/** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley */ THREE.Quaternion = function( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; }; THREE.Quaternion.prototype = { constructor: THREE.Quaternion, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, copy: function ( q ) { this.x = q.x; this.y = q.y; this.z = q.z; this.w = q.w; return this; }, setFromEuler: function ( v, order ) { // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m var c1 = Math.cos( v.x / 2 ); var c2 = Math.cos( v.y / 2 ); var c3 = Math.cos( v.z / 2 ); var s1 = Math.sin( v.x / 2 ); var s2 = Math.sin( v.y / 2 ); var s3 = Math.sin( v.z / 2 ); if ( order === undefined || order === 'XYZ' ) { this.x = s1 * c2 * c3 + c1 * s2 * s3; this.y = c1 * s2 * c3 - s1 * c2 * s3; this.z = c1 * c2 * s3 + s1 * s2 * c3; this.w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'YXZ' ) { this.x = s1 * c2 * c3 + c1 * s2 * s3; this.y = c1 * s2 * c3 - s1 * c2 * s3; this.z = c1 * c2 * s3 - s1 * s2 * c3; this.w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'ZXY' ) { this.x = s1 * c2 * c3 - c1 * s2 * s3; this.y = c1 * s2 * c3 + s1 * c2 * s3; this.z = c1 * c2 * s3 + s1 * s2 * c3; this.w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'ZYX' ) { this.x = s1 * c2 * c3 - c1 * s2 * s3; this.y = c1 * s2 * c3 + s1 * c2 * s3; this.z = c1 * c2 * s3 - s1 * s2 * c3; this.w = c1 * c2 * c3 + s1 * s2 * s3; } else if ( order === 'YZX' ) { this.x = s1 * c2 * c3 + c1 * s2 * s3; this.y = c1 * s2 * c3 + s1 * c2 * s3; this.z = c1 * c2 * s3 - s1 * s2 * c3; this.w = c1 * c2 * c3 - s1 * s2 * s3; } else if ( order === 'XZY' ) { this.x = s1 * c2 * c3 - c1 * s2 * s3; this.y = c1 * s2 * c3 - s1 * c2 * s3; this.z = c1 * c2 * s3 + s1 * s2 * c3; this.w = c1 * c2 * c3 + s1 * s2 * s3; } return this; }, setFromAxisAngle: function ( axis, angle ) { // from http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // axis have to be normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this.x = axis.x * s; this.y = axis.y * s; this.z = axis.z * s; this.w = Math.cos( halfAngle ); return this; }, setFromRotationMatrix: function ( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10], trace = m11 + m22 + m33, s; if( trace > 0 ) { s = 0.5 / Math.sqrt( trace + 1.0 ); this.w = 0.25 / s; this.x = ( m32 - m23 ) * s; this.y = ( m13 - m31 ) * s; this.z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this.w = (m32 - m23 ) / s; this.x = 0.25 * s; this.y = (m12 + m21 ) / s; this.z = (m13 + m31 ) / s; } else if (m22 > m33) { s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this.w = (m13 - m31 ) / s; this.x = (m12 + m21 ) / s; this.y = 0.25 * s; this.z = (m23 + m32 ) / s; } else { s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this.w = ( m21 - m12 ) / s; this.x = ( m13 + m31 ) / s; this.y = ( m23 + m32 ) / s; this.z = 0.25 * s; } return this; }, inverse: function () { this.conjugate().normalize(); return this; }, conjugate: function () { this.x *= -1; this.y *= -1; this.z *= -1; return this; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }, normalize: function () { var l = Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); if ( l === 0 ) { this.x = 0; this.y = 0; this.z = 0; this.w = 1; } else { l = 1 / l; this.x = this.x * l; this.y = this.y * l; this.z = this.z * l; this.w = this.w * l; } return this; }, multiply: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm var qax = a.x, qay = a.y, qaz = a.z, qaw = a.w, qbx = b.x, qby = b.y, qbz = b.z, qbw = b.w; this.x = qax * qbw + qay * qbz - qaz * qby + qaw * qbx; this.y = -qax * qbz + qay * qbw + qaz * qbx + qaw * qby; this.z = qax * qby - qay * qbx + qaz * qbw + qaw * qbz; this.w = -qax * qbx - qay * qby - qaz * qbz + qaw * qbw; return this; }, multiplySelf: function ( b ) { var qax = this.x, qay = this.y, qaz = this.z, qaw = this.w, qbx = b.x, qby = b.y, qbz = b.z, qbw = b.w; this.x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this.y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this.z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this.w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; return this; }, multiplyVector3: function ( vector, dest ) { if ( !dest ) { dest = vector; } var x = vector.x, y = vector.y, z = vector.z, qx = this.x, qy = this.y, qz = this.z, qw = this.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y, iy = qw * y + qz * x - qx * z, iz = qw * z + qx * y - qy * x, iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat dest.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; dest.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; dest.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; return dest; }, slerpSelf: function ( qb, t ) { var x = this.x, y = this.y, z = this.z, w = this.w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb.w + x * qb.x + y * qb.y + z * qb.z; if ( cosHalfTheta < 0 ) { this.w = -qb.w; this.x = -qb.x; this.y = -qb.y; this.z = -qb.z; cosHalfTheta = -cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this.w = w; this.x = x; this.y = y; this.z = z; return this; } var halfTheta = Math.acos( cosHalfTheta ); var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { this.w = 0.5 * ( w + this.w ); this.x = 0.5 * ( x + this.x ); this.y = 0.5 * ( y + this.y ); this.z = 0.5 * ( z + this.z ); return this; } var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this.w = ( w * ratioA + this.w * ratioB ); this.x = ( x * ratioA + this.x * ratioB ); this.y = ( y * ratioA + this.y * ratioB ); this.z = ( z * ratioA + this.z * ratioB ); return this; }, clone: function () { return new THREE.Quaternion( this.x, this.y, this.z, this.w ); } } THREE.Quaternion.slerp = function ( qa, qb, qm, t ) { // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = qa.w * qb.w + qa.x * qb.x + qa.y * qb.y + qa.z * qb.z; if ( cosHalfTheta < 0 ) { qm.w = -qb.w; qm.x = -qb.x; qm.y = -qb.y; qm.z = -qb.z; cosHalfTheta = -cosHalfTheta; } else { qm.copy( qb ); } if ( Math.abs( cosHalfTheta ) >= 1.0 ) { qm.w = qa.w; qm.x = qa.x; qm.y = qa.y; qm.z = qa.z; return qm; } var halfTheta = Math.acos( cosHalfTheta ); var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { qm.w = 0.5 * ( qa.w + qm.w ); qm.x = 0.5 * ( qa.x + qm.x ); qm.y = 0.5 * ( qa.y + qm.y ); qm.z = 0.5 * ( qa.z + qm.z ); return qm; } var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta; var ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; qm.w = ( qa.w * ratioA + qm.w * ratioB ); qm.x = ( qa.x * ratioA + qm.x * ratioB ); qm.y = ( qa.y * ratioA + qm.y * ratioB ); qm.z = ( qa.z * ratioA + qm.z * ratioB ); return qm; }