACE ); if ( _renderer.shadowMapCullFrontFaces ) { _gl.cullFace( _gl.FRONT ); } else { _gl.cullFace( _gl.BACK ); } _renderer.setDepthTest( true ); // preprocess lights // - skip lights that are not casting shadows // - create virtual lights for cascaded shadow maps for ( i = 0, il = scene.__lights.length; i < il; i ++ ) { light = scene.__lights[ i ]; if ( ! light.castShadow ) continue; if ( ( light instanceof THREE.DirectionalLight ) && light.shadowCascade ) { for ( n = 0; n < light.shadowCascadeCount; n ++ ) { var virtualLight; if ( ! light.shadowCascadeArray[ n ] ) { virtualLight = createVirtualLight( light, n ); virtualLight.originalCamera = camera; var gyro = new THREE.Gyroscope(); gyro.position = light.shadowCascadeOffset; gyro.add( virtualLight ); gyro.add( virtualLight.target ); camera.add( gyro ); light.shadowCascadeArray[ n ] = virtualLight; console.log( "Created virtualLight", virtualLight ); } else { virtualLight = light.shadowCascadeArray[ n ]; } updateVirtualLight( light, n ); lights[ k ] = virtualLight; k ++; } } else { lights[ k ] = light; k ++; } } // render depth map for ( i = 0, il = lights.length; i < il; i ++ ) { light = lights[ i ]; if ( ! light.shadowMap ) { var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBAFormat }; light.shadowMap = new THREE.WebGLRenderTarget( light.shadowMapWidth, light.shadowMapHeight, pars ); light.shadowMapSize = new THREE.Vector2( light.shadowMapWidth, light.shadowMapHeight ); light.shadowMatrix = new THREE.Matrix4(); } if ( ! light.shadowCamera ) { if ( light instanceof THREE.SpotLight ) { light.shadowCamera = new THREE.PerspectiveCamera( light.shadowCameraFov, light.shadowMapWidth / light.shadowMapHeight, light.shadowCameraNear, light.shadowCameraFar ); } else if ( light instanceof THREE.DirectionalLight ) { light.shadowCamera = new THREE.OrthographicCamera( light.shadowCameraLeft, light.shadowCameraRight, light.shadowCameraTop, light.shadowCameraBottom, light.shadowCameraNear, light.shadowCameraFar ); } else { console.error( "Unsupported light type for shadow" ); continue; } scene.add( light.shadowCamera ); if ( _renderer.autoUpdateScene ) scene.updateMatrixWorld(); } if ( light.shadowCameraVisible && ! light.cameraHelper ) { light.cameraHelper = new THREE.CameraHelper( light.shadowCamera ); light.shadowCamera.add( light.cameraHelper ); } if ( light.isVirtual && virtualLight.originalCamera == camera ) { updateShadowCamera( camera, light ); } shadowMap = light.shadowMap; shadowMatrix = light.shadowMatrix; shadowCamera = light.shadowCamera; shadowCamera.position.copy( light.matrixWorld.getPosition() ); shadowCamera.lookAt( light.target.matrixWorld.getPosition() ); shadowCamera.updateMatrixWorld(); shadowCamera.matrixWorldInverse.getInverse( shadowCamera.matrixWorld ); if ( light.cameraHelper ) light.cameraHelper.lines.visible = light.shadowCameraVisible; if ( light.shadowCameraVisible ) light.cameraHelper.update(); // compute shadow matrix shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiplySelf( shadowCamera.projectionMatrix ); shadowMatrix.multiplySelf( shadowCamera.matrixWorldInverse ); // update camera matrices and frustum if ( ! shadowCamera._viewMatrixArray ) shadowCamera._viewMatrixArray = new Float32Array( 16 ); if ( ! shadowCamera._projectionMatrixArray ) shadowCamera._projectionMatrixArray = new Float32Array( 16 ); shadowCamera.matrixWorldInverse.flattenToArray( shadowCamera._viewMatrixArray ); shadowCamera.projectionMatrix.flattenToArray( shadowCamera._projectionMatrixArray ); _projScreenMatrix.multiply( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); _frustum.setFromMatrix( _projScreenMatrix ); // render shadow map _renderer.setRenderTarget( shadowMap ); _renderer.clear(); // set object matrices & frustum culling renderList = scene.__webglObjects; for ( j = 0, jl = renderList.length; j < jl; j ++ ) { webglObject = renderList[ j ]; object = webglObject.object; webglObject.render = false; if ( object.visible && object.castShadow ) { if ( ! ( object instanceof THREE.Mesh ) || ! ( object.frustumCulled ) || _frustum.contains( object ) ) { object._modelViewMatrix.multiply( shadowCamera.matrixWorldInverse, object.matrixWorld ); webglObject.render = true; } } } // render regular objects for ( j = 0, jl = renderList.length; j < jl; j ++ ) { webglObject = renderList[ j ]; if ( webglObject.render ) { object = webglObject.object; buffer = webglObject.buffer; // culling is overriden globally for all objects // while rendering depth map //_renderer.setObjectFaces( object ); if ( object.customDepthMaterial ) { material = object.customDepthMaterial; } else if ( object.geometry.morphTargets.length ) { material = _depthMaterialMorph; } else if ( object instanceof THREE.SkinnedMesh ) { material = _depthMaterialSkin; } else { material = _depthMaterial; } if ( buffer instanceof THREE.BufferGeometry ) { _renderer.renderBufferDirect( shadowCamera, scene.__lights, fog, material, buffer, object ); } else { _renderer.renderBuffer( shadowCamera, scene.__lights, fog, material, buffer, object ); } } } // set matrices and render immediate objects renderList = scene.__webglObjectsImmediate; for ( j = 0, jl = renderList.length; j < jl; j ++ ) { webglObject = renderList[ j ]; object = webglObject.object; if ( object.visible && object.castShadow ) { object._modelViewMatrix.multiply( shadowCamera.matrixWorldInverse, object.matrixWorld ); _renderer.renderImmediateObject( shadowCamera, scene.__lights, fog, _depthMaterial, object ); } } } // restore GL state var clearColor = _renderer.getClearColor(), clearAlpha = _renderer.getClearAlpha(); _gl.clearColor( clearColor.r, clearColor.g, clearColor.b, clearAlpha ); _gl.enable( _gl.BLEND ); if ( _renderer.shadowMapCullFrontFaces ) { _gl.cullFace( _gl.BACK ); } }; function createVirtualLight( light, cascade ) { var virtualLight = new THREE.DirectionalLight(); virtualLight.isVirtual = true; virtualLight.onlyShadow = true; virtualLight.castShadow = true; virtualLight.shadowCameraNear = light.shadowCameraNear; virtualLight.shadowCameraFar = light.shadowCameraFar; virtualLight.shadowCameraLeft = light.shadowCameraLeft; virtualLight.shadowCameraRight = light.shadowCameraRight; virtualLight.shadowCameraBottom = light.shadowCameraBottom; virtualLight.shadowCameraTop = light.shadowCameraTop; virtualLight.shadowCameraVisible = light.shadowCameraVisible; virtualLight.shadowDarkness = light.shadowDarkness; virtualLight.shadowBias = light.shadowCascadeBias[ cascade ]; virtualLight.shadowMapWidth = light.shadowCascadeWidth[ cascade ]; virtualLight.shadowMapHeight = light.shadowCascadeHeight[ cascade ]; virtualLight.pointsWorld = []; virtualLight.pointsFrustum = []; var pointsWorld = virtualLight.pointsWorld, pointsFrustum = virtualLight.pointsFrustum; for ( var i = 0; i < 8; i ++ ) { pointsWorld[ i ] = new THREE.Vector3(); pointsFrustum[ i ] = new THREE.Vector3(); } var nearZ = light.shadowCascadeNearZ[ cascade ]; var farZ = light.shadowCascadeFarZ[ cascade ]; pointsFrustum[ 0 ].set( -1, -1, nearZ ); pointsFrustum[ 1 ].set( 1, -1, nearZ ); pointsFrustum[ 2 ].set( -1, 1, nearZ ); pointsFrustum[ 3 ].set( 1, 1, nearZ ); pointsFrustum[ 4 ].set( -1, -1, farZ ); pointsFrustum[ 5 ].set( 1, -1, farZ ); pointsFrustum[ 6 ].set( -1, 1, farZ ); pointsFrustum[ 7 ].set( 1, 1, farZ ); return virtualLight; } // Synchronize virtual light with the original light function updateVirtualLight( light, cascade ) { var virtualLight = light.shadowCascadeArray[ cascade ]; virtualLight.position.copy( light.position ); virtualLight.target.position.copy( light.target.position ); virtualLight.lookAt( virtualLight.target ); virtualLight.shadowCameraVisible = light.shadowCameraVisible; virtualLight.shadowDarkness = light.shadowDarkness; virtualLight.shadowBias = light.shadowCascadeBias[ cascade ]; var nearZ = light.shadowCascadeNearZ[ cascade ]; var farZ = light.shadowCascadeFarZ[ cascade ]; var pointsFrustum = virtualLight.pointsFrustum; pointsFrustum[ 0 ].z = nearZ; pointsFrustum[ 1 ].z = nearZ; pointsFrustum[ 2 ].z = nearZ; pointsFrustum[ 3 ].z = nearZ; pointsFrustum[ 4 ].z = farZ; pointsFrustum[ 5 ].z = farZ; pointsFrustum[ 6 ].z = farZ; pointsFrustum[ 7 ].z = farZ; } // Fit shadow camera's ortho frustum to camera frustum function updateShadowCamera( camera, light ) { var shadowCamera = light.shadowCamera, pointsFrustum = light.pointsFrustum, pointsWorld = light.pointsWorld; _min.set( Infinity, Infinity, Infinity ); _max.set( -Infinity, -Infinity, -Infinity ); for ( var i = 0; i < 8; i ++ ) { var p = pointsWorld[ i ]; p.copy( pointsFrustum[ i ] ); THREE.ShadowMapPlugin.__projector.unprojectVector( p, camera ); shadowCamera.matrixWorldInverse.multiplyVector3( p ); if ( p.x < _min.x ) _min.x = p.x; if ( p.x > _max.x ) _max.x = p.x; if ( p.y < _min.y ) _min.y = p.y; if ( p.y > _max.y ) _max.y = p.y; if ( p.z < _min.z ) _min.z = p.z; if ( p.z > _max.z ) _max.z = p.z; } shadowCamera.left = _min.x; shadowCamera.right = _max.x; shadowCamera.top = _max.y; shadowCamera.bottom = _min.y; // can't really fit near/far //shadowCamera.near = _min.z; //shadowCamera.far = _max.z; shadowCamera.updateProjectionMatrix(); } }; THREE.ShadowMapPlugin.__projector = new THREE.Projector(); /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.SpritePlugin = function ( ) { var _gl, _renderer, _sprite = {}; this.init = function ( renderer ) { _gl = renderer.context; _renderer = renderer; _sprite.vertices = new Float32Array( 8 + 8 ); _sprite.faces = new Uint16Array( 6 ); var i = 0; _sprite.vertices[ i++ ] = -1; _sprite.vertices[ i++ ] = -1; // vertex 0 _sprite.vertices[ i++ ] = 0; _sprite.vertices[ i++ ] = 0; // uv 0 _sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = -1; // vertex 1 _sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = 0; // uv 1 _sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = 1; // vertex 2 _sprite.vertices[ i++ ] = 1; _sprite.vertices[ i++ ] = 1; // uv 2 _sprite.vertices[ i++ ] = -1; _sprite.vertices[ i++ ] = 1; // vertex 3 _sprite.vertices[ i++ ] = 0; _sprite.vertices[ i++ ] = 1; // uv 3 i = 0; _sprite.faces[ i++ ] = 0; _sprite.faces[ i++ ] = 1; _sprite.faces[ i++ ] = 2; _sprite.faces[ i++ ] = 0; _sprite.faces[ i++ ] = 2; _sprite.faces[ i++ ] = 3; _sprite.vertexBuffer = _gl.createBuffer(); _sprite.elementBuffer = _gl.createBuffer(); _gl.bindBuffer( _gl.ARRAY_BUFFER, _sprite.vertexBuffer ); _gl.bufferData( _gl.ARRAY_BUFFER, _sprite.vertices, _gl.STATIC_DRAW ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _sprite.elementBuffer ); _gl.bufferData( _gl.ELEMENT_ARRAY_BUFFER, _sprite.faces, _gl.STATIC_DRAW ); _sprite.program = createProgram( THREE.ShaderSprite[ "sprite" ] ); _sprite.attributes = {}; _sprite.uniforms = {}; _sprite.attributes.position = _gl.getAttribLocation ( _sprite.program, "position" ); _sprite.attributes.uv = _gl.getAttribLocation ( _sprite.program, "uv" ); _sprite.uniforms.uvOffset = _gl.getUniformLocation( _sprite.program, "uvOffset" ); _sprite.uniforms.uvScale = _gl.getUniformLocation( _sprite.program, "uvScale" ); _sprite.uniforms.rotation = _gl.getUniformLocation( _sprite.program, "rotation" ); _sprite.uniforms.scale = _gl.getUniformLocation( _sprite.program, "scale" ); _sprite.uniforms.alignment = _gl.getUniformLocation( _sprite.program, "alignment" ); _sprite.uniforms.color = _gl.getUniformLocation( _sprite.program, "color" ); _sprite.uniforms.map = _gl.getUniformLocation( _sprite.program, "map" ); _sprite.uniforms.opacity = _gl.getUniformLocation( _sprite.program, "opacity" ); _sprite.uniforms.useScreenCoordinates = _gl.getUniformLocation( _sprite.program, "useScreenCoordinates" ); _sprite.uniforms.affectedByDistance = _gl.getUniformLocation( _sprite.program, "affectedByDistance" ); _sprite.uniforms.screenPosition = _gl.getUniformLocation( _sprite.program, "screenPosition" ); _sprite.uniforms.modelViewMatrix = _gl.getUniformLocation( _sprite.program, "modelViewMatrix" ); _sprite.uniforms.projectionMatrix = _gl.getUniformLocation( _sprite.program, "projectionMatrix" ); _sprite.attributesEnabled = false; }; this.render = function ( scene, camera, viewportWidth, viewportHeight ) { var sprites = scene.__webglSprites, nSprites = sprites.length; if ( ! nSprites ) return; var attributes = _sprite.attributes, uniforms = _sprite.uniforms; var invAspect = viewportHeight / viewportWidth; var halfViewportWidth = viewportWidth * 0.5, halfViewportHeight = viewportHeight * 0.5; var mergeWith3D = true; // setup gl _gl.useProgram( _sprite.program ); if ( ! _sprite.attributesEnabled ) { _gl.enableVertexAttribArray( attributes.position ); _gl.enableVertexAttribArray( attributes.uv ); _sprite.attributesEnabled = true; } _gl.disable( _gl.CULL_FACE ); _gl.enable( _gl.BLEND ); _gl.depthMask( true ); _gl.bindBuffer( _gl.ARRAY_BUFFER, _sprite.vertexBuffer ); _gl.vertexAttribPointer( attributes.position, 2, _gl.FLOAT, false, 2 * 8, 0 ); _gl.vertexAttribPointer( attributes.uv, 2, _gl.FLOAT, false, 2 * 8, 8 ); _gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, _sprite.elementBuffer ); _gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera._projectionMatrixArray ); _gl.activeTexture( _gl.TEXTURE0 ); _gl.uniform1i( uniforms.map, 0 ); // update positions and sort var i, sprite, screenPosition, size, scale = []; for( i = 0; i < nSprites; i ++ ) { sprite = sprites[ i ]; if ( ! sprite.visible || sprite.opacity === 0 ) continue; if( ! sprite.useScreenCoordinates ) { sprite._modelViewMatrix.multiply( camera.matrixWorldInverse, sprite.matrixWorld ); sprite.z = - sprite._modelViewMatrix.elements[14]; } else { sprite.z = - sprite.position.z; } } sprites.sort( painterSort ); // render all sprites for( i = 0; i < nSprites; i ++ ) { sprite = sprites[ i ]; if ( ! sprite.visible || sprite.opacity === 0 ) continue; if ( sprite.map && sprite.map.image && sprite.map.image.width ) { if ( sprite.useScreenCoordinates ) { _gl.uniform1i( uniforms.useScreenCoordinates, 1 ); _gl.uniform3f( uniforms.screenPosition, ( sprite.position.x - halfViewportWidth ) / halfViewportWidth, ( halfViewportHeight - sprite.position.y ) / halfViewportHeight, Math.max( 0, Math.min( 1, sprite.position.z ) ) ); } else { _gl.uniform1i( uniforms.useScreenCoordinates, 0 ); _gl.uniform1i( uniforms.affectedByDistance, sprite.affectedByDistance ? 1 : 0 ); _gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite._modelViewMatrix.elements ); } size = sprite.map.image.width / ( sprite.scaleByViewport ? viewportHeight : 1 ); scale[ 0 ] = size * invAspect * sprite.scale.x; scale[ 1 ] = size * sprite.scale.y; _gl.uniform2f( uniforms.uvScale, sprite.uvScale.x, sprite.uvScale.y ); _gl.uniform2f( uniforms.uvOffset, sprite.uvOffset.x, sprite.uvOffset.y ); _gl.uniform2f( uniforms.alignment, sprite.alignment.x, sprite.alignment.y ); _gl.uniform1f( uniforms.opacity, sprite.opacity ); _gl.uniform3f( uniforms.color, sprite.color.r, sprite.color.g, sprite.color.b ); _gl.uniform1f( uniforms.rotation, sprite.rotation ); _gl.uniform2fv( uniforms.scale, scale ); if ( sprite.mergeWith3D && !mergeWith3D ) { _gl.enable( _gl.DEPTH_TEST ); mergeWith3D = true; } else if ( ! sprite.mergeWith3D && mergeWith3D ) { _gl.disable( _gl.DEPTH_TEST ); mergeWith3D = false; } _renderer.setBlending( sprite.blending, sprite.blendEquation, sprite.blendSrc, sprite.blendDst ); _renderer.setTexture( sprite.map, 0 ); _gl.drawElements( _gl.TRIANGLES, 6, _gl.UNSIGNED_SHORT, 0 ); } } // restore gl _gl.enable( _gl.CULL_FACE ); _gl.enable( _gl.DEPTH_TEST ); _gl.depthMask( true ); }; function createProgram ( shader ) { var program = _gl.createProgram(); var fragmentShader = _gl.createShader( _gl.FRAGMENT_SHADER ); var vertexShader = _gl.createShader( _gl.VERTEX_SHADER ); _gl.shaderSource( fragmentShader, shader.fragmentShader ); _gl.shaderSource( vertexShader, shader.vertexShader ); _gl.compileShader( fragmentShader ); _gl.compileShader( vertexShader ); _gl.attachShader( program, fragmentShader ); _gl.attachShader( program, vertexShader ); _gl.linkProgram( program ); return program; }; function painterSort ( a, b ) { return b.z - a.z; }; };/** * @author mikael emtinger / http://gomo.se/ * */ THREE.ShaderFlares = { 'lensFlareVertexTexture': { vertexShader: [ "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "uniform int renderType;", "uniform sampler2D occlusionMap;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if( renderType == 2 ) {", "vec4 visibility = texture2D( occlusionMap, vec2( 0.1, 0.1 ) ) +", "texture2D( occlusionMap, vec2( 0.5, 0.1 ) ) +", "texture2D( occlusionMap, vec2( 0.9, 0.1 ) ) +", "texture2D( occlusionMap, vec2( 0.9, 0.5 ) ) +", "texture2D( occlusionMap, vec2( 0.9, 0.9 ) ) +", "texture2D( occlusionMap, vec2( 0.5, 0.9 ) ) +", "texture2D( occlusionMap, vec2( 0.1, 0.9 ) ) +", "texture2D( occlusionMap, vec2( 0.1, 0.5 ) ) +", "texture2D( occlusionMap, vec2( 0.5, 0.5 ) );", "vVisibility = ( visibility.r / 9.0 ) *", "( 1.0 - visibility.g / 9.0 ) *", "( visibility.b / 9.0 ) *", "( 1.0 - visibility.a / 9.0 );", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "precision mediump float;", "uniform sampler2D map;", "uniform float opacity;", "uniform int renderType;", "uniform vec3 color;", "varying vec2 vUV;", "varying float vVisibility;", "void main() {", // pink square "if( renderType == 0 ) {", "gl_FragColor = vec4( 1.0, 0.0, 1.0, 0.0 );", // restore "} else if( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * vVisibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) }, 'lensFlare': { vertexShader: [ "uniform vec3 screenPosition;", "uniform vec2 scale;", "uniform float rotation;", "uniform int renderType;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "void main() {", "vUV = uv;", "vec2 pos = position;", "if( renderType == 2 ) {", "pos.x = cos( rotation ) * position.x - sin( rotation ) * position.y;", "pos.y = sin( rotation ) * position.x + cos( rotation ) * position.y;", "}", "gl_Position = vec4( ( pos * scale + screenPosition.xy ).xy, screenPosition.z, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "precision mediump float;", "uniform sampler2D map;", "uniform sampler2D occlusionMap;", "uniform float opacity;", "uniform int renderType;", "uniform vec3 color;", "varying vec2 vUV;", "void main() {", // pink square "if( renderType == 0 ) {", "gl_FragColor = vec4( texture2D( map, vUV ).rgb, 0.0 );", // restore "} else if( renderType == 1 ) {", "gl_FragColor = texture2D( map, vUV );", // flare "} else {", "float visibility = texture2D( occlusionMap, vec2( 0.5, 0.1 ) ).a +", "texture2D( occlusionMap, vec2( 0.9, 0.5 ) ).a +", "texture2D( occlusionMap, vec2( 0.5, 0.9 ) ).a +", "texture2D( occlusionMap, vec2( 0.1, 0.5 ) ).a;", "visibility = ( 1.0 - visibility / 4.0 );", "vec4 texture = texture2D( map, vUV );", "texture.a *= opacity * visibility;", "gl_FragColor = texture;", "gl_FragColor.rgb *= color;", "}", "}" ].join( "\n" ) } }; /** * @author mikael emtinger / http://gomo.se/ * */ THREE.ShaderSprite = { 'sprite': { vertexShader: [ "uniform int useScreenCoordinates;", "uniform int affectedByDistance;", "uniform vec3 screenPosition;", "uniform mat4 modelViewMatrix;", "uniform mat4 projectionMatrix;", "uniform float rotation;", "uniform vec2 scale;", "uniform vec2 alignment;", "uniform vec2 uvOffset;", "uniform vec2 uvScale;", "attribute vec2 position;", "attribute vec2 uv;", "varying vec2 vUV;", "void main() {", "vUV = uvOffset + uv * uvScale;", "vec2 alignedPosition = position + alignment;", "vec2 rotatedPosition;", "rotatedPosition.x = ( cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y ) * scale.x;", "rotatedPosition.y = ( sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y ) * scale.y;", "vec4 finalPosition;", "if( useScreenCoordinates != 0 ) {", "finalPosition = vec4( screenPosition.xy + rotatedPosition, screenPosition.z, 1.0 );", "} else {", "finalPosition = projectionMatrix * modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );", "finalPosition.xy += rotatedPosition * ( affectedByDistance == 1 ? 1.0 : finalPosition.z );", "}", "gl_Position = finalPosition;", "}" ].join( "\n" ), fragmentShader: [ "precision mediump float;", "uniform vec3 color;", "uniform sampler2D map;", "uniform float opacity;", "varying vec2 vUV;", "void main() {", "vec4 texture = texture2D( map, vUV );", "gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );", "}" ].join( "\n" ) } };