/** * Loader for UTF8 version2 (after r51) encoded models generated by: * http://code.google.com/p/webgl-loader/ * * Code to load/decompress mesh is taken from r100 of this webgl-loader */ THREE.UTF8v2Loader = function () {}; /** * Load UTF8 encoded model * @param jsonUrl - URL from which to load json containing information about model * @param callback - Callback(THREE.Object3D) on successful loading of model * @param options - options on how to load model (see THREE.MTLLoader.MaterialCreator for basic options) * Additional options include * geometryBase: Base url from which to load referenced geometries * materialBase: Base url from which to load referenced textures */ THREE.UTF8v2Loader.prototype.load = function ( jsonUrl, callback, options ) { this.downloadModelJson(jsonUrl, options, callback); }; THREE.UTF8v2Loader.GeometryCreator = function() { }; THREE.UTF8v2Loader.GeometryCreator.prototype = { create: function (attribArray, indexArray, bboxen) { var geometry = new THREE.Geometry(); this.init_vertices( geometry, attribArray, 8, 0 ); var uvs = this.init_uvs( attribArray, 8, 3 ); var normals = this.init_normals( attribArray, 8, 5 ); this.init_faces( geometry, normals, uvs, indexArray ); geometry.computeCentroids(); geometry.computeFaceNormals(); return geometry; }, init_vertices: function ( scope, data, stride, offset ) { var i, x, y, z, end = data.length; for( i = offset; i < end; i += stride ) { x = data[ i ]; y = data[ i + 1 ]; z = data[ i + 2 ]; this.addVertex( scope, x, y, z ); } }, init_normals: function( data, stride, offset ) { var normals = []; var i, x, y, z, end = data.length; for( i = offset; i < end; i += stride ) { x = data[ i ]; y = data[ i + 1 ]; z = data[ i + 2 ]; // assumes already normalized to <-1,1> (unlike previous version of UTF8Loader) normals.push( x, y, z ); } return normals; }, init_uvs: function( data, stride, offset ) { var uvs = []; var i, u, v, end = data.length; for( i = offset; i < end; i += stride ) { // Assumes uvs are already normalized (unlike previous version of UTF8Loader) // uvs can be negative, need to set wrap for texture map later on... u = data[ i ]; v = data[ i + 1 ]; uvs.push( u, v ); } return uvs; }, init_faces: function( scope, normals, uvs, indices ) { var i, a, b, c, u1, v1, u2, v2, u3, v3, m, end = indices.length; m = 0; // all faces defaulting to material 0 for( i = 0; i < end; i += 3 ) { a = indices[ i ]; b = indices[ i + 1 ]; c = indices[ i + 2 ]; this.f3n( scope, normals, a, b, c, m, a, b, c ); u1 = uvs[ a * 2 ]; v1 = uvs[ a * 2 + 1 ]; u2 = uvs[ b * 2 ]; v2 = uvs[ b * 2 + 1 ]; u3 = uvs[ c * 2 ]; v3 = uvs[ c * 2 + 1 ]; this.uv3( scope.faceVertexUvs[ 0 ], u1, v1, u2, v2, u3, v3 ); } }, addVertex: function ( scope, x, y, z ) { scope.vertices.push( new THREE.Vector3( x, y, z ) ); }, f3n: function( scope, normals, a, b, c, mi, nai, nbi, nci ) { var nax = normals[ nai * 3 ], nay = normals[ nai * 3 + 1 ], naz = normals[ nai * 3 + 2 ], nbx = normals[ nbi * 3 ], nby = normals[ nbi * 3 + 1 ], nbz = normals[ nbi * 3 + 2 ], ncx = normals[ nci * 3 ], ncy = normals[ nci * 3 + 1 ], ncz = normals[ nci * 3 + 2 ]; var na = new THREE.Vector3( nax, nay, naz ), nb = new THREE.Vector3( nbx, nby, nbz ), nc = new THREE.Vector3( ncx, ncy, ncz ); scope.faces.push( new THREE.Face3( a, b, c, [ na, nb, nc ], null, mi ) ); }, uv3: function ( where, u1, v1, u2, v2, u3, v3 ) { var uv = []; uv.push( new THREE.UV( u1, v1 ) ); uv.push( new THREE.UV( u2, v2 ) ); uv.push( new THREE.UV( u3, v3 ) ); where.push( uv ); } }; // UTF-8 decoder from webgl-loader (r100) // http://code.google.com/p/webgl-loader/ // Model manifest description. Contains objects like: // name: { // materials: { 'material_name': { ... } ... }, // decodeParams: { // decodeOffsets: [ ... ], // decodeScales: [ ... ], // }, // urls: { // 'url': [ // { material: 'material_name', // attribRange: [#, #], // indexRange: [#, #], // names: [ 'object names' ... ], // lengths: [#, #, # ... ] // } // ], // ... // } // } var DEFAULT_DECODE_PARAMS = { decodeOffsets: [-4095, -4095, -4095, 0, 0, -511, -511, -511], decodeScales: [1/8191, 1/8191, 1/8191, 1/1023, 1/1023, 1/1023, 1/1023, 1/1023] // TODO: normal decoding? (see walt.js) // needs to know: input, output (from vertex format!) // // Should split attrib/index. // 1) Decode position and non-normal attributes. // 2) Decode indices, computing normals // 3) Maybe normalize normals? Only necessary for refinement, or fixed? // 4) Maybe refine normals? Should this be part of regular refinement? // 5) Morphing }; // Triangle strips! // TODO: will it be an optimization to specialize this method at // runtime for different combinations of stride, decodeOffset and // decodeScale? THREE.UTF8v2Loader.prototype.decompressAttribsInner_ = function (str, inputStart, inputEnd, output, outputStart, stride, decodeOffset, decodeScale) { var prev = 0; for (var j = inputStart; j < inputEnd; j++) { var code = str.charCodeAt(j); prev += (code >> 1) ^ (-(code & 1)); output[outputStart] = decodeScale * (prev + decodeOffset); outputStart += stride; } }; THREE.UTF8v2Loader.prototype.decompressIndices_ = function(str, inputStart, numIndices, output, outputStart) { var highest = 0; for (var i = 0; i < numIndices; i++) { var code = str.charCodeAt(inputStart++); output[outputStart++] = highest - code; if (code == 0) { highest++; } } }; THREE.UTF8v2Loader.prototype.decompressAABBs_ = function (str, inputStart, numBBoxen, decodeOffsets, decodeScales) { var numFloats = 6 * numBBoxen; var inputEnd = inputStart + numFloats; var bboxen = new Float32Array(numFloats); var outputStart = 0; for (var i = inputStart; i < inputEnd; i += 6) { var minX = str.charCodeAt(i + 0) + decodeOffsets[0]; var minY = str.charCodeAt(i + 1) + decodeOffsets[1]; var minZ = str.charCodeAt(i + 2) + decodeOffsets[2]; var radiusX = (str.charCodeAt(i + 3) + 1) >> 1; var radiusY = (str.charCodeAt(i + 4) + 1) >> 1; var radiusZ = (str.charCodeAt(i + 5) + 1) >> 1; bboxen[outputStart++] = decodeScales[0] * (minX + radiusX); bboxen[outputStart++] = decodeScales[1] * (minY + radiusY); bboxen[outputStart++] = decodeScales[2] * (minZ + radiusZ); bboxen[outputStart++] = decodeScales[0] * radiusX; bboxen[outputStart++] = decodeScales[1] * radiusY; bboxen[outputStart++] = decodeScales[2] * radiusZ; } return bboxen; }; THREE.UTF8v2Loader.prototype.decompressMesh = function (str, meshParams, decodeParams, name, idx, callback) { // Extract conversion parameters from attribArrays. var stride = decodeParams.decodeScales.length; var decodeOffsets = decodeParams.decodeOffsets; var decodeScales = decodeParams.decodeScales; var attribStart = meshParams.attribRange[0]; var numVerts = meshParams.attribRange[1]; // Decode attributes. var inputOffset = attribStart; var attribsOut = new Float32Array(stride * numVerts); for (var j = 0; j < stride; j++) { var end = inputOffset + numVerts; var decodeScale = decodeScales[j]; if (decodeScale) { // Assume if decodeScale is never set, simply ignore the // attribute. this.decompressAttribsInner_(str, inputOffset, end, attribsOut, j, stride, decodeOffsets[j], decodeScale); } inputOffset = end; } var indexStart = meshParams.indexRange[0]; var numIndices = 3*meshParams.indexRange[1]; var indicesOut = new Uint16Array(numIndices); this.decompressIndices_(str, inputOffset, numIndices, indicesOut, 0); // Decode bboxen. var bboxen = undefined; var bboxOffset = meshParams.bboxes; if (bboxOffset) { bboxen = this.decompressAABBs_(str, bboxOffset, meshParams.names.length, decodeOffsets, decodeScales); } callback(name, idx, attribsOut, indicesOut, bboxen, meshParams); }; THREE.UTF8v2Loader.prototype.copyAttrib = function (stride, attribsOutFixed, lastAttrib, index) { for (var j = 0; j < stride; j++) { lastAttrib[j] = attribsOutFixed[stride*index + j]; } }; THREE.UTF8v2Loader.prototype.decodeAttrib2 = function (str, stride, decodeOffsets, decodeScales, deltaStart, numVerts, attribsOut, attribsOutFixed, lastAttrib, index) { for (var j = 0; j < 5; j++) { var code = str.charCodeAt(deltaStart + numVerts*j + index); var delta = (code >> 1) ^ (-(code & 1)); lastAttrib[j] += delta; attribsOutFixed[stride*index + j] = lastAttrib[j]; attribsOut[stride*index + j] = decodeScales[j] * (lastAttrib[j] + decodeOffsets[j]); } }; THREE.UTF8v2Loader.prototype.accumulateNormal = function (i0, i1, i2, attribsOutFixed, crosses) { var p0x = attribsOutFixed[8*i0 + 0]; var p0y = attribsOutFixed[8*i0 + 1]; var p0z = attribsOutFixed[8*i0 + 2]; var p1x = attribsOutFixed[8*i1 + 0]; var p1y = attribsOutFixed[8*i1 + 1]; var p1z = attribsOutFixed[8*i1 + 2]; var p2x = attribsOutFixed[8*i2 + 0]; var p2y = attribsOutFixed[8*i2 + 1]; var p2z = attribsOutFixed[8*i2 + 2]; p1x -= p0x; p1y -= p0y; p1z -= p0z; p2x -= p0x; p2y -= p0y; p2z -= p0z; p0x = p1y*p2z - p1z*p2y; p0y = p1z*p2x - p1x*p2z; p0z = p1x*p2y - p1y*p2x; crosses[3*i0 + 0] += p0x; crosses[3*i0 + 1] += p0y; crosses[3*i0 + 2] += p0z; crosses[3*i1 + 0] += p0x; crosses[3*i1 + 1] += p0y; crosses[3*i1 + 2] += p0z; crosses[3*i2 + 0] += p0x; crosses[3*i2 + 1] += p0y; crosses[3*i2 + 2] += p0z; }; THREE.UTF8v2Loader.prototype.decompressMesh2 = function(str, meshParams, decodeParams, name, idx, callback) { var MAX_BACKREF = 96; // Extract conversion parameters from attribArrays. var stride = decodeParams.decodeScales.length; var decodeOffsets = decodeParams.decodeOffsets; var decodeScales = decodeParams.decodeScales; var deltaStart = meshParams.attribRange[0]; var numVerts = meshParams.attribRange[1]; var codeStart = meshParams.codeRange[0]; var codeLength = meshParams.codeRange[1]; var numIndices = 3*meshParams.codeRange[2]; var indicesOut = new Uint16Array(numIndices); var crosses = new Int32Array(3*numVerts); var lastAttrib = new Uint16Array(stride); var attribsOutFixed = new Uint16Array(stride * numVerts); var attribsOut = new Float32Array(stride * numVerts); var highest = 0; var outputStart = 0; for (var i = 0; i < numIndices; i += 3) { var code = str.charCodeAt(codeStart++); var max_backref = Math.min(i, MAX_BACKREF); if (code < max_backref) { // Parallelogram var winding = code % 3; var backref = i - (code - winding); var i0, i1, i2; switch (winding) { case 0: i0 = indicesOut[backref + 2]; i1 = indicesOut[backref + 1]; i2 = indicesOut[backref + 0]; break; case 1: i0 = indicesOut[backref + 0]; i1 = indicesOut[backref + 2]; i2 = indicesOut[backref + 1]; break; case 2: i0 = indicesOut[backref + 1]; i1 = indicesOut[backref + 0]; i2 = indicesOut[backref + 2]; break; } indicesOut[outputStart++] = i0; indicesOut[outputStart++] = i1; code = str.charCodeAt(codeStart++); var index = highest - code; indicesOut[outputStart++] = index; if (code === 0) { for (var j = 0; j < 5; j++) { var deltaCode = str.charCodeAt(deltaStart + numVerts*j + highest); var prediction = ((deltaCode >> 1) ^ (-(deltaCode & 1))) + attribsOutFixed[stride*i0 + j] + attribsOutFixed[stride*i1 + j] - attribsOutFixed[stride*i2 + j]; lastAttrib[j] = prediction; attribsOutFixed[stride*highest + j] = prediction; attribsOut[stride*highest + j] = decodeScales[j] * (prediction + decodeOffsets[j]); } highest++; } else { this.copyAttrib(stride, attribsOutFixed, lastAttrib, index); } this.accumulateNormal(i0, i1, index, attribsOutFixed, crosses); } else { // Simple var index0 = highest - (code - max_backref); indicesOut[outputStart++] = index0; if (code === max_backref) { this.decodeAttrib2(str, stride, decodeOffsets, decodeScales, deltaStart, numVerts, attribsOut, attribsOutFixed, lastAttrib, highest++); } else { this.copyAttrib(stride, attribsOutFixed, lastAttrib, index0); } code = str.charCodeAt(codeStart++); var index1 = highest - code; indicesOut[outputStart++] = index1; if (code === 0) { this.decodeAttrib2(str, stride, decodeOffsets, decodeScales, deltaStart, numVerts, attribsOut, attribsOutFixed, lastAttrib, highest++); } else { this.copyAttrib(stride, attribsOutFixed, lastAttrib, index1); } code = str.charCodeAt(codeStart++); var index2 = highest - code; indicesOut[outputStart++] = index2; if (code === 0) { for (var j = 0; j < 5; j++) { lastAttrib[j] = (attribsOutFixed[stride*index0 + j] + attribsOutFixed[stride*index1 + j]) / 2; } this.decodeAttrib2(str, stride, decodeOffsets, decodeScales, deltaStart, numVerts, attribsOut, attribsOutFixed, lastAttrib, highest++); } else { this.copyAttrib(stride, attribsOutFixed, lastAttrib, index2); } this.accumulateNormal(index0, index1, index2, attribsOutFixed, crosses); } } for (var i = 0; i < numVerts; i++) { var nx = crosses[3*i + 0]; var ny = crosses[3*i + 1]; var nz = crosses[3*i + 2]; var norm = 511.0 / Math.sqrt(nx*nx + ny*ny + nz*nz); var cx = str.charCodeAt(deltaStart + 5*numVerts + i); var cy = str.charCodeAt(deltaStart + 6*numVerts + i); var cz = str.charCodeAt(deltaStart + 7*numVerts + i); attribsOut[stride*i + 5] = norm*nx + ((cx >> 1) ^ (-(cx & 1))); attribsOut[stride*i + 6] = norm*ny + ((cy >> 1) ^ (-(cy & 1))); attribsOut[stride*i + 7] = norm*nz + ((cz >> 1) ^ (-(cz & 1))); } callback(name, idx, attribsOut, indicesOut, undefined, meshParams); }; THREE.UTF8v2Loader.prototype.downloadMesh = function (path, name, meshEntry, decodeParams, callback) { var loader = this; var idx = 0; function onprogress(req, e) { while (idx < meshEntry.length) { var meshParams = meshEntry[idx]; var indexRange = meshParams.indexRange; if (indexRange) { var meshEnd = indexRange[0] + 3*indexRange[1]; if (req.responseText.length < meshEnd) break; loader.decompressMesh(req.responseText, meshParams, decodeParams, name, idx, callback); } else { var codeRange = meshParams.codeRange; var meshEnd = codeRange[0] + codeRange[1]; if (req.responseText.length < meshEnd) break; loader.decompressMesh2(req.responseText, meshParams, decodeParams, name, idx, callback); } ++idx; } }; getHttpRequest(path, function(req, e) { if (req.status === 200 || req.status === 0) { onprogress(req, e); } // TODO: handle errors. }, onprogress); }; THREE.UTF8v2Loader.prototype.downloadMeshes = function (path, meshUrlMap, decodeParams, callback) { for (var url in meshUrlMap) { var meshEntry = meshUrlMap[url]; this.downloadMesh(path + url, url, meshEntry, decodeParams, callback); } }; THREE.UTF8v2Loader.prototype.createMeshCallback = function(materialBaseUrl, loadModelInfo, allDoneCallback) { var expectedMeshesPerUrl = {}; var decodedMeshesPerUrl = {}; var nCompletedUrls = 0; var nExpectedUrls = 0; var modelParts = {}; var meshUrlMap = loadModelInfo.urls; for (var url in meshUrlMap) { expectedMeshesPerUrl[url] = meshUrlMap[url].length; decodedMeshesPerUrl[url] = 0; nExpectedUrls++; modelParts[url] = new THREE.Object3D(); } var model = new THREE.Object3D(); var geometryCreator = new THREE.UTF8v2Loader.GeometryCreator(); var materialCreator = new THREE.MTLLoader.MaterialCreator(materialBaseUrl, loadModelInfo.options); materialCreator.setMaterials(loadModelInfo.materials); // Prepare materials first... materialCreator.preload(); return function(name, idx, attribArray, indexArray, bboxen, meshParams) { // Got ourselves a new mesh // name identifies this part of the model (url) // idx is the mesh index of this mesh of the part // attribArray defines the vertices // indexArray defines the faces // bboxen defines the bounding box // meshParams contains the material info var geometry = geometryCreator.create( attribArray, indexArray, bboxen); var material = materialCreator.create( meshParams.material ); modelParts[name].add(new THREE.Mesh(geometry, material)); //model.add(new THREE.Mesh(geometry, material)); decodedMeshesPerUrl[name]++; if (decodedMeshesPerUrl[name] === expectedMeshesPerUrl[name]) { nCompletedUrls++; model.add(modelParts[name]); if (nCompletedUrls === nExpectedUrls) { // ALL DONE!!! allDoneCallback(model); } } } }; THREE.UTF8v2Loader.prototype.downloadModel = function (geometryBase, materialBase, model, callback) { var meshCallback = this.createMeshCallback(materialBase, model, callback); this.downloadMeshes(geometryBase, model.urls, model.decodeParams, meshCallback); }; THREE.UTF8v2Loader.prototype.downloadModelJson = function (jsonUrl, options, callback ) { getJsonRequest(jsonUrl, function(loaded) { if (!loaded.decodeParams) { if (options && options.decodeParams) { loaded.decodeParams = options.decodeParams; } else { loaded.decodeParams = DEFAULT_DECODE_PARAMS; } } loaded.options = options; var geometryBase = jsonUrl.substr(0,jsonUrl.lastIndexOf("/")+1); var materialBase = geometryBase; if (options && options.geometryBase) { geometryBase = options.geometryBase; if (geometryBase.charAt(geometryBase.length-1) !== "/") { geometryBase = geometryBase + "/"; } } if (options && options.materialBase) { materialBase = options.materialBase; if (materialBase.charAt(materialBase.length-1) !== "/") { materialBase = materialBase + "/"; } } this.downloadModel(geometryBase, materialBase, loaded, callback); }.bind(this)); }; // XMLHttpRequest stuff. function getHttpRequest(url, onload, opt_onprogress) { var LISTENERS = { load: function(e) { onload(req, e); }, progress: function(e) { opt_onprogress(req, e); } }; var req = new XMLHttpRequest(); addListeners(req, LISTENERS); req.open('GET', url, true); req.send(null); } function getJsonRequest(url, onjson) { getHttpRequest(url, function(e) { onjson(JSON.parse(e.responseText)); }, function() {}); } function addListeners(dom, listeners) { // TODO: handle event capture, object binding. for (var key in listeners) { dom.addEventListener(key, listeners[key]); } }