Curve.js 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. /**
  2. * @author zz85 / http://www.lab4games.net/zz85/blog
  3. * Extensible curve object
  4. *
  5. * This file contains following classes:
  6. *
  7. * THREE.Curve
  8. * THREE.LineCurve
  9. * THREE.QuadraticBezierCurve
  10. * THREE.CubicBezierCurve
  11. * THREE.SplineCurve
  12. * THREE.ArcCurve
  13. *
  14. **/
  15. /**************************************************************
  16. * Abstract Curve base class
  17. **************************************************************/
  18. THREE.Curve = function () {
  19. };
  20. // Virtual base class method to overwrite and implement in subclasses
  21. // - t [0 .. 1]
  22. THREE.Curve.prototype.getPoint = function ( t ) {
  23. console.log( "Warning, getPoint() not implemented!" );
  24. return null;
  25. };
  26. // Get point at relative position in curve according to arc length
  27. // - u [0 .. 1]
  28. THREE.Curve.prototype.getPointAt = function ( u ) {
  29. var t = this.getUtoTmapping( u );
  30. return this.getPoint( t );
  31. };
  32. // Get sequence of points using getPoint( t )
  33. THREE.Curve.prototype.getPoints = function ( divisions ) {
  34. if ( !divisions ) divisions = 5;
  35. var d, pts = [];
  36. for ( d = 0; d <= divisions; d ++ ) {
  37. pts.push( this.getPoint( d / divisions ) );
  38. };
  39. return pts;
  40. };
  41. // Get sequence of points using getPointAt( u )
  42. THREE.Curve.prototype.getSpacedPoints = function ( divisions ) {
  43. if ( !divisions ) divisions = 5;
  44. var d, pts = [];
  45. for ( d = 0; d <= divisions; d ++ ) {
  46. pts.push( this.getPointAt( d / divisions ) );
  47. };
  48. return pts;
  49. };
  50. // Get total curve length
  51. THREE.Curve.prototype.getLength = function () {
  52. var lengths = this.getLengths();
  53. return lengths[ lengths.length - 1 ];
  54. };
  55. // Get list of cumulative segment lengths
  56. THREE.Curve.prototype.getLengths = function ( divisions ) {
  57. if ( !divisions ) divisions = 200;
  58. if ( this.cacheArcLengths && ( this.cacheArcLengths.length == divisions + 1 ) ) {
  59. //console.log( "cached", this.cacheArcLengths );
  60. return this.cacheArcLengths;
  61. }
  62. var cache = [];
  63. var current, last = this.getPoint( 0 );
  64. var p, sum = 0;
  65. cache.push( 0 );
  66. for ( p = 1; p <= divisions; p ++ ) {
  67. current = this.getPoint ( p / divisions );
  68. sum += current.distanceTo( last );
  69. cache.push( sum );
  70. last = current;
  71. }
  72. this.cacheArcLengths = cache;
  73. return cache; // { sums: cache, sum:sum }; Sum is in the last element.
  74. };
  75. // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equi distance
  76. THREE.Curve.prototype.getUtoTmapping = function ( u, distance ) {
  77. var arcLengths = this.getLengths();
  78. var i = 0, il = arcLengths.length;
  79. var targetArcLength; // The targeted u distance value to get
  80. if ( distance ) {
  81. targetArcLength = distance;
  82. } else {
  83. targetArcLength = u * arcLengths[ il - 1 ];
  84. }
  85. // // TODO Should do binary search + sub division + interpolation when needed
  86. // time = Date.now();
  87. // while ( i < il ) {
  88. //
  89. // i++;
  90. //
  91. // if ( targetArcLength < arcLengths[ i ] ) break;
  92. //
  93. // }
  94. //
  95. // i--;
  96. // console.log('o' , i, Date.now()- time);
  97. time = Date.now();
  98. // binary search for the index with largest value smaller than target u distance
  99. var low = 0, high = il - 1, comparison;
  100. while ( low <= high ) {
  101. i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
  102. comparison = arcLengths[ i ] - targetArcLength;
  103. if ( comparison < 0 ) {
  104. low = i + 1;
  105. continue;
  106. } else if ( comparison > 0 ) {
  107. high = i - 1;
  108. continue;
  109. } else {
  110. high = i;
  111. break;
  112. // DONE
  113. }
  114. }
  115. i = high;
  116. //console.log('b' , i, low, high, Date.now()- time);
  117. if ( arcLengths[ i ] == targetArcLength ) {
  118. var t = i / ( il - 1 );
  119. return t;
  120. }
  121. // we could get finer grain at lengths, or use simple interpolatation between two points
  122. var lengthBefore = arcLengths[ i ];
  123. var lengthAfter = arcLengths[ i + 1 ];
  124. var segmentLength = lengthAfter - lengthBefore;
  125. // determine where we are between the 'before' and 'after' points
  126. var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
  127. // add that fractional amount to t
  128. t = ( i + segmentFraction ) / ( il -1 );
  129. return t;
  130. };
  131. // In case any sub curve does not implement its tangent / normal finding,
  132. // we get 2 points with a small delta and find a gradient of the 2 points
  133. // which seems to make a reasonable approximation
  134. THREE.Curve.prototype.getNormalVector = function( t ) {
  135. var vec = this.getTangent( t );
  136. return new THREE.Vector2( -vec.y , vec.x );
  137. };
  138. // Returns a unit vector tangent at t
  139. THREE.Curve.prototype.getTangent = function( t ) {
  140. var delta = 0.0001;
  141. var t1 = t - delta;
  142. var t2 = t + delta;
  143. // Capping in case of danger
  144. if ( t1 < 0 ) t1 = 0;
  145. if ( t2 > 1 ) t2 = 1;
  146. var pt1 = this.getPoint( t1 );
  147. var pt2 = this.getPoint( t2 );
  148. var vec = new THREE.Vector2();
  149. vec.sub( pt2, pt1 );
  150. return vec.unit();
  151. };
  152. /**************************************************************
  153. * Line
  154. **************************************************************/
  155. THREE.LineCurve = function ( v1, v2 ) {
  156. if ( ! ( v1 instanceof THREE.Vector2 ) ) {
  157. // Fall back for old constuctor signature - should be removed over time
  158. THREE.LineCurve.oldConstructor.apply( this, arguments );
  159. return;
  160. }
  161. this.v1 = v1;
  162. this.v2 = v2;
  163. };
  164. THREE.LineCurve.oldConstructor = function ( x1, y1, x2, y2 ) {
  165. this.constructor( new THREE.Vector2( x1, y1 ), new THREE.Vector2( x2, y2 ) );
  166. };
  167. THREE.LineCurve.prototype = new THREE.Curve();
  168. THREE.LineCurve.prototype.constructor = THREE.LineCurve;
  169. THREE.LineCurve.prototype.getPoint = function ( t ) {
  170. var point = new THREE.Vector2();
  171. point.sub( this.v2, this.v1 );
  172. point.multiplyScalar( t ).addSelf( this.v1 );
  173. return point;
  174. // var dx = this.x2 - this.x1;
  175. // var dy = this.y2 - this.y1;
  176. //
  177. // var tx = this.x1 + dx * t;
  178. // var ty = this.y1 + dy * t;
  179. //
  180. // return new THREE.Vector2( tx, ty );
  181. };
  182. // Line curve is linear, so we can overwrite default getPointAt
  183. THREE.LineCurve.prototype.getPointAt = function ( u ) {
  184. return this.getPoint( u );
  185. };
  186. THREE.LineCurve.prototype.getTangent = function( t ) {
  187. var tangent = new THREE.Vector2();
  188. tangent.sub( this.v2, this.v1 );
  189. tangent.normalize();
  190. return tangent;
  191. };
  192. /**************************************************************
  193. * Quadratic Bezier curve
  194. **************************************************************/
  195. THREE.QuadraticBezierCurve = function ( v0, v1, v2 ) {
  196. if ( !( v1 instanceof THREE.Vector2 ) ) {
  197. var args = Array.prototype.slice.call( arguments );
  198. v0 = new THREE.Vector2( args[ 0 ], args[ 1 ] );
  199. v1 = new THREE.Vector2( args[ 2 ], args[ 3 ] );
  200. v2 = new THREE.Vector2( args[ 4 ], args[ 5 ] );
  201. }
  202. this.v0 = v0;
  203. this.v1 = v1;
  204. this.v2 = v2;
  205. };
  206. THREE.QuadraticBezierCurve.prototype = new THREE.Curve();
  207. THREE.QuadraticBezierCurve.prototype.constructor = THREE.QuadraticBezierCurve;
  208. THREE.QuadraticBezierCurve.prototype.getPoint = function ( t ) {
  209. var tx, ty;
  210. tx = THREE.Shape.Utils.b2( t, this.v0.x, this.v1.x, this.v2.x );
  211. ty = THREE.Shape.Utils.b2( t, this.v0.y, this.v1.y, this.v2.y );
  212. return new THREE.Vector2( tx, ty );
  213. };
  214. THREE.QuadraticBezierCurve.prototype.getTangent = function( t ) {
  215. // iterate sub segments
  216. // get lengths for sub segments
  217. // if segment is bezier
  218. // perform subdivisions
  219. // var x0, y0, x1, y1, x2, y2;
  220. // x0 = this.actions[ 0 ].args[ 0 ];
  221. // y0 = this.actions[ 0 ].args[ 1 ];
  222. //
  223. // x1 = this.actions[ 1 ].args[ 0 ];
  224. // y1 = this.actions[ 1 ].args[ 1 ];
  225. //
  226. // x2 = this.actions[ 1 ].args[ 2 ];
  227. // y2 = this.actions[ 1 ].args[ 3 ];
  228. var tx, ty;
  229. tx = THREE.Curve.Utils.tangentQuadraticBezier( t, this.v0.x, this.v1.x, this.v2.x );
  230. ty = THREE.Curve.Utils.tangentQuadraticBezier( t, this.v0.y, this.v1.y, this.v2.y );
  231. // returns unit vector
  232. var tangent = new THREE.Vector2( tx, ty );
  233. tangent.normalize();
  234. return tangent;
  235. };
  236. /**************************************************************
  237. * Cubic Bezier curve
  238. **************************************************************/
  239. THREE.CubicBezierCurve = function ( v0, v1, v2, v3 ) {
  240. if ( ! ( v1 instanceof THREE.Vector2 ) ) {
  241. var args = Array.prototype.slice.call( arguments );
  242. v0 = new THREE.Vector2( args[ 0 ], args[ 1 ] );
  243. v1 = new THREE.Vector2( args[ 2 ], args[ 3 ] );
  244. v2 = new THREE.Vector2( args[ 4 ], args[ 5 ] );
  245. v3 = new THREE.Vector2( args[ 6 ], args[ 7 ] );
  246. }
  247. this.v0 = v0;
  248. this.v1 = v1;
  249. this.v2 = v2;
  250. this.v3 = v3;
  251. };
  252. THREE.CubicBezierCurve.prototype = new THREE.Curve();
  253. THREE.CubicBezierCurve.prototype.constructor = THREE.CubicBezierCurve;
  254. THREE.CubicBezierCurve.prototype.getPoint = function ( t ) {
  255. var tx, ty;
  256. tx = THREE.Shape.Utils.b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x );
  257. ty = THREE.Shape.Utils.b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y );
  258. return new THREE.Vector2( tx, ty );
  259. };
  260. THREE.CubicBezierCurve.prototype.getTangent = function( t ) {
  261. var tx, ty;
  262. tx = THREE.Curve.Utils.tangentCubicBezier( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x );
  263. ty = THREE.Curve.Utils.tangentCubicBezier( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y );
  264. // return normal unit vector
  265. var tangent = new THREE.Vector2( tx, ty );
  266. tangent.normalize();
  267. return tangent;
  268. };
  269. /**************************************************************
  270. * Spline curve
  271. **************************************************************/
  272. THREE.SplineCurve = function ( points /* array of Vector2 */ ) {
  273. this.points = points;
  274. };
  275. THREE.SplineCurve.prototype = new THREE.Curve();
  276. THREE.SplineCurve.prototype.constructor = THREE.SplineCurve;
  277. THREE.SplineCurve.prototype.getPoint = function ( t ) {
  278. var v = new THREE.Vector2();
  279. var c = [];
  280. var points = this.points, point, intPoint, weight;
  281. point = ( points.length - 1 ) * t;
  282. intPoint = Math.floor( point );
  283. weight = point - intPoint;
  284. c[ 0 ] = intPoint == 0 ? intPoint : intPoint - 1;
  285. c[ 1 ] = intPoint;
  286. c[ 2 ] = intPoint > points.length - 2 ? intPoint : intPoint + 1;
  287. c[ 3 ] = intPoint > points.length - 3 ? intPoint : intPoint + 2;
  288. v.x = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].x, points[ c[ 1 ] ].x, points[ c[ 2 ] ].x, points[ c[ 3 ] ].x, weight );
  289. v.y = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].y, points[ c[ 1 ] ].y, points[ c[ 2 ] ].y, points[ c[ 3 ] ].y, weight );
  290. return v;
  291. };
  292. /**************************************************************
  293. * Arc curve
  294. **************************************************************/
  295. THREE.ArcCurve = function ( aX, aY, aRadius,
  296. aStartAngle, aEndAngle,
  297. aClockwise ) {
  298. this.aX = aX;
  299. this.aY = aY;
  300. this.aRadius = aRadius;
  301. this.aStartAngle = aStartAngle;
  302. this.aEndAngle = aEndAngle;
  303. this.aClockwise = aClockwise;
  304. };
  305. THREE.ArcCurve.prototype = new THREE.Curve();
  306. THREE.ArcCurve.prototype.constructor = THREE.ArcCurve;
  307. THREE.ArcCurve.prototype.getPoint = function ( t ) {
  308. var deltaAngle = this.aEndAngle - this.aStartAngle;
  309. if ( !this.aClockwise ) {
  310. t = 1 - t;
  311. }
  312. var angle = this.aStartAngle + t * deltaAngle;
  313. var tx = this.aX + this.aRadius * Math.cos( angle );
  314. var ty = this.aY + this.aRadius * Math.sin( angle );
  315. return new THREE.Vector2( tx, ty );
  316. };
  317. /**************************************************************
  318. * Utils
  319. **************************************************************/
  320. THREE.Curve.Utils = {
  321. tangentQuadraticBezier: function ( t, p0, p1, p2 ) {
  322. return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 );
  323. },
  324. // Puay Bing, thanks for helping with this derivative!
  325. tangentCubicBezier: function (t, p0, p1, p2, p3 ) {
  326. return -3 * p0 * (1 - t) * (1 - t) +
  327. 3 * p1 * (1 - t) * (1-t) - 6 *t *p1 * (1-t) +
  328. 6 * t * p2 * (1-t) - 3 * t * t * p2 +
  329. 3 * t * t * p3;
  330. },
  331. tangentSpline: function ( t, p0, p1, p2, p3 ) {
  332. // To check if my formulas are correct
  333. var h00 = 6 * t * t - 6 * t; // derived from 2t^3 − 3t^2 + 1
  334. var h10 = 3 * t * t - 4 * t + 1; // t^3 − 2t^2 + t
  335. var h01 = -6 * t * t + 6 * t; // − 2t3 + 3t2
  336. var h11 = 3 * t * t - 2 * t; // t3 − t2
  337. return h00 + h10 + h01 + h11;
  338. },
  339. // Catmull-Rom
  340. interpolate: function( p0, p1, p2, p3, t ) {
  341. var v0 = ( p2 - p0 ) * 0.5;
  342. var v1 = ( p3 - p1 ) * 0.5;
  343. var t2 = t * t;
  344. var t3 = t * t2;
  345. return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;
  346. }
  347. };
  348. /*
  349. getPoint DONE
  350. getLength DONE
  351. getLengths DONE
  352. curve.getPoints(); DONE
  353. curve.getPointAtArcLength(t); DONE
  354. curve.transform(params);
  355. curve.getTangentAt(t); DONE
  356. */
  357. /**************************************************************
  358. * 3D Curves
  359. **************************************************************/
  360. // A Factory method for creating new curve subclasses
  361. THREE.Curve.create = function( constructor, getPointFunc ) {
  362. var subClass = constructor;
  363. subClass.prototype = new THREE.Curve();
  364. subClass.prototype.constructor = constructor;
  365. subClass.prototype.getPoint = getPointFunc;
  366. return subClass;
  367. };
  368. /**************************************************************
  369. * Line3D
  370. **************************************************************/
  371. THREE.LineCurve3 = THREE.Curve.create(
  372. function ( v1, v2 ) {
  373. this.v1 = v1;
  374. this.v2 = v2;
  375. },
  376. function ( t ) {
  377. var r = new THREE.Vector3();
  378. r.sub( v2, v1 ); // diff
  379. r.multiplyScalar( t );
  380. r.addSelf( this.v1 );
  381. return r;
  382. }
  383. );
  384. /**************************************************************
  385. * Quadratic Bezier 3D curve
  386. **************************************************************/
  387. THREE.QuadraticBezierCurve3 = THREE.Curve.create(
  388. function ( v0, v1, v2 ) {
  389. this.v0 = v0;
  390. this.v1 = v1;
  391. this.v2 = v2;
  392. },
  393. function ( t ) {
  394. var tx, ty, tz;
  395. tx = THREE.Shape.Utils.b2( t, this.v0.x, this.v1.x, this.v2.x );
  396. ty = THREE.Shape.Utils.b2( t, this.v0.y, this.v1.y, this.v2.y );
  397. tz = THREE.Shape.Utils.b2( t, this.v0.z, this.v1.z, this.v2.z );
  398. return new THREE.Vector3( tx, ty, tz );
  399. }
  400. );