/** * @author simonThiele / https://github.com/simonThiele */ QUnit.module( "BufferGeometry" ); var DegToRad = Math.PI / 180; var bufferAttributeEquals = function ( a, b, tolerance ) { tolerance = tolerance || 0.0001; if ( a.count !== b.count || a.itemSize !== b.itemSize ) { return false; } for ( var i = 0, il = a.count * a.itemSize; i < il; i ++ ) { var delta = a[ i ] - b[ i ]; if ( delta > tolerance ) { return false; } } return true; }; QUnit.test( "add / delete Attribute", function( assert ) { var geometry = new THREE.BufferGeometry(); var attributeName = "position"; assert.ok ( geometry.attributes[attributeName] === undefined , 'no attribute defined' ); geometry.addAttribute( attributeName, new THREE.BufferAttribute( new Float32Array( [1, 2, 3], 1 ) ) ); assert.ok ( geometry.attributes[attributeName] !== undefined , 'attribute is defined' ); geometry.removeAttribute( attributeName ); assert.ok ( geometry.attributes[attributeName] === undefined , 'no attribute defined' ); }); QUnit.test( "applyMatrix" , function( assert ) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( "position", new THREE.BufferAttribute( new Float32Array(6), 3 ) ); var matrix = new THREE.Matrix4().set( 1, 0, 0, 1.5, 0, 1, 0, -2, 0, 0, 1, 3, 0, 0, 0, 1 ); geometry.applyMatrix(matrix); var position = geometry.attributes.position.array; var m = matrix.elements; assert.ok( position[0] === m[12] && position[1] === m[13] && position[2] === m[14], "position was extracted from matrix" ); assert.ok( position[3] === m[12] && position[4] === m[13] && position[5] === m[14], "position was extracted from matrix twice" ); assert.ok( geometry.attributes.position.version === 1, "version was increased during update" ); }); QUnit.test( "rotateX/Y/Z", function( assert ) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( "position", new THREE.BufferAttribute( new Float32Array([1, 2, 3, 4, 5, 6]), 3 ) ); var pos = geometry.attributes.position.array; geometry.rotateX( 180 * DegToRad ); // object was rotated around x so all items should be flipped but the x ones assert.ok( pos[0] === 1 && pos[1] === -2 && pos[2] === -3 && pos[3] === 4 && pos[4] === -5 && pos[5] === -6, "vertices were rotated around x by 180 degrees" ); geometry.rotateY( 180 * DegToRad ); // vertices were rotated around y so all items should be flipped again but the y ones assert.ok( pos[0] === -1 && pos[1] === -2 && pos[2] === 3 && pos[3] === -4 && pos[4] === -5 && pos[5] === 6, "vertices were rotated around y by 180 degrees" ); geometry.rotateZ( 180 * DegToRad ); // vertices were rotated around z so all items should be flipped again but the z ones assert.ok( pos[0] === 1 && pos[1] === 2 && pos[2] === 3 && pos[3] === 4 && pos[4] === 5 && pos[5] === 6, "vertices were rotated around z by 180 degrees" ); }); QUnit.test( "translate" , function( assert ) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( "position", new THREE.BufferAttribute( new Float32Array([1, 2, 3, 4, 5, 6]), 3 ) ); var pos = geometry.attributes.position.array; geometry.translate( 10, 20, 30 ); assert.ok( pos[0] === 11 && pos[1] === 22 && pos[2] === 33 && pos[3] === 14 && pos[4] === 25 && pos[5] === 36, "vertices were translated" ); }); QUnit.test( "scale" , function( assert ) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( "position", new THREE.BufferAttribute( new Float32Array([-1, -1, -1, 2, 2, 2]), 3 ) ); var pos = geometry.attributes.position.array; geometry.scale( 1, 2, 3 ); assert.ok( pos[0] === -1 && pos[1] === -2 && pos[2] === -3 && pos[3] === 2 && pos[4] === 4 && pos[5] === 6, "vertices were scaled" ); }); QUnit.test( "center" , function( assert ) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( "position", new THREE.BufferAttribute( new Float32Array([ -1, -1, -1, 1, 1, 1, 4, 4, 4 ]), 3 ) ); geometry.center(); var pos = geometry.attributes.position.array; var bb = geometry.boundingBox; // the boundingBox should go from (-1, -1, -1) to (4, 4, 4) so it has a size of (5, 5, 5) // after centering it the vertices should be placed between (-2.5, -2.5, -2.5) and (2.5, 2.5, 2.5) assert.ok( pos[0] === -2.5 && pos[1] === -2.5 && pos[2] === -2.5 && pos[3] === -0.5 && pos[4] === -0.5 && pos[5] === -0.5 && pos[6] === 2.5 && pos[7] === 2.5 && pos[8] === 2.5, "vertices were replaced by boundingBox dimensions" ); }); QUnit.test( "setFromObject" , function( assert ) { var lineGeo = new THREE.Geometry(); lineGeo.vertices.push( new THREE.Vector3( -10, 0, 0 ), new THREE.Vector3( 0, 10, 0 ), new THREE.Vector3( 10, 0, 0 ) ); lineGeo.colors.push( new THREE.Color(1, 0, 0 ), new THREE.Color(0, 1, 0 ), new THREE.Color(0, 0, 1 ) ); var line = new THREE.Line( lineGeo, null ); var geometry = new THREE.BufferGeometry().setFromObject( line ); var pos = geometry.attributes.position.array; var col = geometry.attributes.color.array; var v = lineGeo.vertices; var c = lineGeo.colors; assert.ok( // position exists pos !== undefined && // vertex arrays have the same size v.length * 3 === pos.length && // there are three complete vertices (each vertex contains three values) geometry.attributes.position.count === 3 && // check if both arrays contains the same data pos[0] === v[0].x && pos[1] === v[0].y && pos[2] === v[0].z && pos[3] === v[1].x && pos[4] === v[1].y && pos[5] === v[1].z && pos[6] === v[2].x && pos[7] === v[2].y && pos[8] === v[2].z , "positions are equal" ); assert.ok( // color exists col !== undefined && // color arrays have the same size c.length * 3 === col.length && // there are three complete colors (each color contains three values) geometry.attributes.color.count === 3 && // check if both arrays contains the same data col[0] === c[0].r && col[1] === c[0].g && col[2] === c[0].b && col[3] === c[1].r && col[4] === c[1].g && col[5] === c[1].b && col[6] === c[2].r && col[7] === c[2].g && col[8] === c[2].b , "colors are equal" ); }); QUnit.test( "computeBoundingBox" , function( assert ) { var bb = getBBForVertices( [-1, -2, -3, 13, -2, -3.5, -1, -20, 0, -4, 5, 6] ); assert.ok( bb.min.x === -4 && bb.min.y === -20 && bb.min.z === -3.5, "min values are set correctly" ); assert.ok( bb.max.x === 13 && bb.max.y === 5 && bb.max.z === 6, "max values are set correctly" ); bb = getBBForVertices( [-1, -1, -1] ); assert.ok( bb.min.x === bb.max.x && bb.min.y === bb.max.y && bb.min.z === bb.max.z, "since there is only one vertex, max and min are equal" ); assert.ok( bb.min.x === -1 && bb.min.y === -1 && bb.min.z === -1, "since there is only one vertex, min and max are this vertex" ); }); QUnit.test( "computeBoundingSphere" , function( assert ) { var bs = getBSForVertices( [-10, 0, 0, 10, 0, 0] ); assert.ok( bs.radius === (10 + 10) / 2, "radius is equal to deltaMinMax / 2" ) assert.ok( bs.center.x === 0 && bs.center.y === 0 && bs.center.y === 0, "bounding sphere is at ( 0, 0, 0 )" ) var bs = getBSForVertices( [-5, 11, -3, 5, -11, 3] ); var radius = new THREE.Vector3(5, 11, 3).length(); assert.ok( bs.radius === radius, "radius is equal to directionLength" ) assert.ok( bs.center.x === 0 && bs.center.y === 0 && bs.center.y === 0, "bounding sphere is at ( 0, 0, 0 )" ) }); function getBBForVertices(vertices) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( "position", new THREE.BufferAttribute( new Float32Array(vertices), 3 ) ); geometry.computeBoundingBox(); return geometry.boundingBox; } function getBSForVertices(vertices) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( "position", new THREE.BufferAttribute( new Float32Array(vertices), 3 ) ); geometry.computeBoundingSphere(); return geometry.boundingSphere; } QUnit.test( "computeVertexNormals" , function( assert ) { // get normals for a counter clockwise created triangle var normals = getNormalsForVertices([-1, 0, 0, 1, 0, 0, 0, 1, 0], assert); assert.ok( normals[0] === 0 && normals[1] === 0 && normals[2] === 1, "first normal is pointing to screen since the the triangle was created counter clockwise" ); assert.ok( normals[3] === 0 && normals[4] === 0 && normals[5] === 1, "second normal is pointing to screen since the the triangle was created counter clockwise" ); assert.ok( normals[6] === 0 && normals[7] === 0 && normals[8] === 1, "third normal is pointing to screen since the the triangle was created counter clockwise" ); // get normals for a clockwise created triangle var normals = getNormalsForVertices([1, 0, 0, -1, 0, 0, 0, 1, 0], assert); assert.ok( normals[0] === 0 && normals[1] === 0 && normals[2] === -1, "first normal is pointing to screen since the the triangle was created clockwise" ); assert.ok( normals[3] === 0 && normals[4] === 0 && normals[5] === -1, "second normal is pointing to screen since the the triangle was created clockwise" ); assert.ok( normals[6] === 0 && normals[7] === 0 && normals[8] === -1, "third normal is pointing to screen since the the triangle was created clockwise" ); var normals = getNormalsForVertices([0, 0, 1, 0, 0, -1, 1, 1, 0], assert); // the triangle is rotated by 45 degrees to the right so the normals of the three vertices // should point to (1, -1, 0).normalized(). The simplest solution is to check against a normalized // vector (1, -1, 0) but you will get calculation errors because of floating calculations so another // valid technique is to create a vector which stands in 90 degrees to the normals and calculate the // dot product which is the cos of the angle between them. This should be < floating calculation error // which can be taken from Number.EPSILON var direction = new THREE.Vector3(1, 1, 0).normalize(); // a vector which should have 90 degrees difference to normals var difference = direction.dot( new THREE.Vector3( normals[0], normals[1], normals[2] ) ); assert.ok( difference < Number.EPSILON, "normal is equal to reference vector"); // get normals for a line should be NAN because you need min a triangle to calculate normals var normals = getNormalsForVertices([1, 0, 0, -1, 0, 0], assert); for (var i = 0; i < normals.length; i++) { assert.ok ( !normals[i], "normals can't be calculated which is good"); } }); function getNormalsForVertices(vertices, assert) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( "position", new THREE.BufferAttribute( new Float32Array(vertices), 3 ) ); geometry.computeVertexNormals(); assert.ok( geometry.attributes.normal !== undefined, "normal attribute was created" ); return geometry.attributes.normal.array; } QUnit.test( "merge" , function( assert ) { var geometry1 = new THREE.BufferGeometry(); geometry1.addAttribute( "attrName", new THREE.BufferAttribute( new Float32Array([1, 2, 3, 0, 0, 0]), 3 ) ); var geometry2 = new THREE.BufferGeometry(); geometry2.addAttribute( "attrName", new THREE.BufferAttribute( new Float32Array([4, 5, 6]), 3 ) ); var attr = geometry1.attributes.attrName.array; geometry1.merge(geometry2, 1); // merged array should be 1, 2, 3, 4, 5, 6 for (var i = 0; i < attr.length; i++) { assert.ok( attr[i] === i + 1, ""); } geometry1.merge(geometry2); assert.ok( attr[0] === 4 && attr[1] === 5 && attr[2] === 6, "copied the 3 attributes without offset" ); }); QUnit.test( "copy" , function( assert ) { var geometry = new THREE.BufferGeometry(); geometry.addAttribute( "attrName", new THREE.BufferAttribute( new Float32Array([1, 2, 3, 4, 5, 6]), 3 ) ); geometry.addAttribute( "attrName2", new THREE.BufferAttribute( new Float32Array([0, 1, 3, 5, 6]), 1 ) ); var copy = new THREE.BufferGeometry().copy(geometry); assert.ok( copy !== geometry && geometry.id !== copy.id, "new object was created" ); Object.keys(geometry.attributes).forEach(function(key) { var attribute = geometry.attributes[key]; assert.ok( attribute !== undefined, "all attributes where copied"); for (var i = 0; i < attribute.array.length; i++) { assert.ok( attribute.array[i] === copy.attributes[key].array[i], "values of the attribute are equal" ); } }); }); QUnit.test( "setIndex/getIndex", function ( assert ) { var a = new THREE.BufferGeometry(); var uint16 = [ 1, 2, 3 ]; var uint32 = [ 65535, 65536, 65537 ]; var str = "foo"; a.setIndex( uint16 ); assert.ok( a.getIndex() instanceof THREE.Uint16BufferAttribute, "Index has the right type" ); assert.deepEqual( a.getIndex().array, new Uint16Array( uint16 ), "Small index gets stored correctly" ); a.setIndex( uint32 ); assert.ok( a.getIndex() instanceof THREE.Uint32BufferAttribute, "Index has the right type" ); assert.deepEqual( a.getIndex().array, new Uint32Array( uint32 ), "Large index gets stored correctly" ); a.setIndex( str ); assert.strictEqual( a.getIndex(), str, "Weird index gets stored correctly" ); } ); QUnit.test( "addGroup", function ( assert ) { var a = new THREE.BufferGeometry(); var expected = [ { start: 0, count: 1, materialIndex: 0 }, { start: 1, count: 2, materialIndex: 2 } ]; a.addGroup( 0, 1, 0 ); a.addGroup( 1, 2, 2 ); assert.deepEqual( a.groups, expected, "Check groups were stored correctly and in order" ); a.clearGroups(); assert.strictEqual( a.groups.length, 0, "Check groups were deleted correctly" ); } ); QUnit.test( "setDrawRange", function ( assert ) { var a = new THREE.BufferGeometry(); a.setDrawRange( 1.0, 7 ); assert.deepEqual( a.drawRange, { start: 1, count: 7 }, "Check draw range was stored correctly" ); } ); QUnit.test( "lookAt", function ( assert ) { var a = new THREE.BufferGeometry(); var vertices = new Float32Array( [ - 1.0, - 1.0, 1.0, 1.0, - 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, - 1.0, 1.0, 1.0, - 1.0, - 1.0, 1.0 ] ); a.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); var sqrt = Math.sqrt( 2 ); var expected = new Float32Array( [ 1, 0, - sqrt, - 1, 0, - sqrt, - 1, sqrt, 0, - 1, sqrt, 0, 1, sqrt, 0, 1, 0, - sqrt ] ); a.lookAt( new THREE.Vector3( 0, 1, - 1 ) ); assert.ok( bufferAttributeEquals( a.attributes.position.array, expected ), "Rotation is correct" ); } ); QUnit.test( "fromGeometry/fromDirectGeometry", function ( assert ) { var a = new THREE.BufferGeometry(); // BoxGeometry is a bit too simple but works fine in a pinch // var b = new THREE.BoxGeometry( 1, 1, 1 ); // b.mergeVertices(); // b.computeVertexNormals(); // b.computeBoundingBox(); // b.computeBoundingSphere(); var asyncDone = assert.async(); // tell QUnit we're done with asserts var loader = new THREE.JSONLoader(); loader.load( "../../examples/models/skinned/simple/simple.js", function ( modelGeometry ) { a.fromGeometry( modelGeometry ); var attr; var geometry = new THREE.DirectGeometry().fromGeometry( modelGeometry ); var positions = new Float32Array( geometry.vertices.length * 3 ); attr = new THREE.BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ); assert.ok( bufferAttributeEquals( a.attributes.position, attr ), "Vertices are identical" ); if ( geometry.normals.length > 0 ) { var normals = new Float32Array( geometry.normals.length * 3 ); attr = new THREE.BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ); assert.ok( bufferAttributeEquals( a.attributes.normal, attr ), "Normals are identical" ); } if ( geometry.colors.length > 0 ) { var colors = new Float32Array( geometry.colors.length * 3 ); attr = new THREE.BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ); assert.ok( bufferAttributeEquals( a.attributes.color, attr ), "Colors are identical" ); } if ( geometry.uvs.length > 0 ) { var uvs = new Float32Array( geometry.uvs.length * 2 ); attr = new THREE.BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ); assert.ok( bufferAttributeEquals( a.attributes.uv, attr ), "UVs are identical" ); } if ( geometry.uvs2.length > 0 ) { var uvs2 = new Float32Array( geometry.uvs2.length * 2 ); attr = new THREE.BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ); assert.ok( bufferAttributeEquals( a.attributes.uv2, attr ), "UV2s are identical" ); } if ( geometry.indices.length > 0 ) { var TypeArray = THREE.arrayMax( geometry.indices ) > 65535 ? Uint32Array : Uint16Array; var indices = new TypeArray( geometry.indices.length * 3 ); attr = new THREE.BufferAttribute( indices, 1 ).copyIndicesArray( geometry.indices ); assert.ok( bufferAttributeEquals( a.indices, attr ), "Indices are identical" ); } // groups assert.deepEqual( a.groups, geometry.groups, "Groups are identical" ); // morphs if ( geometry.morphTargets !== undefined ) { for ( var name in geometry.morphTargets ) { var morphTargets = geometry.morphTargets[ name ]; for ( var i = 0, l = morphTargets.length; i < l; i ++ ) { var morphTarget = morphTargets[ i ]; attr = new THREE.Float32BufferAttribute( morphTarget.length * 3, 3 ); attr.copyVector3sArray( morphTarget ); assert.ok( bufferAttributeEquals( a.morphAttributes[ name ][ i ], attr ), "MorphTargets #" + i + " are identical" ); } } } // skinning if ( geometry.skinIndices.length > 0 ) { attr = new THREE.Float32BufferAttribute( geometry.skinIndices.length * 4, 4 ); attr.copyVector4sArray( geometry.skinIndices ); assert.ok( bufferAttributeEquals( a.attributes.skinIndex, attr ), "SkinIndices are identical" ); } if ( geometry.skinWeights.length > 0 ) { attr = new THREE.Float32BufferAttribute( geometry.skinWeights.length * 4, 4 ); attr.copyVector4sArray( geometry.skinWeights ); assert.ok( bufferAttributeEquals( a.attributes.skinWeight, attr ), "SkinWeights are identical" ); } // TODO // DirectGeometry doesn't actually copy boundingSphere and boundingBox yet, // so they're always null if ( geometry.boundingSphere !== null ) { assert.ok( a.boundingSphere.equals( geometry.boundingSphere ), "BoundingSphere is identical" ); } if ( geometry.boundingBox !== null ) { assert.ok( a.boundingBox.equals( geometry.boundingBox ), "BoundingBox is identical" ); } asyncDone(); } ); } ); QUnit.test( "clone", function ( assert ) { var a = new THREE.BufferGeometry(); a.addAttribute( "attribute1", new THREE.BufferAttribute( new Float32Array( [ 1, 2, 3, 4, 5, 6 ] ), 3 ) ); a.addAttribute( "attribute2", new THREE.BufferAttribute( new Float32Array( [ 0, 1, 3, 5, 6 ] ), 1 ) ); a.addGroup( 0, 1, 2 ); a.computeBoundingBox(); a.computeBoundingSphere(); a.setDrawRange( 0, 1 ); var b = a.clone(); assert.notEqual( a, b, "A new object was created" ); assert.notEqual( a.id, b.id, "New object has a different GUID" ); assert.strictEqual( Object.keys( a.attributes ).count, Object.keys( b.attributes ).count, "Both objects have the same amount of attributes" ); assert.ok( bufferAttributeEquals( a.getAttribute( "attribute1" ), b.getAttribute( "attribute1" ) ), "First attributes buffer is identical" ); assert.ok( bufferAttributeEquals( a.getAttribute( "attribute2" ), b.getAttribute( "attribute2" ) ), "Second attributes buffer is identical" ); assert.deepEqual( a.groups, b.groups, "Groups are identical" ); assert.ok( a.boundingBox.equals( b.boundingBox ), "BoundingBoxes are equal" ); assert.ok( a.boundingSphere.equals( b.boundingSphere ), "BoundingSpheres are equal" ); assert.strictEqual( a.drawRange.start, b.drawRange.start, "DrawRange start is identical" ); assert.strictEqual( a.drawRange.count, b.drawRange.count, "DrawRange count is identical" ); } ); QUnit.test( "computeVertexNormals (indexed)", function ( assert ) { var sqrt = 0.5 * Math.sqrt( 2 ); var normal = new THREE.BufferAttribute( new Float32Array( [ - 1, 0, 0, - 1, 0, 0, - 1, 0, 0, sqrt, sqrt, 0, sqrt, sqrt, 0, sqrt, sqrt, 0, - 1, 0, 0 ] ), 3 ); var position = new THREE.BufferAttribute( new Float32Array( [ 0.5, 0.5, 0.5, 0.5, 0.5, - 0.5, 0.5, - 0.5, 0.5, 0.5, - 0.5, - 0.5, - 0.5, 0.5, - 0.5, - 0.5, 0.5, 0.5, - 0.5, - 0.5, - 0.5 ] ), 3 ); var index = new THREE.BufferAttribute( new Uint16Array( [ 0, 2, 1, 2, 3, 1, 4, 6, 5, 6, 7, 5 ] ), 1 ); var a = new THREE.BufferGeometry(); a.addAttribute( "position", position ); a.computeVertexNormals(); assert.ok( bufferAttributeEquals( normal, a.getAttribute( "normal" ) ), "Regular geometry: first computed normals are correct" ); // a second time to see if the existing normals get properly deleted a.computeVertexNormals(); assert.ok( bufferAttributeEquals( normal, a.getAttribute( "normal" ) ), "Regular geometry: second computed normals are correct" ); // indexed geometry a = new THREE.BufferGeometry(); a.addAttribute( "position", position ); a.setIndex( index ); a.computeVertexNormals(); assert.ok( bufferAttributeEquals( normal, a.getAttribute( "normal" ) ), "Indexed geometry: computed normals are correct" ); } ); QUnit.test( "toJSON", function ( assert ) { var index = new THREE.BufferAttribute( new Uint16Array( [ 0, 1, 2, 3 ] ), 1 ); var attribute1 = new THREE.BufferAttribute( new Uint16Array( [ 1, 3, 5, 7 ] ), 1 ); var a = new THREE.BufferGeometry(); a.name = "JSONtest"; // a.parameters = { "placeholder": 0 }; a.addAttribute( "attribute1", attribute1 ); a.setIndex( index ); a.addGroup( 0, 1, 2 ); a.boundingSphere = new THREE.Sphere( new THREE.Vector3( x, y, z ), 0.5 ); var j = a.toJSON(); var gold = { "metadata": { "version": 4.5, "type": "BufferGeometry", "generator": "BufferGeometry.toJSON" }, "uuid": a.uuid, "type": "BufferGeometry", "name": "JSONtest", "data": { "attributes": { "attribute1": { "itemSize": 1, "type": "Uint16Array", "array": [ 1, 3, 5, 7 ], "normalized": false } }, "index": { "type": "Uint16Array", "array": [ 0, 1, 2, 3 ] }, "groups": [ { "start": 0, "count": 1, "materialIndex": 2 } ], "boundingSphere": { "center": [ 2, 3, 4 ], "radius": 0.5 } } }; assert.deepEqual( j, gold, "Generated JSON is as expected" ); } ); function comparePositions( pos, v ) { return ( pos[ 0 ] === v[ 0 ].x && pos[ 1 ] === v[ 0 ].y && pos[ 2 ] === v[ 0 ].z && pos[ 3 ] === v[ 1 ].x && pos[ 4 ] === v[ 1 ].y && pos[ 5 ] === v[ 1 ].z && pos[ 6 ] === v[ 2 ].x && pos[ 7 ] === v[ 2 ].y && pos[ 8 ] === v[ 2 ].z ); } function compareColors( col, c ) { return ( col[ 0 ] === c[ 0 ].r && col[ 1 ] === c[ 0 ].g && col[ 2 ] === c[ 0 ].b && col[ 3 ] === c[ 1 ].r && col[ 4 ] === c[ 1 ].g && col[ 5 ] === c[ 1 ].b && col[ 6 ] === c[ 2 ].r && col[ 7 ] === c[ 2 ].g && col[ 8 ] === c[ 2 ].b ); } function compareUvs( uvs, u ) { return ( uvs[ 0 ] === u[ 0 ].x && uvs[ 1 ] === u[ 0 ].y && uvs[ 2 ] === u[ 1 ].x && uvs[ 3 ] === u[ 1 ].y && uvs[ 4 ] === u[ 2 ].x && uvs[ 5 ] === u[ 2 ].y ); } QUnit.test( "setFromObject (more)", function ( assert ) { var lineGeo = new THREE.Geometry(); lineGeo.vertices.push( new THREE.Vector3( - 10, 0, 0 ), new THREE.Vector3( 0, 10, 0 ), new THREE.Vector3( 10, 0, 0 ) ); lineGeo.colors.push( new THREE.Color( 1, 0, 0 ), new THREE.Color( 0, 1, 0 ), new THREE.Color( 0, 0, 1 ) ); lineGeo.computeBoundingBox(); lineGeo.computeBoundingSphere(); var line = new THREE.Line( lineGeo ); var geometry = new THREE.BufferGeometry().setFromObject( line ); assert.ok( geometry.boundingBox.equals( lineGeo.boundingBox ), "BoundingBox was set correctly" ); assert.ok( geometry.boundingSphere.equals( lineGeo.boundingSphere ), "BoundingSphere was set correctly" ); var pos = geometry.attributes.position.array; var col = geometry.attributes.color.array; var v = lineGeo.vertices; var c = lineGeo.colors; // adapted from setFromObject test (way up) assert.notStrictEqual( pos, undefined, "Position attribute exists" ); assert.strictEqual( v.length * 3, pos.length, "Vertex arrays have the same size" ); assert.strictEqual( geometry.attributes.position.count, 3, "Correct number of vertices" ); assert.ok( comparePositions( pos, v ), "Positions are identical" ); assert.notStrictEqual( col, undefined, "Color attribute exists" ); assert.strictEqual( c.length * 3, col.length, "Color arrays have the same size" ); assert.strictEqual( geometry.attributes.color.count, 3, "Correct number of colors" ); assert.ok( compareColors( col, c ), "Colors are identical" ); // setFromObject with a Mesh as object lineGeo.faces.push( new THREE.Face3( 0, 1, 2 ) ); var lineMesh = new THREE.Mesh( lineGeo ); geometry = new THREE.BufferGeometry().setFromObject( lineMesh ); // no colors pos = geometry.attributes.position.array; v = lineGeo.vertices; assert.notStrictEqual( pos, undefined, "Mesh: position attribute exists" ); assert.strictEqual( v.length * 3, pos.length, "Mesh: vertex arrays have the same size" ); assert.strictEqual( geometry.attributes.position.count, 3, "Mesh: correct number of vertices" ); assert.ok( comparePositions( pos, v ), "Mesh: positions are identical" ); } ); QUnit.test( "updateFromObject", function ( assert ) { var geo = new THREE.Geometry(); geo.vertices.push( new THREE.Vector3( - 10, 0, 0 ), new THREE.Vector3( 0, 10, 0 ), new THREE.Vector3( 10, 0, 0 ) ); geo.faces.push( new THREE.Face3( 0, 1, 2 ) ); geo.faces[ 0 ].vertexColors.push( new THREE.Color( 1, 0, 0 ), new THREE.Color( 0, 1, 0 ), new THREE.Color( 0, 0, 1 ) ); geo.faceVertexUvs[ 0 ] = [[ new THREE.Vector2( 0, 0 ), new THREE.Vector2( 1, 0 ), new THREE.Vector2( 1, 1 ) ]]; geo.computeFaceNormals(); geo.computeVertexNormals(); geo.verticesNeedUpdate = true; geo.normalsNeedUpdate = true; geo.colorsNeedUpdate = true; geo.uvsNeedUpdate = true; geo.groupsNeedUpdate = true; var mesh = new THREE.Mesh( geo ); var geometry = new THREE.BufferGeometry(); geometry.updateFromObject( mesh ); // first call to create the underlying structure (DirectGeometry) geometry.updateFromObject( mesh ); // second time to actually go thru the motions and update var pos = geometry.attributes.position.array; var col = geometry.attributes.color.array; var norm = geometry.attributes.normal.array; var uvs = geometry.attributes.uv.array; var v = geo.vertices; var c = geo.faces[ 0 ].vertexColors; var n = geo.faces[ 0 ].vertexNormals; var u = geo.faceVertexUvs[ 0 ][ 0 ]; assert.notStrictEqual( pos, undefined, "Position attribute exists" ); assert.strictEqual( v.length * 3, pos.length, "Both arrays have the same size" ); assert.strictEqual( geometry.attributes.position.count, v.length, "Correct number of vertices" ); assert.ok( comparePositions( pos, v ), "Positions are identical" ); assert.notStrictEqual( col, undefined, "Color attribute exists" ); assert.strictEqual( c.length * 3, col.length, "Both arrays have the same size" ); assert.strictEqual( geometry.attributes.color.count, c.length, "Correct number of colors" ); assert.ok( compareColors( col, c ), "Colors are identical" ); assert.notStrictEqual( norm, undefined, "Normal attribute exists" ); assert.strictEqual( n.length * 3, norm.length, "Both arrays have the same size" ); assert.strictEqual( geometry.attributes.normal.count, n.length, "Correct number of normals" ); assert.ok( comparePositions( norm, n ), "Normals are identical" ); assert.notStrictEqual( uvs, undefined, "UV attribute exists" ); assert.strictEqual( u.length * 2, uvs.length, "Both arrays have the same size" ); assert.strictEqual( geometry.attributes.uv.count, u.length, "Correct number of UV coordinates" ); assert.ok( compareUvs( uvs, u ), "UVs are identical" ); } ); QUnit.test( "toNonIndexed", function ( assert ) { var geometry = new THREE.BufferGeometry(); var vertices = new Float32Array( [ 0.5, 0.5, 0.5, 0.5, 0.5, - 0.5, 0.5, - 0.5, 0.5, 0.5, - 0.5, - 0.5 ] ); var index = new THREE.BufferAttribute( new Uint16Array( [ 0, 2, 1, 2, 3, 1 ] ) ); var expected = new Float32Array( [ 0.5, 0.5, 0.5, 0.5, - 0.5, 0.5, 0.5, 0.5, - 0.5, 0.5, - 0.5, 0.5, 0.5, - 0.5, - 0.5, 0.5, 0.5, - 0.5 ] ); geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); geometry.setIndex( index ); var nonIndexed = geometry.toNonIndexed(); assert.deepEqual( nonIndexed.getAttribute( "position" ).array, expected, "Expected vertices" ); } );