/** * @author bhouston / http://exocortex.com * @author tschw */ QUnit.module( "Quaternion" ); var orders = [ 'XYZ', 'YXZ', 'ZXY', 'ZYX', 'YZX', 'XZY' ]; var eulerAngles = new THREE.Euler( 0.1, -0.3, 0.25 ); var qSub = function ( a, b ) { var result = new THREE.Quaternion(); result.copy( a ); result.x -= b.x; result.y -= b.y; result.z -= b.z; result.w -= b.w; return result; }; QUnit.test( "constructor" , function( assert ) { var a = new THREE.Quaternion(); assert.ok( a.x == 0, "Passed!" ); assert.ok( a.y == 0, "Passed!" ); assert.ok( a.z == 0, "Passed!" ); assert.ok( a.w == 1, "Passed!" ); a = new THREE.Quaternion( x, y, z, w ); assert.ok( a.x === x, "Passed!" ); assert.ok( a.y === y, "Passed!" ); assert.ok( a.z === z, "Passed!" ); assert.ok( a.w === w, "Passed!" ); }); QUnit.test( "copy" , function( assert ) { var a = new THREE.Quaternion( x, y, z, w ); var b = new THREE.Quaternion().copy( a ); assert.ok( b.x == x, "Passed!" ); assert.ok( b.y == y, "Passed!" ); assert.ok( b.z == z, "Passed!" ); assert.ok( b.w == w, "Passed!" ); // ensure that it is a true copy a.x = 0; a.y = -1; a.z = 0; a.w = -1; assert.ok( b.x == x, "Passed!" ); assert.ok( b.y == y, "Passed!" ); }); QUnit.test( "set" , function( assert ) { var a = new THREE.Quaternion(); assert.ok( a.x == 0, "Passed!" ); assert.ok( a.y == 0, "Passed!" ); assert.ok( a.z == 0, "Passed!" ); assert.ok( a.w == 1, "Passed!" ); a.set( x, y, z, w ); assert.ok( a.x == x, "Passed!" ); assert.ok( a.y == y, "Passed!" ); assert.ok( a.z === z, "Passed!" ); assert.ok( a.w === w, "Passed!" ); }); QUnit.test( "setFromAxisAngle" , function( assert ) { // TODO: find cases to validate. assert.ok( true, "Passed!" ); var zero = new THREE.Quaternion(); var a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), 0 ); assert.ok( a.equals( zero ), "Passed!" ); a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 0, 1, 0 ), 0 ); assert.ok( a.equals( zero ), "Passed!" ); a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 0, 0, 1 ), 0 ); assert.ok( a.equals( zero ), "Passed!" ); var b1 = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), Math.PI ); assert.ok( ! a.equals( b1 ), "Passed!" ); var b2 = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), -Math.PI ); assert.ok( ! a.equals( b2 ), "Passed!" ); b1.multiply( b2 ); assert.ok( a.equals( b1 ), "Passed!" ); }); QUnit.test( "setFromEuler/setFromQuaternion", function( assert ) { var angles = [ new THREE.Vector3( 1, 0, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 0, 1 ) ]; // ensure euler conversion to/from Quaternion matches. for( var i = 0; i < orders.length; i ++ ) { for( var j = 0; j < angles.length; j ++ ) { var eulers2 = new THREE.Euler().setFromQuaternion( new THREE.Quaternion().setFromEuler( new THREE.Euler( angles[j].x, angles[j].y, angles[j].z, orders[i] ) ), orders[i] ); var newAngle = new THREE.Vector3( eulers2.x, eulers2.y, eulers2.z ); assert.ok( newAngle.distanceTo( angles[j] ) < 0.001, "Passed!" ); } } }); QUnit.test( "setFromEuler/setFromRotationMatrix", function( assert ) { // ensure euler conversion for Quaternion matches that of Matrix4 for( var i = 0; i < orders.length; i ++ ) { var q = new THREE.Quaternion().setFromEuler( eulerAngles, orders[i] ); var m = new THREE.Matrix4().makeRotationFromEuler( eulerAngles, orders[i] ); var q2 = new THREE.Quaternion().setFromRotationMatrix( m ); assert.ok( qSub( q, q2 ).length() < 0.001, "Passed!" ); } }); QUnit.test( "normalize/length/lengthSq", function( assert ) { var a = new THREE.Quaternion( x, y, z, w ); var b = new THREE.Quaternion( -x, -y, -z, -w ); assert.ok( a.length() != 1, "Passed!"); assert.ok( a.lengthSq() != 1, "Passed!"); a.normalize(); assert.ok( a.length() == 1, "Passed!"); assert.ok( a.lengthSq() == 1, "Passed!"); a.set( 0, 0, 0, 0 ); assert.ok( a.lengthSq() == 0, "Passed!"); assert.ok( a.length() == 0, "Passed!"); a.normalize(); assert.ok( a.lengthSq() == 1, "Passed!"); assert.ok( a.length() == 1, "Passed!"); }); QUnit.test( "inverse/conjugate", function( assert ) { var a = new THREE.Quaternion( x, y, z, w ); // TODO: add better validation here. var b = a.clone().conjugate(); assert.ok( a.x == -b.x, "Passed!" ); assert.ok( a.y == -b.y, "Passed!" ); assert.ok( a.z == -b.z, "Passed!" ); assert.ok( a.w == b.w, "Passed!" ); }); QUnit.test( "multiplyQuaternions/multiply", function( assert ) { var angles = [ new THREE.Euler( 1, 0, 0 ), new THREE.Euler( 0, 1, 0 ), new THREE.Euler( 0, 0, 1 ) ]; var q1 = new THREE.Quaternion().setFromEuler( angles[0], "XYZ" ); var q2 = new THREE.Quaternion().setFromEuler( angles[1], "XYZ" ); var q3 = new THREE.Quaternion().setFromEuler( angles[2], "XYZ" ); var q = new THREE.Quaternion().multiplyQuaternions( q1, q2 ).multiply( q3 ); var m1 = new THREE.Matrix4().makeRotationFromEuler( angles[0], "XYZ" ); var m2 = new THREE.Matrix4().makeRotationFromEuler( angles[1], "XYZ" ); var m3 = new THREE.Matrix4().makeRotationFromEuler( angles[2], "XYZ" ); var m = new THREE.Matrix4().multiplyMatrices( m1, m2 ).multiply( m3 ); var qFromM = new THREE.Quaternion().setFromRotationMatrix( m ); assert.ok( qSub( q, qFromM ).length() < 0.001, "Passed!" ); }); QUnit.test( "multiplyVector3" , function( assert ) { var angles = [ new THREE.Euler( 1, 0, 0 ), new THREE.Euler( 0, 1, 0 ), new THREE.Euler( 0, 0, 1 ) ]; // ensure euler conversion for Quaternion matches that of Matrix4 for( var i = 0; i < orders.length; i ++ ) { for( var j = 0; j < angles.length; j ++ ) { var q = new THREE.Quaternion().setFromEuler( angles[j], orders[i] ); var m = new THREE.Matrix4().makeRotationFromEuler( angles[j], orders[i] ); var v0 = new THREE.Vector3(1, 0, 0); var qv = v0.clone().applyQuaternion( q ); var mv = v0.clone().applyMatrix4( m ); assert.ok( qv.distanceTo( mv ) < 0.001, "Passed!" ); } } }); QUnit.test( "equals" , function( assert ) { var a = new THREE.Quaternion( x, y, z, w ); var b = new THREE.Quaternion( -x, -y, -z, -w ); assert.ok( a.x != b.x, "Passed!" ); assert.ok( a.y != b.y, "Passed!" ); assert.ok( ! a.equals( b ), "Passed!" ); assert.ok( ! b.equals( a ), "Passed!" ); a.copy( b ); assert.ok( a.x == b.x, "Passed!" ); assert.ok( a.y == b.y, "Passed!" ); assert.ok( a.equals( b ), "Passed!" ); assert.ok( b.equals( a ), "Passed!" ); }); function doSlerpObject( aArr, bArr, t ) { var a = new THREE.Quaternion().fromArray( aArr ), b = new THREE.Quaternion().fromArray( bArr ), c = new THREE.Quaternion().fromArray( aArr ); c.slerp( b, t ); return { equals: function( x, y, z, w, maxError ) { if ( maxError === undefined ) maxError = Number.EPSILON; return Math.abs( x - c.x ) <= maxError && Math.abs( y - c.y ) <= maxError && Math.abs( z - c.z ) <= maxError && Math.abs( w - c.w ) <= maxError; }, length: c.length(), dotA: c.dot( a ), dotB: c.dot( b ) }; } function doSlerpArray( a, b, t ) { var result = [ 0, 0, 0, 0 ]; THREE.Quaternion.slerpFlat( result, 0, a, 0, b, 0, t ); function arrDot( a, b ) { return a[ 0 ] * b[ 0 ] + a[ 1 ] * b[ 1 ] + a[ 2 ] * b[ 2 ] + a[ 3 ] * b[ 3 ]; } return { equals: function( x, y, z, w, maxError ) { if ( maxError === undefined ) maxError = Number.EPSILON; return Math.abs( x - result[ 0 ] ) <= maxError && Math.abs( y - result[ 1 ] ) <= maxError && Math.abs( z - result[ 2 ] ) <= maxError && Math.abs( w - result[ 3 ] ) <= maxError; }, length: Math.sqrt( arrDot( result, result ) ), dotA: arrDot( result, a ), dotB: arrDot( result, b ) }; } function slerpTestSkeleton( doSlerp, maxError, assert ) { var a, b, result; a = [ 0.6753410084407496, 0.4087830051091744, 0.32856700410659473, 0.5185120064806223 ]; b = [ 0.6602792107657797, 0.43647413932562285, 0.35119011210236006, 0.5001871596632682 ]; var maxNormError = 0; function isNormal( result ) { var normError = Math.abs( 1 - result.length ); maxNormError = Math.max( maxNormError, normError ); return normError <= maxError; } result = doSlerp( a, b, 0 ); assert.ok( result.equals( a[ 0 ], a[ 1 ], a[ 2 ], a[ 3 ], 0 ), "Exactly A @ t = 0" ); result = doSlerp( a, b, 1 ); assert.ok( result.equals( b[ 0 ], b[ 1 ], b[ 2 ], b[ 3 ], 0 ), "Exactly B @ t = 1" ); result = doSlerp( a, b, 0.5 ); assert.ok( Math.abs( result.dotA - result.dotB ) <= Number.EPSILON, "Symmetry at 0.5" ); assert.ok( isNormal( result ), "Approximately normal (at 0.5)" ); result = doSlerp( a, b, 0.25 ); assert.ok( result.dotA > result.dotB, "Interpolating at 0.25" ); assert.ok( isNormal( result ), "Approximately normal (at 0.25)" ); result = doSlerp( a, b, 0.75 ); assert.ok( result.dotA < result.dotB, "Interpolating at 0.75" ); assert.ok( isNormal( result ), "Approximately normal (at 0.75)" ); var D = Math.SQRT1_2; result = doSlerp( [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], 0.5 ); assert.ok( result.equals( D, 0, D, 0 ), "X/Z diagonal from axes" ); assert.ok( isNormal( result ), "Approximately normal (X/Z diagonal)" ); result = doSlerp( [ 0, D, 0, D ], [ 0, -D, 0, D ], 0.5 ); assert.ok( result.equals( 0, 0, 0, 1 ), "W-Unit from diagonals" ); assert.ok( isNormal( result ), "Approximately normal (W-Unit)" ); } QUnit.test( "slerp" , function( assert ) { slerpTestSkeleton( doSlerpObject, Number.EPSILON, assert ); } ); QUnit.test( "slerpFlat" , function( assert ) { slerpTestSkeleton( doSlerpArray, Number.EPSILON, assert ); } ); QUnit.test( "properties", function ( assert ) { assert.expect( 8 ); var a = new THREE.Quaternion(); a.onChange( function () { assert.ok( true, "onChange called" ); } ); a.x = x; a.y = y; a.z = z; a.w = w; assert.strictEqual( a.x, x, "Check x" ); assert.strictEqual( a.y, y, "Check y" ); assert.strictEqual( a.z, z, "Check z" ); assert.strictEqual( a.w, w, "Check w" ); } ); QUnit.test( "inverse", function ( assert ) { assert.expect( 6 ); var a = new THREE.Quaternion( x, y, z, w ); var inverted = new THREE.Quaternion( - 0.2721655269759087, - 0.408248290463863, - 0.5443310539518174, 0.6804138174397717 ); a.onChange( function () { assert.ok( true, "onChange called" ); } ); a.inverse(); assert.ok( Math.abs( a.x - inverted.x ) <= eps, "Check x" ); assert.ok( Math.abs( a.y - inverted.y ) <= eps, "Check y" ); assert.ok( Math.abs( a.z - inverted.z ) <= eps, "Check z" ); assert.ok( Math.abs( a.w - inverted.w ) <= eps, "Check w" ); } ); QUnit.test( "premultiply", function ( assert ) { var a = new THREE.Quaternion( x, y, z, w ); var b = new THREE.Quaternion( 2 * x, - y, - 2 * z, w ); var expected = new THREE.Quaternion( 42, - 32, - 2, 58 ); a.premultiply( b ); assert.ok( Math.abs( a.x - expected.x ) <= eps, "Check x" ); assert.ok( Math.abs( a.y - expected.y ) <= eps, "Check y" ); assert.ok( Math.abs( a.z - expected.z ) <= eps, "Check z" ); assert.ok( Math.abs( a.w - expected.w ) <= eps, "Check w" ); } ); QUnit.test( "toArray", function ( assert ) { var a = new THREE.Quaternion( x, y, z, w ); var array = a.toArray(); assert.strictEqual( array[ 0 ], x, "No array, no offset: check x" ); assert.strictEqual( array[ 1 ], y, "No array, no offset: check y" ); assert.strictEqual( array[ 2 ], z, "No array, no offset: check z" ); assert.strictEqual( array[ 3 ], w, "No array, no offset: check w" ); array = []; a.toArray( array ); assert.strictEqual( array[ 0 ], x, "With array, no offset: check x" ); assert.strictEqual( array[ 1 ], y, "With array, no offset: check y" ); assert.strictEqual( array[ 2 ], z, "With array, no offset: check z" ); assert.strictEqual( array[ 3 ], w, "With array, no offset: check w" ); array = []; a.toArray( array, 1 ); assert.strictEqual( array[ 0 ], undefined, "With array and offset: check [0]" ); assert.strictEqual( array[ 1 ], x, "With array and offset: check x" ); assert.strictEqual( array[ 2 ], y, "With array and offset: check y" ); assert.strictEqual( array[ 3 ], z, "With array and offset: check z" ); assert.strictEqual( array[ 4 ], w, "With array and offset: check w" ); } ); QUnit.test( "setFromUnitVectors", function ( assert ) { var a = new THREE.Quaternion(); var b = new THREE.Vector3( 1, 0, 0 ); var c = new THREE.Vector3( 0, 1, 0 ); var expected = new THREE.Quaternion( 0, 0, Math.sqrt( 2 ) / 2, Math.sqrt( 2 ) / 2 ); a.setFromUnitVectors( b, c ); assert.ok( Math.abs( a.x - expected.x ) <= eps, "Check x" ); assert.ok( Math.abs( a.y - expected.y ) <= eps, "Check y" ); assert.ok( Math.abs( a.z - expected.z ) <= eps, "Check z" ); assert.ok( Math.abs( a.w - expected.w ) <= eps, "Check w" ); } ); QUnit.test( "setFromRotationMatrix", function ( assert ) { // contrived examples purely to please the god of code coverage... // match conditions in various 'else [if]' blocks var a = new THREE.Quaternion(); var q = new THREE.Quaternion( - 9, - 2, 3, - 4 ).normalize(); var m = new THREE.Matrix4().makeRotationFromQuaternion( q ); var expected = new THREE.Vector4( 0.8581163303210332, 0.19069251784911848, - 0.2860387767736777, 0.38138503569823695 ); a.setFromRotationMatrix( m ); assert.ok( Math.abs( a.x - expected.x ) <= eps, "m11 > m22 && m11 > m33: check x" ); assert.ok( Math.abs( a.y - expected.y ) <= eps, "m11 > m22 && m11 > m33: check y" ); assert.ok( Math.abs( a.z - expected.z ) <= eps, "m11 > m22 && m11 > m33: check z" ); assert.ok( Math.abs( a.w - expected.w ) <= eps, "m11 > m22 && m11 > m33: check w" ); q = new THREE.Quaternion( - 1, - 2, 1, - 1 ).normalize(); m.makeRotationFromQuaternion( q ); expected = new THREE.Vector4( 0.37796447300922714, 0.7559289460184544, - 0.37796447300922714, 0.37796447300922714 ); a.setFromRotationMatrix( m ); assert.ok( Math.abs( a.x - expected.x ) <= eps, "m22 > m33: check x" ); assert.ok( Math.abs( a.y - expected.y ) <= eps, "m22 > m33: check y" ); assert.ok( Math.abs( a.z - expected.z ) <= eps, "m22 > m33: check z" ); assert.ok( Math.abs( a.w - expected.w ) <= eps, "m22 > m33: check w" ); } );