/** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ THREE.Quaternion = function( x, y, z, w ) { this.x = x || 0; this.y = y || 0; this.z = z || 0; this.w = ( w !== undefined ) ? w : 1; }; THREE.Quaternion.prototype = { constructor: THREE.Quaternion, set: function ( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; }, copy: function ( q ) { this.x = q.x; this.y = q.y; this.z = q.z; this.w = q.w; return this; }, setFromEuler: function ( vector ) { var c = Math.PI / 360, // 0.5 * Math.PI / 360, // 0.5 is an optimization x = vector.x * c, y = vector.y * c, z = vector.z * c, c1 = Math.cos( y ), s1 = Math.sin( y ), c2 = Math.cos( -z ), s2 = Math.sin( -z ), c3 = Math.cos( x ), s3 = Math.sin( x ), c1c2 = c1 * c2, s1s2 = s1 * s2; this.w = c1c2 * c3 - s1s2 * s3; this.x = c1c2 * s3 + s1s2 * c3; this.y = s1 * c2 * c3 + c1 * s2 * s3; this.z = c1 * s2 * c3 - s1 * c2 * s3; return this; }, setFromAxisAngle: function ( axis, angle ) { // from http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // axis have to be normalized var halfAngle = angle / 2, s = Math.sin( halfAngle ); this.x = axis.x * s; this.y = axis.y * s; this.z = axis.z * s; this.w = Math.cos( halfAngle ); return this; }, setFromRotationMatrix: function ( m ) { // Adapted from: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm function copySign( a, b ) { return b < 0 ? -Math.abs( a ) : Math.abs( a ); } var absQ = Math.pow( m.determinant(), 1.0 / 3.0 ); this.w = Math.sqrt( Math.max( 0, absQ + m.elements[0] + m.elements[5] + m.elements[10] ) ) / 2; this.x = Math.sqrt( Math.max( 0, absQ + m.elements[0] - m.elements[5] - m.elements[10] ) ) / 2; this.y = Math.sqrt( Math.max( 0, absQ - m.elements[0] + m.elements[5] - m.elements[10] ) ) / 2; this.z = Math.sqrt( Math.max( 0, absQ - m.elements[0] - m.elements[5] + m.elements[10] ) ) / 2; this.x = copySign( this.x, ( m.elements[6] - m.elements[9] ) ); this.y = copySign( this.y, ( m.elements[8] - m.elements[2] ) ); this.z = copySign( this.z, ( m.elements[1] - m.elements[4] ) ); this.normalize(); return this; }, calculateW : function () { this.w = - Math.sqrt( Math.abs( 1.0 - this.x * this.x - this.y * this.y - this.z * this.z ) ); return this; }, inverse: function () { this.x *= -1; this.y *= -1; this.z *= -1; return this; }, length: function () { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); }, normalize: function () { var l = Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); if ( l === 0 ) { this.x = 0; this.y = 0; this.z = 0; this.w = 0; } else { l = 1 / l; this.x = this.x * l; this.y = this.y * l; this.z = this.z * l; this.w = this.w * l; } return this; }, multiply: function ( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm this.x = a.x * b.w + a.y * b.z - a.z * b.y + a.w * b.x; this.y = -a.x * b.z + a.y * b.w + a.z * b.x + a.w * b.y; this.z = a.x * b.y - a.y * b.x + a.z * b.w + a.w * b.z; this.w = -a.x * b.x - a.y * b.y - a.z * b.z + a.w * b.w; return this; }, multiplySelf: function ( b ) { var qax = this.x, qay = this.y, qaz = this.z, qaw = this.w, qbx = b.x, qby = b.y, qbz = b.z, qbw = b.w; this.x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this.y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this.z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this.w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; return this; }, multiplyVector3: function ( vector, dest ) { if ( !dest ) { dest = vector; } var x = vector.x, y = vector.y, z = vector.z, qx = this.x, qy = this.y, qz = this.z, qw = this.w; // calculate quat * vector var ix = qw * x + qy * z - qz * y, iy = qw * y + qz * x - qx * z, iz = qw * z + qx * y - qy * x, iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat dest.x = ix * qw + iw * -qx + iy * -qz - iz * -qy; dest.y = iy * qw + iw * -qy + iz * -qx - ix * -qz; dest.z = iz * qw + iw * -qz + ix * -qy - iy * -qx; return dest; }, slerpSelf: function ( qb, t ) { var x = this.x, y = this.y, z = this.z, w = this.w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb.w + x * qb.x + y * qb.y + z * qb.z; if ( cosHalfTheta < 0 ) { this.w = -qb.w; this.x = -qb.x; this.y = -qb.y; this.z = -qb.z; cosHalfTheta = -cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this.w = w; this.x = x; this.y = y; this.z = z; return this; } var halfTheta = Math.acos( cosHalfTheta ); var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { this.w = 0.5 * ( w + this.w ); this.x = 0.5 * ( x + this.x ); this.y = 0.5 * ( y + this.y ); this.z = 0.5 * ( z + this.z ); return this; } var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this.w = ( w * ratioA + this.w * ratioB ); this.x = ( x * ratioA + this.x * ratioB ); this.y = ( y * ratioA + this.y * ratioB ); this.z = ( z * ratioA + this.z * ratioB ); return this; }, clone: function () { return new THREE.Quaternion( this.x, this.y, this.z, this.w ); } } THREE.Quaternion.slerp = function ( qa, qb, qm, t ) { // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = qa.w * qb.w + qa.x * qb.x + qa.y * qb.y + qa.z * qb.z; if ( cosHalfTheta < 0 ) { qm.w = -qb.w; qm.x = -qb.x; qm.y = -qb.y; qm.z = -qb.z; cosHalfTheta = -cosHalfTheta; } else { qm.copy( qb ); } if ( Math.abs( cosHalfTheta ) >= 1.0 ) { qm.w = qa.w; qm.x = qa.x; qm.y = qa.y; qm.z = qa.z; return qm; } var halfTheta = Math.acos( cosHalfTheta ); var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta ); if ( Math.abs( sinHalfTheta ) < 0.001 ) { qm.w = 0.5 * ( qa.w + qm.w ); qm.x = 0.5 * ( qa.x + qm.x ); qm.y = 0.5 * ( qa.y + qm.y ); qm.z = 0.5 * ( qa.z + qm.z ); return qm; } var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta; var ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; qm.w = ( qa.w * ratioA + qm.w * ratioB ); qm.x = ( qa.x * ratioA + qm.x * ratioB ); qm.y = ( qa.y * ratioA + qm.y * ratioB ); qm.z = ( qa.z * ratioA + qm.z * ratioB ); return qm; }