SSAOShader.js 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. ( function () {
  2. /**
  3. * References:
  4. * http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
  5. * https://learnopengl.com/Advanced-Lighting/SSAO
  6. * https://github.com/McNopper/OpenGL/blob/master/Example28/shader/ssao.frag.glsl
  7. */
  8. const SSAOShader = {
  9. defines: {
  10. 'PERSPECTIVE_CAMERA': 1,
  11. 'KERNEL_SIZE': 32
  12. },
  13. uniforms: {
  14. 'tDiffuse': {
  15. value: null
  16. },
  17. 'tNormal': {
  18. value: null
  19. },
  20. 'tDepth': {
  21. value: null
  22. },
  23. 'tNoise': {
  24. value: null
  25. },
  26. 'kernel': {
  27. value: null
  28. },
  29. 'cameraNear': {
  30. value: null
  31. },
  32. 'cameraFar': {
  33. value: null
  34. },
  35. 'resolution': {
  36. value: new THREE.Vector2()
  37. },
  38. 'cameraProjectionMatrix': {
  39. value: new THREE.Matrix4()
  40. },
  41. 'cameraInverseProjectionMatrix': {
  42. value: new THREE.Matrix4()
  43. },
  44. 'kernelRadius': {
  45. value: 8
  46. },
  47. 'minDistance': {
  48. value: 0.005
  49. },
  50. 'maxDistance': {
  51. value: 0.05
  52. }
  53. },
  54. vertexShader: `varying vec2 vUv;
  55. void main() {
  56. vUv = uv;
  57. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  58. }`,
  59. fragmentShader: `uniform sampler2D tDiffuse;
  60. uniform sampler2D tNormal;
  61. uniform sampler2D tDepth;
  62. uniform sampler2D tNoise;
  63. uniform vec3 kernel[ KERNEL_SIZE ];
  64. uniform vec2 resolution;
  65. uniform float cameraNear;
  66. uniform float cameraFar;
  67. uniform mat4 cameraProjectionMatrix;
  68. uniform mat4 cameraInverseProjectionMatrix;
  69. uniform float kernelRadius;
  70. uniform float minDistance; // avoid artifacts caused by neighbour fragments with minimal depth difference
  71. uniform float maxDistance; // avoid the influence of fragments which are too far away
  72. varying vec2 vUv;
  73. #include <packing>
  74. float getDepth( const in vec2 screenPosition ) {
  75. return texture2D( tDepth, screenPosition ).x;
  76. }
  77. float getLinearDepth( const in vec2 screenPosition ) {
  78. #if PERSPECTIVE_CAMERA == 1
  79. float fragCoordZ = texture2D( tDepth, screenPosition ).x;
  80. float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
  81. return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
  82. #else
  83. return texture2D( tDepth, screenPosition ).x;
  84. #endif
  85. }
  86. float getViewZ( const in float depth ) {
  87. #if PERSPECTIVE_CAMERA == 1
  88. return perspectiveDepthToViewZ( depth, cameraNear, cameraFar );
  89. #else
  90. return orthographicDepthToViewZ( depth, cameraNear, cameraFar );
  91. #endif
  92. }
  93. vec3 getViewPosition( const in vec2 screenPosition, const in float depth, const in float viewZ ) {
  94. float clipW = cameraProjectionMatrix[2][3] * viewZ + cameraProjectionMatrix[3][3];
  95. vec4 clipPosition = vec4( ( vec3( screenPosition, depth ) - 0.5 ) * 2.0, 1.0 );
  96. clipPosition *= clipW; // unprojection.
  97. return ( cameraInverseProjectionMatrix * clipPosition ).xyz;
  98. }
  99. vec3 getViewNormal( const in vec2 screenPosition ) {
  100. return unpackRGBToNormal( texture2D( tNormal, screenPosition ).xyz );
  101. }
  102. void main() {
  103. float depth = getDepth( vUv );
  104. float viewZ = getViewZ( depth );
  105. vec3 viewPosition = getViewPosition( vUv, depth, viewZ );
  106. vec3 viewNormal = getViewNormal( vUv );
  107. vec2 noiseScale = vec2( resolution.x / 4.0, resolution.y / 4.0 );
  108. vec3 random = texture2D( tNoise, vUv * noiseScale ).xyz;
  109. // compute matrix used to reorient a kernel vector
  110. vec3 tangent = normalize( random - viewNormal * dot( random, viewNormal ) );
  111. vec3 bitangent = cross( viewNormal, tangent );
  112. mat3 kernelMatrix = mat3( tangent, bitangent, viewNormal );
  113. float occlusion = 0.0;
  114. for ( int i = 0; i < KERNEL_SIZE; i ++ ) {
  115. vec3 sampleVector = kernelMatrix * kernel[ i ]; // reorient sample vector in view space
  116. vec3 samplePoint = viewPosition + ( sampleVector * kernelRadius ); // calculate sample point
  117. vec4 samplePointNDC = cameraProjectionMatrix * vec4( samplePoint, 1.0 ); // project point and calculate NDC
  118. samplePointNDC /= samplePointNDC.w;
  119. vec2 samplePointUv = samplePointNDC.xy * 0.5 + 0.5; // compute uv coordinates
  120. float realDepth = getLinearDepth( samplePointUv ); // get linear depth from depth texture
  121. float sampleDepth = viewZToOrthographicDepth( samplePoint.z, cameraNear, cameraFar ); // compute linear depth of the sample view Z value
  122. float delta = sampleDepth - realDepth;
  123. if ( delta > minDistance && delta < maxDistance ) { // if fragment is before sample point, increase occlusion
  124. occlusion += 1.0;
  125. }
  126. }
  127. occlusion = clamp( occlusion / float( KERNEL_SIZE ), 0.0, 1.0 );
  128. gl_FragColor = vec4( vec3( 1.0 - occlusion ), 1.0 );
  129. }`
  130. };
  131. const SSAODepthShader = {
  132. defines: {
  133. 'PERSPECTIVE_CAMERA': 1
  134. },
  135. uniforms: {
  136. 'tDepth': {
  137. value: null
  138. },
  139. 'cameraNear': {
  140. value: null
  141. },
  142. 'cameraFar': {
  143. value: null
  144. }
  145. },
  146. vertexShader: `varying vec2 vUv;
  147. void main() {
  148. vUv = uv;
  149. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  150. }`,
  151. fragmentShader: `uniform sampler2D tDepth;
  152. uniform float cameraNear;
  153. uniform float cameraFar;
  154. varying vec2 vUv;
  155. #include <packing>
  156. float getLinearDepth( const in vec2 screenPosition ) {
  157. #if PERSPECTIVE_CAMERA == 1
  158. float fragCoordZ = texture2D( tDepth, screenPosition ).x;
  159. float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
  160. return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
  161. #else
  162. return texture2D( tDepth, screenPosition ).x;
  163. #endif
  164. }
  165. void main() {
  166. float depth = getLinearDepth( vUv );
  167. gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 );
  168. }`
  169. };
  170. const SSAOBlurShader = {
  171. uniforms: {
  172. 'tDiffuse': {
  173. value: null
  174. },
  175. 'resolution': {
  176. value: new THREE.Vector2()
  177. }
  178. },
  179. vertexShader: `varying vec2 vUv;
  180. void main() {
  181. vUv = uv;
  182. gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
  183. }`,
  184. fragmentShader: `uniform sampler2D tDiffuse;
  185. uniform vec2 resolution;
  186. varying vec2 vUv;
  187. void main() {
  188. vec2 texelSize = ( 1.0 / resolution );
  189. float result = 0.0;
  190. for ( int i = - 2; i <= 2; i ++ ) {
  191. for ( int j = - 2; j <= 2; j ++ ) {
  192. vec2 offset = ( vec2( float( i ), float( j ) ) ) * texelSize;
  193. result += texture2D( tDiffuse, vUv + offset ).r;
  194. }
  195. }
  196. gl_FragColor = vec4( vec3( result / ( 5.0 * 5.0 ) ), 1.0 );
  197. }`
  198. };
  199. THREE.SSAOBlurShader = SSAOBlurShader;
  200. THREE.SSAODepthShader = SSAODepthShader;
  201. THREE.SSAOShader = SSAOShader;
  202. } )();