/** * @author bhouston / http://exocortex.com * @author tschw */ module( "Quaternion" ); var orders = [ 'XYZ', 'YXZ', 'ZXY', 'ZYX', 'YZX', 'XZY' ]; var eulerAngles = new THREE.Euler( 0.1, -0.3, 0.25 ); var qSub = function ( a, b ) { var result = new THREE.Quaternion(); result.copy( a ); result.x -= b.x; result.y -= b.y; result.z -= b.z; result.w -= b.w; return result; }; test( "constructor", function() { var a = new THREE.Quaternion(); ok( a.x == 0, "Passed!" ); ok( a.y == 0, "Passed!" ); ok( a.z == 0, "Passed!" ); ok( a.w == 1, "Passed!" ); a = new THREE.Quaternion( x, y, z, w ); ok( a.x === x, "Passed!" ); ok( a.y === y, "Passed!" ); ok( a.z === z, "Passed!" ); ok( a.w === w, "Passed!" ); }); test( "copy", function() { var a = new THREE.Quaternion( x, y, z, w ); var b = new THREE.Quaternion().copy( a ); ok( b.x == x, "Passed!" ); ok( b.y == y, "Passed!" ); ok( b.z == z, "Passed!" ); ok( b.w == w, "Passed!" ); // ensure that it is a true copy a.x = 0; a.y = -1; a.z = 0; a.w = -1; ok( b.x == x, "Passed!" ); ok( b.y == y, "Passed!" ); }); test( "set", function() { var a = new THREE.Quaternion(); ok( a.x == 0, "Passed!" ); ok( a.y == 0, "Passed!" ); ok( a.z == 0, "Passed!" ); ok( a.w == 1, "Passed!" ); a.set( x, y, z, w ); ok( a.x == x, "Passed!" ); ok( a.y == y, "Passed!" ); ok( a.z === z, "Passed!" ); ok( a.w === w, "Passed!" ); }); test( "setFromAxisAngle", function() { // TODO: find cases to validate. ok( true, "Passed!" ); var zero = new THREE.Quaternion(); var a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), 0 ); ok( a.equals( zero ), "Passed!" ); a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 0, 1, 0 ), 0 ); ok( a.equals( zero ), "Passed!" ); a = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 0, 0, 1 ), 0 ); ok( a.equals( zero ), "Passed!" ); var b1 = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), Math.PI ); ok( ! a.equals( b1 ), "Passed!" ); var b2 = new THREE.Quaternion().setFromAxisAngle( new THREE.Vector3( 1, 0, 0 ), -Math.PI ); ok( ! a.equals( b2 ), "Passed!" ); b1.multiply( b2 ); ok( a.equals( b1 ), "Passed!" ); }); test( "setFromEuler/setFromQuaternion", function() { var angles = [ new THREE.Vector3( 1, 0, 0 ), new THREE.Vector3( 0, 1, 0 ), new THREE.Vector3( 0, 0, 1 ) ]; // ensure euler conversion to/from Quaternion matches. for( var i = 0; i < orders.length; i ++ ) { for( var j = 0; j < angles.length; j ++ ) { var eulers2 = new THREE.Euler().setFromQuaternion( new THREE.Quaternion().setFromEuler( new THREE.Euler( angles[j].x, angles[j].y, angles[j].z, orders[i] ) ), orders[i] ); var newAngle = new THREE.Vector3( eulers2.x, eulers2.y, eulers2.z ); ok( newAngle.distanceTo( angles[j] ) < 0.001, "Passed!" ); } } }); test( "setFromEuler/setFromRotationMatrix", function() { // ensure euler conversion for Quaternion matches that of Matrix4 for( var i = 0; i < orders.length; i ++ ) { var q = new THREE.Quaternion().setFromEuler( eulerAngles, orders[i] ); var m = new THREE.Matrix4().makeRotationFromEuler( eulerAngles, orders[i] ); var q2 = new THREE.Quaternion().setFromRotationMatrix( m ); ok( qSub( q, q2 ).length() < 0.001, "Passed!" ); } }); test( "normalize/length/lengthSq", function() { var a = new THREE.Quaternion( x, y, z, w ); var b = new THREE.Quaternion( -x, -y, -z, -w ); ok( a.length() != 1, "Passed!"); ok( a.lengthSq() != 1, "Passed!"); a.normalize(); ok( a.length() == 1, "Passed!"); ok( a.lengthSq() == 1, "Passed!"); a.set( 0, 0, 0, 0 ); ok( a.lengthSq() == 0, "Passed!"); ok( a.length() == 0, "Passed!"); a.normalize(); ok( a.lengthSq() == 1, "Passed!"); ok( a.length() == 1, "Passed!"); }); test( "inverse/conjugate", function() { var a = new THREE.Quaternion( x, y, z, w ); // TODO: add better validation here. var b = a.clone().conjugate(); ok( a.x == -b.x, "Passed!" ); ok( a.y == -b.y, "Passed!" ); ok( a.z == -b.z, "Passed!" ); ok( a.w == b.w, "Passed!" ); }); test( "multiplyQuaternions/multiply", function() { var angles = [ new THREE.Euler( 1, 0, 0 ), new THREE.Euler( 0, 1, 0 ), new THREE.Euler( 0, 0, 1 ) ]; var q1 = new THREE.Quaternion().setFromEuler( angles[0], "XYZ" ); var q2 = new THREE.Quaternion().setFromEuler( angles[1], "XYZ" ); var q3 = new THREE.Quaternion().setFromEuler( angles[2], "XYZ" ); var q = new THREE.Quaternion().multiplyQuaternions( q1, q2 ).multiply( q3 ); var m1 = new THREE.Matrix4().makeRotationFromEuler( angles[0], "XYZ" ); var m2 = new THREE.Matrix4().makeRotationFromEuler( angles[1], "XYZ" ); var m3 = new THREE.Matrix4().makeRotationFromEuler( angles[2], "XYZ" ); var m = new THREE.Matrix4().multiplyMatrices( m1, m2 ).multiply( m3 ); var qFromM = new THREE.Quaternion().setFromRotationMatrix( m ); ok( qSub( q, qFromM ).length() < 0.001, "Passed!" ); }); test( "multiplyVector3", function() { var angles = [ new THREE.Euler( 1, 0, 0 ), new THREE.Euler( 0, 1, 0 ), new THREE.Euler( 0, 0, 1 ) ]; // ensure euler conversion for Quaternion matches that of Matrix4 for( var i = 0; i < orders.length; i ++ ) { for( var j = 0; j < angles.length; j ++ ) { var q = new THREE.Quaternion().setFromEuler( angles[j], orders[i] ); var m = new THREE.Matrix4().makeRotationFromEuler( angles[j], orders[i] ); var v0 = new THREE.Vector3(1, 0, 0); var qv = v0.clone().applyQuaternion( q ); var mv = v0.clone().applyMatrix4( m ); ok( qv.distanceTo( mv ) < 0.001, "Passed!" ); } } }); test( "equals", function() { var a = new THREE.Quaternion( x, y, z, w ); var b = new THREE.Quaternion( -x, -y, -z, -w ); ok( a.x != b.x, "Passed!" ); ok( a.y != b.y, "Passed!" ); ok( ! a.equals( b ), "Passed!" ); ok( ! b.equals( a ), "Passed!" ); a.copy( b ); ok( a.x == b.x, "Passed!" ); ok( a.y == b.y, "Passed!" ); ok( a.equals( b ), "Passed!" ); ok( b.equals( a ), "Passed!" ); }); function doSlerpObject( aArr, bArr, t ) { var a = new THREE.Quaternion().fromArray( aArr ), b = new THREE.Quaternion().fromArray( bArr ), c = new THREE.Quaternion().fromArray( aArr ); c.slerp( b, t ); return { equals: function( x, y, z, w, maxError ) { if ( maxError === undefined ) maxError = Number.EPSILON; return Math.abs( x - c.x ) <= maxError && Math.abs( y - c.y ) <= maxError && Math.abs( z - c.z ) <= maxError && Math.abs( w - c.w ) <= maxError; }, length: c.length(), dotA: c.dot( a ), dotB: c.dot( b ) }; }; function doSlerpArray( a, b, t ) { var result = [ 0, 0, 0, 0 ]; THREE.Quaternion.slerpFlat( result, 0, a, 0, b, 0, t ); function arrDot( a, b ) { return a[ 0 ] * b[ 0 ] + a[ 1 ] * b[ 1 ] + a[ 2 ] * b[ 2 ] + a[ 3 ] * b[ 3 ]; } return { equals: function( x, y, z, w, maxError ) { if ( maxError === undefined ) maxError = Number.EPSILON; return Math.abs( x - result[ 0 ] ) <= maxError && Math.abs( y - result[ 1 ] ) <= maxError && Math.abs( z - result[ 2 ] ) <= maxError && Math.abs( w - result[ 3 ] ) <= maxError; }, length: Math.sqrt( arrDot( result, result ) ), dotA: arrDot( result, a ), dotB: arrDot( result, b ) }; } function slerpTestSkeleton( doSlerp, maxError ) { var a, b, result; a = [ 0.6753410084407496, 0.4087830051091744, 0.32856700410659473, 0.5185120064806223, ]; b = [ 0.6602792107657797, 0.43647413932562285, 0.35119011210236006, 0.5001871596632682 ]; var maxNormError = 0; function isNormal( result ) { var normError = Math.abs( 1 - result.length ); maxNormError = Math.max( maxNormError, normError ); return normError <= maxError; } result = doSlerp( a, b, 0 ); ok( result.equals( a[ 0 ], a[ 1 ], a[ 2 ], a[ 3 ], 0 ), "Exactly A @ t = 0" ); result = doSlerp( a, b, 1 ); ok( result.equals( b[ 0 ], b[ 1 ], b[ 2 ], b[ 3 ], 0 ), "Exactly B @ t = 1" ); result = doSlerp( a, b, 0.5 ); ok( Math.abs( result.dotA - result.dotB ) <= Number.EPSILON, "Symmetry at 0.5" ); ok( isNormal( result ), "Approximately normal (at 0.5)" ); result = doSlerp( a, b, 0.25 ); ok( result.dotA > result.dotB, "Interpolating at 0.25" ); ok( isNormal( result ), "Approximately normal (at 0.25)" ); result = doSlerp( a, b, 0.75 ); ok( result.dotA < result.dotB, "Interpolating at 0.75" ); ok( isNormal( result ), "Approximately normal (at 0.75)" ); var D = Math.SQRT1_2; result = doSlerp( [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], 0.5 ); ok( result.equals( D, 0, D, 0 ), "X/Z diagonal from axes" ); ok( isNormal( result ), "Approximately normal (X/Z diagonal)" ); result = doSlerp( [ 0, D, 0, D ], [ 0, -D, 0, D ], 0.5 ); ok( result.equals( 0, 0, 0, 1 ), "W-Unit from diagonals" ); ok( isNormal( result ), "Approximately normal (W-Unit)" ); } test( "slerp", function() { slerpTestSkeleton( doSlerpObject, Number.EPSILON ); } ); test( "slerpFlat", function() { slerpTestSkeleton( doSlerpArray, Number.EPSILON ); } );