/** * Origin: https://github.com/mrdoob/three.js/blob/af21991fc7c4e1d35d6a93031707273d937af0f9/examples/js/loaders/VTKLoader.js * @author mrdoob / http://mrdoob.com/ and Alex Pletzer */ THREE.VTKLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.VTKLoader.prototype = { constructor: THREE.VTKLoader, load: function ( url, onLoad, onProgress, onError ) { // Will we bump into trouble reading the whole file into memory? var scope = this; var loader = new THREE.XHRLoader( scope.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.load( url, function ( text ) { onLoad( scope.parse( text ) ); }, onProgress, onError ); }, setCrossOrigin: function ( value ) { this.crossOrigin = value; }, parse: function ( data ) { // connectivity of the triangles var indices = []; // triangles vertices var positions = []; // red, green, blue colors in the range 0 to 1 var colors = []; // LUT variables required for coloring var colorMap = 'rainbow'; var numberOfColors = 512; var lut = new THREE.Lut( colorMap, numberOfColors ); lut.setMax( 2000 ); lut.setMin( 0 ); // Float values defined for the LUT var color_scalars = []; // normal vector, one per vertex var normals = []; var result; // pattern for reading vertices, 3 floats or integers var pat3Floats = /(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)/g; // pattern for connectivity, an integer followed by any number of ints // the first integer is the number of polygon nodes var patConnectivity = /^(\d+)\s+([\s\d]*)/; // indicates start of vertex data section var patPOINTS = /^POINTS /; // indicates start of polygon connectivity section var patPOLYGONS = /^POLYGONS /; // POINT_DATA number_of_values var patPOINT_DATA = /^POINT_DATA[ ]+(\d+)/; // CELL_DATA number_of_polys var patCELL_DATA = /^CELL_DATA[ ]+(\d+)/; // Start of color section var patCOLOR_SCALARS = /^COLOR_SCALARS[ ]+(\w+)[ ]+3/; // Start of LUT section var patLOOKUP_TABLE = /^LOOKUP_TABLE[ ]+(\w)/; // NORMALS Normals float var patNORMALS = /^NORMALS[ ]+(\w+)[ ]+(\w+)/; var inPointsSection = false; var inPolygonsSection = false; var inPointDataSection = false; var inCellDataSection = false; var inColorSection = false; var inLookupTableSection = false; var inNormalsSection = false; var lines = data.split('\n'); for ( var i in lines ) { var line = lines[ i ]; if ( inPointsSection ) { // get the vertices while ( ( result = pat3Floats.exec( line ) ) !== null ) { var x = parseFloat( result[ 1 ] ); var y = parseFloat( result[ 2 ] ); var z = parseFloat( result[ 3 ] ); positions.push( x, y, z ); } } else if ( inPolygonsSection ) { if ( ( result = patConnectivity.exec( line ) ) !== null ) { // numVertices i0 i1 i2 ... var numVertices = parseInt( result[ 1 ] ); var inds = result[ 2 ].split(/\s+/); if ( numVertices >= 3 ) { var i0 = parseInt( inds[ 0 ] ); var i1, i2; var k = 1; // split the polygon in numVertices - 2 triangles for ( var j = 0; j < numVertices - 2; ++j ) { i1 = parseInt( inds[ k ] ); i2 = parseInt( inds[ k + 1 ] ); indices.push( i0, i1, i2 ); k++; } } } } else if ( inPointDataSection ) { if ( inColorSection ) { // get the colors while ( ( result = pat3Floats.exec( line ) ) !== null ) { var r = parseFloat( result[ 1 ] ); var g = parseFloat( result[ 2 ] ); var b = parseFloat( result[ 3 ] ); colors.push( r, g, b ); } } else if ( inLookupTableSection ) { // get the color scalars var items = line.split( /(\s+)/ ); for ( var item_index = 0; item_index < items.length; item_index++ ) { var scalar = parseFloat( items[ item_index ] ).toFixed( 12 ); if ( ! isNaN( scalar ) ) { color_scalars.push( scalar ); } } } else if ( inNormalsSection ) { // get the normal vectors while ( ( result = pat3Floats.exec( line ) ) !== null ) { var nx = parseFloat( result[ 1 ] ); var ny = parseFloat( result[ 2 ] ); var nz = parseFloat( result[ 3 ] ); normals.push( nx, ny, nz ); } } } else if ( inCellDataSection ) { if ( inColorSection ) { // get the colors while ( ( result = pat3Floats.exec( line ) ) !== null ) { var r = parseFloat( result[ 1 ] ); var g = parseFloat( result[ 2 ] ); var b = parseFloat( result[ 3 ] ); colors.push( r, g, b ); } } else if ( inLookupTableSection ) { // get the color scalars var items = line.split( /(\s+)/ ); for ( var item_index = 0; item_index < items.length; item_index++ ) { var scalar = parseFloat( items[ item_index ] ).toFixed( 12 ); if ( ! isNaN( scalar ) ) { color_scalars.push( scalar ); } } } else if ( inNormalsSection ) { // get the normal vectors while ( ( result = pat3Floats.exec( line ) ) !== null ) { var nx = parseFloat( result[ 1 ] ); var ny = parseFloat( result[ 2 ] ); var nz = parseFloat( result[ 3 ] ); normals.push( nx, ny, nz ); } } } if ( patPOLYGONS.exec( line ) !== null ) { inPolygonsSection = true; inPointsSection = false; } else if ( patPOINTS.exec( line ) !== null ) { inPolygonsSection = false; inPointsSection = true; } else if ( patPOINT_DATA.exec( line ) !== null ) { inPointDataSection = true; inPointsSection = false; inPolygonsSection = false; } else if ( patCELL_DATA.exec( line ) !== null ) { inCellDataSection = true; inPointsSection = false; inPolygonsSection = false; } else if ( patCOLOR_SCALARS.exec( line ) !== null ) { inColorSection = true; inLookupTableSection = false; inNormalsSection = false; inPointsSection = false; inPolygonsSection = false; } else if ( patLOOKUP_TABLE.exec( line ) !== null ) { inLookupTableSection = true; inColorSection = false; inNormalsSection = false; inPointsSection = false; inPolygonsSection = false; } else if ( patNORMALS.exec( line ) !== null ) { inNormalsSection = true; inLookupTableSection = false; inColorSection = false; inPointsSection = false; inPolygonsSection = false; } } var geometry; var stagger = 'point'; if ( colors.length == indices.length ) { stagger = 'cell'; } if ( stagger == 'point' ) { // nodal. Use BufferGeometry geometry = new THREE.BufferGeometry(); geometry.addAttribute( 'index', new THREE.BufferAttribute( new ( indices.length > 65535 ? Uint32Array : Uint16Array )( indices ), 1 ) ); geometry.addAttribute( 'position', new THREE.BufferAttribute( new Float32Array( positions ), 3 ) ); if ( colors.length == positions.length ) { geometry.addAttribute( 'color', new THREE.BufferAttribute( new Float32Array( colors ), 3 ) ); } else if ( color_scalars.length > 0 ) { // Use LUT for coloring. var lutColors = []; for ( var i = 0; i < color_scalars.length; i++ ) { var colorValue = color_scalars[ i ]; color = lut.getColor( colorValue ); if ( color == undefined ) { console.log( "ERROR: " + colorValue ); } else { lutColors[ 3 * i ] = color.r; lutColors[ 3 * i + 1 ] = color.g; lutColors[ 3 * i + 2 ] = color.b; } } geometry.addAttribute( 'color', new THREE.BufferAttribute( new Float32Array( lutColors ), 3 ) ); } if ( normals.length == positions.length ) { geometry.addAttribute( 'normal', new THREE.BufferAttribute( new Float32Array( normals ), 3 ) ); } } else { // cell centered colors. The only way to attach a solid color to each triangle // is to use Geometry geometry = new THREE.Geometry(); var numTriangles = indices.length / 3; var numPoints = positions.length / 3; var va, vb, vc; var face; var colorA, colorB, colorC; var ia, ib, ic; var x, y, z; var r, g, b; for ( var j = 0; j < numPoints; ++j ) { x = positions[ 3*j + 0 ]; y = positions[ 3*j + 1 ]; z = positions[ 3*j + 2 ]; geometry.vertices.push( new THREE.Vector3( x, y, z ) ); } for ( var i = 0; i < numTriangles; ++i ) { ia = indices[ 3*i + 0 ]; ib = indices[ 3*i + 1 ]; ic = indices[ 3*i + 2 ]; geometry.faces.push( new THREE.Face3( ia, ib, ic ) ); } if ( colors.length == numTriangles * 3 ) { for ( var i = 0; i < numTriangles; ++i ) { face = geometry.faces[i]; r = colors[ 3*i + 0 ]; g = colors[ 3*i + 1 ]; b = colors[ 3*i + 2 ]; face.color = new THREE.Color().setRGB( r, g, b ); } } else if ( color_scalars.length == numTriangles ) { // Use LUT for coloring. for ( var i = 0; i < numTriangles; ++i ) { face = geometry.faces[i]; colorValue = color_scalars[ i ]; color = lut.getColor( colorValue ); if ( color == undefined ) { console.log( "ERROR: " + colorValue ); } else { color = new THREE.Color(); color.setRGB( color.r, color.g, color.b ); face.color = new THREE.Color().setRGB( r, g, b ); } } } } return geometry; } }; THREE.EventDispatcher.prototype.apply( THREE.VTKLoader.prototype );