EXRLoader.js 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. *
  4. * OpenEXR loader which, currently, supports reading 16 bit half data, in either
  5. * uncompressed or PIZ wavelet compressed form.
  6. *
  7. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  8. * implementation, so I have preserved their copyright notices.
  9. */
  10. // /*
  11. // Copyright (c) 2014 - 2017, Syoyo Fujita
  12. // All rights reserved.
  13. // Redistribution and use in source and binary forms, with or without
  14. // modification, are permitted provided that the following conditions are met:
  15. // * Redistributions of source code must retain the above copyright
  16. // notice, this list of conditions and the following disclaimer.
  17. // * Redistributions in binary form must reproduce the above copyright
  18. // notice, this list of conditions and the following disclaimer in the
  19. // documentation and/or other materials provided with the distribution.
  20. // * Neither the name of the Syoyo Fujita nor the
  21. // names of its contributors may be used to endorse or promote products
  22. // derived from this software without specific prior written permission.
  23. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  24. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  25. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  26. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  27. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  28. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  29. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  30. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  32. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33. // */
  34. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  35. // ///////////////////////////////////////////////////////////////////////////
  36. // //
  37. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  38. // // Digital Ltd. LLC
  39. // //
  40. // // All rights reserved.
  41. // //
  42. // // Redistribution and use in source and binary forms, with or without
  43. // // modification, are permitted provided that the following conditions are
  44. // // met:
  45. // // * Redistributions of source code must retain the above copyright
  46. // // notice, this list of conditions and the following disclaimer.
  47. // // * Redistributions in binary form must reproduce the above
  48. // // copyright notice, this list of conditions and the following disclaimer
  49. // // in the documentation and/or other materials provided with the
  50. // // distribution.
  51. // // * Neither the name of Industrial Light & Magic nor the names of
  52. // // its contributors may be used to endorse or promote products derived
  53. // // from this software without specific prior written permission.
  54. // //
  55. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  56. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  57. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  58. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  59. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  60. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  61. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  62. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  63. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  64. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  65. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  66. // //
  67. // ///////////////////////////////////////////////////////////////////////////
  68. // // End of OpenEXR license -------------------------------------------------
  69. THREE.EXRLoader = function ( manager ) {
  70. this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
  71. };
  72. THREE.EXRLoader.prototype = Object.create( THREE.DataTextureLoader.prototype );
  73. THREE.EXRLoader.prototype._parser = function ( buffer ) {
  74. var date = new Date();
  75. var startTime = date.getTime();
  76. const USHORT_RANGE = (1 << 16);
  77. const BITMAP_SIZE = (USHORT_RANGE >> 3);
  78. const HUF_ENCBITS = 16; // literal (value) bit length
  79. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  80. const HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
  81. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  82. const HUF_DECMASK = HUF_DECSIZE - 1;
  83. const SHORT_ZEROCODE_RUN = 59;
  84. const LONG_ZEROCODE_RUN = 63;
  85. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  86. const LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
  87. const BYTES_PER_HALF = 2;
  88. const ULONG_SIZE = 8;
  89. const FLOAT32_SIZE = 4;
  90. const INT32_SIZE = 4;
  91. const INT16_SIZE = 2;
  92. const INT8_SIZE = 1;
  93. function reverseLutFromBitmap(bitmap, lut) {
  94. var k = 0;
  95. for (var i = 0; i < USHORT_RANGE; ++i) {
  96. if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) {
  97. lut[k++] = i;
  98. }
  99. }
  100. var n = k - 1;
  101. while (k < USHORT_RANGE) lut[k++] = 0;
  102. return n;
  103. }
  104. function hufClearDecTable(hdec) {
  105. for (var i = 0; i < HUF_DECSIZE; i++) {
  106. hdec[i] = {}
  107. hdec[i].len = 0;
  108. hdec[i].lit = 0;
  109. hdec[i].p = null;
  110. }
  111. }
  112. function getBits(nBits, c, lc, uInt8Array, inOffset) {
  113. while (lc < nBits) {
  114. c = (c << 8) | parseUint8Array(uInt8Array, inOffset);
  115. lc += 8;
  116. }
  117. lc -= nBits;
  118. return { l: (c >> lc) & ((1 << nBits) - 1), c: c, lc: lc };
  119. }
  120. function hufCanonicalCodeTable(hcode) {
  121. var n = new Array(59);
  122. for (var i = 0; i <= 58; ++i) n[i] = 0;
  123. for (var i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1;
  124. var c = 0;
  125. for (var i = 58; i > 0; --i) {
  126. var nc = ((c + n[i]) >> 1);
  127. n[i] = c;
  128. c = nc;
  129. }
  130. for (var i = 0; i < HUF_ENCSIZE; ++i) {
  131. var l = hcode[i];
  132. if (l > 0) hcode[i] = l | (n[l]++ << 6);
  133. }
  134. }
  135. function hufUnpackEncTable(uInt8Array, inDataView, inOffset, ni, im, iM, hcode) {
  136. var p = inOffset;
  137. var c = 0;
  138. var lc = 0;
  139. for (; im <= iM; im++) {
  140. if (p.value - inOffset.value > ni) {
  141. return false;
  142. }
  143. var bits = getBits(6, c, lc, uInt8Array, p);
  144. var l = bits.l;
  145. c = bits.c;
  146. lc = bits.lc;
  147. hcode[im] = l;
  148. if (l == LONG_ZEROCODE_RUN) {
  149. if (p.value - inOffset.value > ni) {
  150. throw 'Something wrong with hufUnpackEncTable';
  151. }
  152. var bits = getBits(8, c, lc, uInt8Array, p);
  153. var zerun = bits.l + SHORTEST_LONG_RUN;
  154. c = bits.c;
  155. lc = bits.lc;
  156. if (im + zerun > iM + 1) {
  157. throw 'Something wrong with hufUnpackEncTable';
  158. }
  159. while (zerun--) hcode[im++] = 0;
  160. im--;
  161. } else if (l >= SHORT_ZEROCODE_RUN) {
  162. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  163. if (im + zerun > iM + 1) {
  164. throw 'Something wrong with hufUnpackEncTable';
  165. }
  166. while (zerun--) hcode[im++] = 0;
  167. im--;
  168. }
  169. }
  170. hufCanonicalCodeTable(hcode);
  171. }
  172. function hufLength(code) { return code & 63; }
  173. function hufCode(code) { return code >> 6; }
  174. function hufBuildDecTable(hcode, im, iM, hdecod) {
  175. for (; im <= iM; im++) {
  176. var c = hufCode(hcode[im]);
  177. var l = hufLength(hcode[im]);
  178. if (c >> l) {
  179. throw 'Invalid table entry';
  180. }
  181. if (l > HUF_DECBITS) {
  182. var pl = hdecod[(c >> (l - HUF_DECBITS))];
  183. if (pl.len) {
  184. throw 'Invalid table entry';
  185. }
  186. pl.lit++;
  187. if (pl.p) {
  188. var p = pl.p;
  189. pl.p = new Array(pl.lit);
  190. for (var i = 0; i < pl.lit - 1; ++i) {
  191. pl.p[i] = p[i];
  192. }
  193. } else {
  194. pl.p = new Array(1);
  195. }
  196. pl.p[pl.lit - 1] = im;
  197. } else if (l) {
  198. var plOffset = 0;
  199. for (var i = 1 << (HUF_DECBITS - l); i > 0; i--) {
  200. var pl = hdecod[(c << (HUF_DECBITS - l)) + plOffset];
  201. if (pl.len || pl.p) {
  202. throw 'Invalid table entry';
  203. }
  204. pl.len = l;
  205. pl.lit = im;
  206. plOffset++;
  207. }
  208. }
  209. }
  210. return true;
  211. }
  212. function getChar(c, lc, uInt8Array, inOffset) {
  213. c = (c << 8) | parseUint8Array(uInt8Array, inOffset);
  214. lc += 8;
  215. return { c: c, lc: lc };
  216. }
  217. function getCode(po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset) {
  218. if (po == rlc) {
  219. if (lc < 8) {
  220. var temp = getChar(c, lc, uInt8Array, inOffset);
  221. c = temp.c;
  222. lc = temp.lc;
  223. }
  224. lc -= 8;
  225. var cs = (c >> lc);
  226. if (out + cs > oe) {
  227. throw 'Issue with getCode';
  228. }
  229. var s = out[-1];
  230. while (cs-- > 0) {
  231. outBuffer[outBufferOffset.value++] = s;
  232. }
  233. } else if (outBufferOffset.value < outBufferEndOffset) {
  234. outBuffer[outBufferOffset.value++] = po;
  235. } else {
  236. throw 'Issue with getCode';
  237. }
  238. return { c: c, lc: lc };
  239. }
  240. var NBITS = 16;
  241. var A_OFFSET = 1 << (NBITS - 1);
  242. var M_OFFSET = 1 << (NBITS - 1);
  243. var MOD_MASK = (1 << NBITS) - 1;
  244. function UInt16(value) {
  245. return (value & 0xFFFF);
  246. };
  247. function Int16(value) {
  248. var ref = UInt16(value);
  249. return (ref > 0x7FFF) ? ref - 0x10000 : ref;
  250. };
  251. function wdec14(l, h) {
  252. var ls = Int16(l);
  253. var hs = Int16(h);
  254. var hi = hs;
  255. var ai = ls + (hi & 1) + (hi >> 1);
  256. var as = ai;
  257. var bs = ai - hi;
  258. return {a: as, b: bs}
  259. }
  260. function wav2Decode(j, buffer, nx, ox, ny, oy, mx) {
  261. var n = (nx > ny) ? ny : nx;
  262. var p = 1;
  263. var p2;
  264. while (p <= n) p <<= 1;
  265. p >>= 1;
  266. p2 = p;
  267. p >>= 1;
  268. while (p >= 1) {
  269. var py = 0;
  270. var ey = py + oy * (ny - p2);
  271. var oy1 = oy * p;
  272. var oy2 = oy * p2;
  273. var ox1 = ox * p;
  274. var ox2 = ox * p2;
  275. var i00, i01, i10, i11;
  276. for (; py <= ey; py += oy2) {
  277. var px = py;
  278. var ex = py + ox * (nx - p2);
  279. for (; px <= ex; px += ox2) {
  280. var p01 = px + ox1;
  281. var p10 = px + oy1;
  282. var p11 = p10 + ox1;
  283. var tmp = wdec14(buffer[px + j], buffer[p10 + j]);
  284. i00 = tmp.a;
  285. i10 = tmp.b;
  286. var tmp = wdec14(buffer[p01 + j], buffer[p11 + j]);
  287. i01 = tmp.a;
  288. i11 = tmp.b;
  289. var tmp = wdec14(i00, i01);
  290. buffer[px + j] = tmp.a;
  291. buffer[p01 + j] = tmp.b;
  292. var tmp = wdec14(i10, i11);
  293. buffer[p10 + j] = tmp.a;
  294. buffer[p11 + j] = tmp.b;
  295. }
  296. if (nx & p) {
  297. var p10 = px + oy1;
  298. var tmp = wdec14(buffer[px + j], buffer[p10 + j]);
  299. i00 = tmp.a;
  300. buffer[p10 + j] = tmp.b;
  301. buffer[px + j] = i00;
  302. }
  303. }
  304. if (ny & p) {
  305. var px = py;
  306. var ex = py + ox * (nx - p2);
  307. for (; px <= ex; px += ox2) {
  308. var p01 = px + ox1;
  309. var tmp = wdec14(buffer[px + j], buffer[p01 + j]);
  310. i00 = tmp.a;
  311. buffer[p01 + j] = tmp.b;
  312. buffer[px + j] = i00;
  313. }
  314. }
  315. p2 = p;
  316. p >>= 1;
  317. }
  318. return py;
  319. }
  320. function hufDecode(encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset) {
  321. var c = 0;
  322. var lc = 0;
  323. var outBufferEndOffset = no;
  324. var inOffsetEnd = parseInt(inOffset.value + (ni + 7) / 8);
  325. while (inOffset.value < inOffsetEnd) {
  326. var temp = getChar(c, lc, uInt8Array, inOffset);
  327. c = temp.c;
  328. lc = temp.lc;
  329. while (lc >= HUF_DECBITS) {
  330. var index = (c >> (lc - HUF_DECBITS)) & HUF_DECMASK;
  331. var pl = decodingTable[index];
  332. if (pl.len) {
  333. lc -= pl.len;
  334. var temp = getCode(pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
  335. c = temp.c;
  336. lc = temp.lc;
  337. } else {
  338. if (!pl.p) {
  339. throw 'hufDecode issues';
  340. }
  341. var j;
  342. for (j = 0; j < pl.lit; j++) {
  343. var l = hufLength(encodingTable[pl.p[j]]);
  344. while (lc < l && inOffset.value < inOffsetEnd) {
  345. var temp = getChar(c, lc, uInt8Array, inOffset);
  346. c = temp.c;
  347. lc = temp.lc;
  348. }
  349. if (lc >= l) {
  350. if (hufCode(encodingTable[pl.p[j]]) ==
  351. ((c >> (lc - l)) & ((1 << l) - 1))) {
  352. lc -= l;
  353. var temp = getCode(pl.p[j], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
  354. c = temp.c;
  355. lc = temp.lc;
  356. break;
  357. }
  358. }
  359. }
  360. if (j == pl.lit) {
  361. throw 'hufDecode issues';
  362. }
  363. }
  364. }
  365. }
  366. var i = (8 - ni) & 7;
  367. c >>= i;
  368. lc -= i;
  369. while (lc > 0) {
  370. var pl = decodingTable[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
  371. if (pl.len) {
  372. lc -= pl.len;
  373. var temp = getCode(pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
  374. c = temp.c;
  375. lc = temp.lc;
  376. } else {
  377. throw 'hufDecode issues';
  378. }
  379. }
  380. return true;
  381. }
  382. function hufUncompress(uInt8Array, inDataView, inOffset, nCompressed, outBuffer, outOffset, nRaw) {
  383. var initialInOffset = inOffset.value;
  384. var im = parseUint32(inDataView, inOffset);
  385. var iM = parseUint32(inDataView, inOffset);
  386. inOffset.value += 4;
  387. var nBits = parseUint32(inDataView, inOffset);
  388. inOffset.value += 4;
  389. if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) {
  390. throw 'Something wrong with HUF_ENCSIZE';
  391. }
  392. var freq = new Array(HUF_ENCSIZE);
  393. var hdec = new Array(HUF_DECSIZE);
  394. hufClearDecTable(hdec);
  395. var ni = nCompressed - (inOffset.value - initialInOffset);
  396. hufUnpackEncTable(uInt8Array, inDataView, inOffset, ni, im, iM, freq);
  397. if (nBits > 8 * (nCompressed - (inOffset.value - initialInOffset))) {
  398. throw 'Something wrong with hufUncompress';
  399. }
  400. hufBuildDecTable(freq, im, iM, hdec);
  401. hufDecode(freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset);
  402. }
  403. function applyLut(lut, data, nData) {
  404. for (var i = 0; i < nData; ++i) {
  405. data[i] = lut[data[i]];
  406. }
  407. }
  408. function decompressPIZ(outBuffer, outOffset, uInt8Array, inDataView, inOffset, tmpBufSize, num_channels, exrChannelInfos, dataWidth, num_lines) {
  409. var bitmap = new Uint8Array(BITMAP_SIZE);
  410. var minNonZero = parseUint16(inDataView, inOffset);
  411. var maxNonZero = parseUint16(inDataView, inOffset);
  412. if (maxNonZero >= BITMAP_SIZE) {
  413. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE'
  414. }
  415. if (minNonZero <= maxNonZero) {
  416. for (var i = 0; i < maxNonZero - minNonZero + 1; i++) {
  417. bitmap[i + minNonZero] = parseUint8(inDataView, inOffset);
  418. }
  419. }
  420. var lut = new Uint16Array(USHORT_RANGE);
  421. var maxValue = reverseLutFromBitmap(bitmap, lut);
  422. var length = parseUint32(inDataView, inOffset);
  423. hufUncompress(uInt8Array, inDataView, inOffset, length, outBuffer, outOffset, tmpBufSize);
  424. var pizChannelData = new Array(num_channels);
  425. var outBufferEnd = 0
  426. for (var i = 0; i < num_channels; i++) {
  427. var exrChannelInfo = exrChannelInfos[i];
  428. var pixelSize = 2; // assumes HALF_FLOAT
  429. pizChannelData[i] = {};
  430. pizChannelData[i]['start'] = outBufferEnd;
  431. pizChannelData[i]['end'] = pizChannelData[i]['start'];
  432. pizChannelData[i]['nx'] = dataWidth;
  433. pizChannelData[i]['ny'] = num_lines;
  434. pizChannelData[i]['size'] = 1;
  435. outBufferEnd += pizChannelData[i].nx * pizChannelData[i].ny * pizChannelData[i].size;
  436. }
  437. var fooOffset = 0;
  438. for (var i = 0; i < num_channels; i++) {
  439. for (var j = 0; j < pizChannelData[i].size; ++j) {
  440. fooOffset += wav2Decode(
  441. j + fooOffset,
  442. outBuffer,
  443. pizChannelData[i].nx,
  444. pizChannelData[i].size,
  445. pizChannelData[i].ny,
  446. pizChannelData[i].nx * pizChannelData[i].size,
  447. maxValue
  448. );
  449. }
  450. }
  451. applyLut(lut, outBuffer, outBufferEnd);
  452. return true;
  453. }
  454. function parseNullTerminatedString( buffer, offset ) {
  455. var uintBuffer = new Uint8Array( buffer );
  456. var endOffset = 0;
  457. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  458. endOffset += 1;
  459. }
  460. var stringValue = new TextDecoder().decode(
  461. uintBuffer.slice( offset.value, offset.value + endOffset )
  462. );
  463. offset.value = offset.value + endOffset + 1;
  464. return stringValue;
  465. }
  466. function parseFixedLengthString( buffer, offset, size ) {
  467. var stringValue = new TextDecoder().decode(
  468. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  469. );
  470. offset.value = offset.value + size;
  471. return stringValue;
  472. }
  473. function parseUlong( dataView, offset ) {
  474. var uLong = dataView.getUint32( 0, true );
  475. offset.value = offset.value + ULONG_SIZE;
  476. return uLong;
  477. }
  478. function parseUint32( dataView, offset ) {
  479. var Uint32 = dataView.getUint32(offset.value, true);
  480. offset.value = offset.value + INT32_SIZE;
  481. return Uint32;
  482. }
  483. function parseUint8Array( uInt8Array, offset ) {
  484. var Uint8 = uInt8Array[offset.value];
  485. offset.value = offset.value + INT8_SIZE;
  486. return Uint8;
  487. }
  488. function parseUint8( dataView, offset ) {
  489. var Uint8 = dataView.getUint8(offset.value);
  490. offset.value = offset.value + INT8_SIZE;
  491. return Uint8;
  492. }
  493. function parseFloat32( dataView, offset ) {
  494. var float = dataView.getFloat32(offset.value, true);
  495. offset.value += FLOAT32_SIZE;
  496. return float;
  497. }
  498. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  499. function decodeFloat16( binary ) {
  500. var exponent = ( binary & 0x7C00 ) >> 10,
  501. fraction = binary & 0x03FF;
  502. return ( binary >> 15 ? - 1 : 1 ) * (
  503. exponent ?
  504. (
  505. exponent === 0x1F ?
  506. fraction ? NaN : Infinity :
  507. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  508. ) :
  509. 6.103515625e-5 * ( fraction / 0x400 )
  510. );
  511. }
  512. function parseUint16( dataView, offset ) {
  513. var Uint16 = dataView.getUint16( offset.value, true );
  514. offset.value += INT16_SIZE;
  515. return Uint16;
  516. }
  517. function parseFloat16( buffer, offset ) {
  518. return decodeFloat16( parseUint16( buffer, offset) );
  519. }
  520. function parseChlist( dataView, buffer, offset, size ) {
  521. var startOffset = offset.value;
  522. var channels = [];
  523. while ( offset.value < ( startOffset + size - 1 ) ) {
  524. var name = parseNullTerminatedString( buffer, offset );
  525. var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
  526. var pLinear = parseUint8( dataView, offset );
  527. offset.value += 3; // reserved, three chars
  528. var xSampling = parseUint32( dataView, offset );
  529. var ySampling = parseUint32( dataView, offset );
  530. channels.push( {
  531. name: name,
  532. pixelType: pixelType,
  533. pLinear: pLinear,
  534. xSampling: xSampling,
  535. ySampling: ySampling
  536. } );
  537. }
  538. offset.value += 1;
  539. return channels;
  540. }
  541. function parseChromaticities( dataView, offset ) {
  542. var redX = parseFloat32( dataView, offset );
  543. var redY = parseFloat32( dataView, offset );
  544. var greenX = parseFloat32( dataView, offset );
  545. var greenY = parseFloat32( dataView, offset );
  546. var blueX = parseFloat32( dataView, offset );
  547. var blueY = parseFloat32( dataView, offset );
  548. var whiteX = parseFloat32( dataView, offset );
  549. var whiteY = parseFloat32( dataView, offset );
  550. return { redX: redX, redY: redY, greenX, greenY, blueX, blueY, whiteX, whiteY };
  551. }
  552. function parseCompression( dataView, offset ) {
  553. var compressionCodes = [
  554. 'NO_COMPRESSION',
  555. 'RLE_COMPRESSION',
  556. 'ZIPS_COMPRESSION',
  557. 'ZIP_COMPRESSION',
  558. 'PIZ_COMPRESSION'
  559. ];
  560. var compression = parseUint8( dataView, offset );
  561. return compressionCodes[ compression ];
  562. }
  563. function parseBox2i( dataView, offset ) {
  564. var xMin = parseUint32( dataView, offset );
  565. var yMin = parseUint32( dataView, offset );
  566. var xMax = parseUint32( dataView, offset );
  567. var yMax = parseUint32( dataView, offset );
  568. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  569. }
  570. function parseLineOrder( dataView, offset ) {
  571. var lineOrders = [
  572. 'INCREASING_Y'
  573. ];
  574. var lineOrder = parseUint8( dataView, offset );
  575. return lineOrders[ lineOrder ];
  576. }
  577. function parseV2f( dataView, offset ) {
  578. var x = parseFloat32( dataView, offset );
  579. var y = parseFloat32( dataView, offset );
  580. return [ x, y ];
  581. }
  582. function parseValue( dataView, buffer, offset, type, size ) {
  583. if ( type == 'string' || type == 'iccProfile' ) {
  584. return parseFixedLengthString( buffer, offset, size );
  585. } else if ( type == 'chlist' ) {
  586. return parseChlist( dataView, buffer, offset, size );
  587. } else if ( type == 'chromaticities' ) {
  588. return parseChromaticities( buffer, offset );
  589. } else if ( type == 'compression' ) {
  590. return parseCompression( dataView, offset );
  591. } else if ( type == 'box2i' ) {
  592. return parseBox2i( dataView, offset );
  593. } else if ( type == 'lineOrder' ) {
  594. return parseLineOrder( dataView, offset );
  595. } else if ( type == 'float' ) {
  596. return parseFloat32( dataView, offset );
  597. } else if ( type == 'v2f' ) {
  598. return parseV2f( dataView, offset );
  599. } else {
  600. throw 'Cannot parse value for unsupported type: ' + type;
  601. }
  602. }
  603. var bufferDataView = new DataView(buffer);
  604. var uInt8Array = new Uint8Array(buffer);
  605. var EXRHeader = {};
  606. var magic = bufferDataView.getUint32( 0, true );
  607. var versionByteZero = bufferDataView.getUint8( 4, true );
  608. var fullMask = bufferDataView.getUint8( 5, true );
  609. // start of header
  610. var offset = { value: 8 }; // start at 8, after magic stuff
  611. var keepReading = true;
  612. while ( keepReading ) {
  613. var attributeName = parseNullTerminatedString( buffer, offset );
  614. if ( attributeName == 0 ) {
  615. keepReading = false;
  616. } else {
  617. var attributeType = parseNullTerminatedString( buffer, offset );
  618. var attributeSize = parseUint32( bufferDataView, offset );
  619. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  620. EXRHeader[ attributeName ] = attributeValue;
  621. }
  622. }
  623. // offsets
  624. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  625. var scanlineBlockSize = 1; // 1 for NO_COMPRESSION
  626. if (EXRHeader.compression == 'PIZ_COMPRESSION') {
  627. scanlineBlockSize = 32;
  628. }
  629. var numBlocks = dataWindowHeight / scanlineBlockSize;
  630. for ( var i = 0; i < numBlocks; i ++ ) {
  631. var scanlineOffset = parseUlong( bufferDataView, offset );
  632. }
  633. // we should be passed the scanline offset table, start reading pixel data
  634. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  635. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  636. var numChannels = EXRHeader.channels.length;
  637. var byteArray = new Float32Array( width * height * numChannels );
  638. var channelOffsets = {
  639. R: 0,
  640. G: 1,
  641. B: 2,
  642. A: 3
  643. };
  644. if (EXRHeader.compression == 'NO_COMPRESSION') {
  645. for ( var y = 0; y < height; y ++ ) {
  646. var y_scanline = parseUint32( buffer, offset );
  647. var dataSize = parseUint32( buffer, offset );
  648. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  649. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  650. if ( EXRHeader.channels[ channelID ].pixelType == 1 ) {
  651. // HALF
  652. for ( var x = 0; x < width; x ++ ) {
  653. var val = parseFloat16( buffer, offset );
  654. byteArray[ ( ( ( width - y_scanline ) * ( height * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  655. }
  656. } else {
  657. throw 'Only supported pixel format is HALF';
  658. }
  659. }
  660. }
  661. } else if (EXRHeader.compression == 'PIZ_COMPRESSION') {
  662. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx++ ) {
  663. var line_no = parseUint32( bufferDataView, offset );
  664. var data_len = parseUint32( bufferDataView, offset );
  665. var tmpBufferSize = width * scanlineBlockSize * (EXRHeader.channels.length * BYTES_PER_HALF);
  666. var tmpBuffer = new Uint16Array(tmpBufferSize);
  667. var tmpOffset = { value: 0 };
  668. decompressPIZ(tmpBuffer, tmpOffset, uInt8Array, bufferDataView, offset, tmpBufferSize, numChannels, EXRHeader.channels, width, scanlineBlockSize);
  669. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  670. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  671. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  672. if ( EXRHeader.channels[ channelID ].pixelType == 1 ) {
  673. // HALF
  674. for ( var x = 0; x < width; x ++ ) {
  675. var val = decodeFloat16(tmpBuffer[ (channelID * (scanlineBlockSize * width)) + (line_y * width) + x ]);
  676. var true_y = line_y + (scanlineBlockIdx * scanlineBlockSize);
  677. byteArray[ ( ( (height - true_y) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  678. }
  679. } else {
  680. throw 'Only supported pixel format is HALF';
  681. }
  682. }
  683. }
  684. }
  685. } else {
  686. throw 'Cannot decompress unsupported compression';
  687. }
  688. var date = new Date();
  689. var endTime = date.getTime();
  690. console.log((endTime - startTime) + 'ms');
  691. return {
  692. header: EXRHeader,
  693. width: width,
  694. height: height,
  695. data: byteArray,
  696. format: THREE.RGBFormat,
  697. type: THREE.FloatType
  698. };
  699. };