123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662 |
- /**
- * @author zz85 / http://www.lab4games.net/zz85/blog
- * Extensible curve object
- *
- * This file contains following classes:
- *
- * THREE.Curve
- * THREE.LineCurve
- * THREE.QuadraticBezierCurve
- * THREE.CubicBezierCurve
- * THREE.SplineCurve
- * THREE.ArcCurve
- *
- **/
- /**************************************************************
- * Abstract Curve base class
- **************************************************************/
- THREE.Curve = function () {
- };
- // Virtual base class method to overwrite and implement in subclasses
- // - t [0 .. 1]
- THREE.Curve.prototype.getPoint = function ( t ) {
- console.log( "Warning, getPoint() not implemented!" );
- return null;
- };
- // Get point at relative position in curve according to arc length
- // - u [0 .. 1]
- THREE.Curve.prototype.getPointAt = function ( u ) {
- var t = this.getUtoTmapping( u );
- return this.getPoint( t );
- };
- // Get sequence of points using getPoint( t )
- THREE.Curve.prototype.getPoints = function ( divisions ) {
- if ( !divisions ) divisions = 5;
- var d, pts = [];
- for ( d = 0; d <= divisions; d ++ ) {
- pts.push( this.getPoint( d / divisions ) );
- };
- return pts;
- };
- // Get sequence of points using getPointAt( u )
- THREE.Curve.prototype.getSpacedPoints = function ( divisions ) {
- if ( !divisions ) divisions = 5;
- var d, pts = [];
- for ( d = 0; d <= divisions; d ++ ) {
- pts.push( this.getPointAt( d / divisions ) );
- };
- return pts;
- };
- // Get total curve length
- THREE.Curve.prototype.getLength = function () {
- var lengths = this.getLengths();
- return lengths[ lengths.length - 1 ];
- };
- // Get list of cumulative segment lengths
- THREE.Curve.prototype.getLengths = function ( divisions ) {
- if ( !divisions ) divisions = 200;
- if ( this.cacheArcLengths && ( this.cacheArcLengths.length == divisions + 1 ) ) {
- //console.log( "cached", this.cacheArcLengths );
- return this.cacheArcLengths;
- }
- var cache = [];
- var current, last = this.getPoint( 0 );
- var p, sum = 0;
- cache.push( 0 );
- for ( p = 1; p <= divisions; p ++ ) {
- current = this.getPoint ( p / divisions );
- sum += current.distanceTo( last );
- cache.push( sum );
- last = current;
- }
- this.cacheArcLengths = cache;
- return cache; // { sums: cache, sum:sum }; Sum is in the last element.
- };
- // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equi distance
- THREE.Curve.prototype.getUtoTmapping = function ( u, distance ) {
- var arcLengths = this.getLengths();
- var i = 0, il = arcLengths.length;
- var targetArcLength; // The targeted u distance value to get
- if ( distance ) {
- targetArcLength = distance;
- } else {
- targetArcLength = u * arcLengths[ il - 1 ];
- }
- // // TODO Should do binary search + sub division + interpolation when needed
- // time = Date.now();
- // while ( i < il ) {
- //
- // i++;
- //
- // if ( targetArcLength < arcLengths[ i ] ) break;
- //
- // }
- //
- // i--;
- // console.log('o' , i, Date.now()- time);
- time = Date.now();
- // binary search for the index with largest value smaller than target u distance
- var low = 0, high = il - 1, comparison;
- while ( low <= high ) {
- i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
- comparison = arcLengths[ i ] - targetArcLength;
- if ( comparison < 0 ) {
- low = i + 1;
- continue;
- } else if ( comparison > 0 ) {
- high = i - 1;
- continue;
- } else {
- high = i;
- break;
- // DONE
- }
- }
- i = high;
- //console.log('b' , i, low, high, Date.now()- time);
- if ( arcLengths[ i ] == targetArcLength ) {
- var t = i / ( il - 1 );
- return t;
- }
- // we could get finer grain at lengths, or use simple interpolatation between two points
- var lengthBefore = arcLengths[ i ];
- var lengthAfter = arcLengths[ i + 1 ];
- var segmentLength = lengthAfter - lengthBefore;
- // determine where we are between the 'before' and 'after' points
- var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;
- // add that fractional amount to t
- t = ( i + segmentFraction ) / ( il -1 );
- return t;
- };
- // In case any sub curve does not implement its tangent / normal finding,
- // we get 2 points with a small delta and find a gradient of the 2 points
- // which seems to make a reasonable approximation
- THREE.Curve.prototype.getNormalVector = function( t ) {
- var vec = this.getTangent( t );
- return new THREE.Vector2( -vec.y , vec.x );
- };
- // Returns a unit vector tangent at t
- THREE.Curve.prototype.getTangent = function( t ) {
- var delta = 0.0001;
- var t1 = t - delta;
- var t2 = t + delta;
- // Capping in case of danger
- if ( t1 < 0 ) t1 = 0;
- if ( t2 > 1 ) t2 = 1;
- var pt1 = this.getPoint( t1 );
- var pt2 = this.getPoint( t2 );
- var vec = new THREE.Vector2();
- vec.sub( pt2, pt1 );
- return vec.unit();
- };
- /**************************************************************
- * Line
- **************************************************************/
- THREE.LineCurve = function ( v1, v2 ) {
- if ( ! ( v1 instanceof THREE.Vector2 ) ) {
- // Fall back for old constuctor signature - should be removed over time
- THREE.LineCurve.oldConstructor.apply( this, arguments );
- return;
- }
- this.v1 = v1;
- this.v2 = v2;
- };
- THREE.LineCurve.oldConstructor = function ( x1, y1, x2, y2 ) {
- this.constructor( new THREE.Vector2( x1, y1 ), new THREE.Vector2( x2, y2 ) );
- };
- THREE.LineCurve.prototype = new THREE.Curve();
- THREE.LineCurve.prototype.constructor = THREE.LineCurve;
- THREE.LineCurve.prototype.getPoint = function ( t ) {
- var point = new THREE.Vector2();
- point.sub( this.v2, this.v1 );
- point.multiplyScalar( t ).addSelf( this.v1 );
- return point;
- // var dx = this.x2 - this.x1;
- // var dy = this.y2 - this.y1;
- //
- // var tx = this.x1 + dx * t;
- // var ty = this.y1 + dy * t;
- //
- // return new THREE.Vector2( tx, ty );
- };
- // Line curve is linear, so we can overwrite default getPointAt
- THREE.LineCurve.prototype.getPointAt = function ( u ) {
- return this.getPoint( u );
- };
- THREE.LineCurve.prototype.getTangent = function( t ) {
- var tangent = new THREE.Vector2();
- tangent.sub( this.v2, this.v1 );
- tangent.normalize();
- return tangent;
- };
- /**************************************************************
- * Quadratic Bezier curve
- **************************************************************/
- THREE.QuadraticBezierCurve = function ( v0, v1, v2 ) {
- if ( !( v1 instanceof THREE.Vector2 ) ) {
- var args = Array.prototype.slice.call( arguments );
- v0 = new THREE.Vector2( args[ 0 ], args[ 1 ] );
- v1 = new THREE.Vector2( args[ 2 ], args[ 3 ] );
- v2 = new THREE.Vector2( args[ 4 ], args[ 5 ] );
- }
- this.v0 = v0;
- this.v1 = v1;
- this.v2 = v2;
- };
- THREE.QuadraticBezierCurve.prototype = new THREE.Curve();
- THREE.QuadraticBezierCurve.prototype.constructor = THREE.QuadraticBezierCurve;
- THREE.QuadraticBezierCurve.prototype.getPoint = function ( t ) {
- var tx, ty;
- tx = THREE.Shape.Utils.b2( t, this.v0.x, this.v1.x, this.v2.x );
- ty = THREE.Shape.Utils.b2( t, this.v0.y, this.v1.y, this.v2.y );
- return new THREE.Vector2( tx, ty );
- };
- THREE.QuadraticBezierCurve.prototype.getTangent = function( t ) {
- // iterate sub segments
- // get lengths for sub segments
- // if segment is bezier
- // perform subdivisions
- // var x0, y0, x1, y1, x2, y2;
- // x0 = this.actions[ 0 ].args[ 0 ];
- // y0 = this.actions[ 0 ].args[ 1 ];
- //
- // x1 = this.actions[ 1 ].args[ 0 ];
- // y1 = this.actions[ 1 ].args[ 1 ];
- //
- // x2 = this.actions[ 1 ].args[ 2 ];
- // y2 = this.actions[ 1 ].args[ 3 ];
- var tx, ty;
- tx = THREE.Curve.Utils.tangentQuadraticBezier( t, this.v0.x, this.v1.x, this.v2.x );
- ty = THREE.Curve.Utils.tangentQuadraticBezier( t, this.v0.y, this.v1.y, this.v2.y );
- // returns unit vector
- var tangent = new THREE.Vector2( tx, ty );
- tangent.normalize();
- return tangent;
- };
- /**************************************************************
- * Cubic Bezier curve
- **************************************************************/
- THREE.CubicBezierCurve = function ( v0, v1, v2, v3 ) {
- if ( ! ( v1 instanceof THREE.Vector2 ) ) {
- var args = Array.prototype.slice.call( arguments );
- v0 = new THREE.Vector2( args[ 0 ], args[ 1 ] );
- v1 = new THREE.Vector2( args[ 2 ], args[ 3 ] );
- v2 = new THREE.Vector2( args[ 4 ], args[ 5 ] );
- v3 = new THREE.Vector2( args[ 6 ], args[ 7 ] );
- }
- this.v0 = v0;
- this.v1 = v1;
- this.v2 = v2;
- this.v3 = v3;
- };
- THREE.CubicBezierCurve.prototype = new THREE.Curve();
- THREE.CubicBezierCurve.prototype.constructor = THREE.CubicBezierCurve;
- THREE.CubicBezierCurve.prototype.getPoint = function ( t ) {
- var tx, ty;
- tx = THREE.Shape.Utils.b3( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x );
- ty = THREE.Shape.Utils.b3( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y );
- return new THREE.Vector2( tx, ty );
- };
- THREE.CubicBezierCurve.prototype.getTangent = function( t ) {
- var tx, ty;
- tx = THREE.Curve.Utils.tangentCubicBezier( t, this.v0.x, this.v1.x, this.v2.x, this.v3.x );
- ty = THREE.Curve.Utils.tangentCubicBezier( t, this.v0.y, this.v1.y, this.v2.y, this.v3.y );
- // return normal unit vector
- var tangent = new THREE.Vector2( tx, ty );
- tangent.normalize();
- return tangent;
- };
- /**************************************************************
- * Spline curve
- **************************************************************/
- THREE.SplineCurve = function ( points /* array of Vector2 */ ) {
- this.points = points;
- };
- THREE.SplineCurve.prototype = new THREE.Curve();
- THREE.SplineCurve.prototype.constructor = THREE.SplineCurve;
- THREE.SplineCurve.prototype.getPoint = function ( t ) {
- var v = new THREE.Vector2();
- var c = [];
- var points = this.points, point, intPoint, weight;
- point = ( points.length - 1 ) * t;
- intPoint = Math.floor( point );
- weight = point - intPoint;
- c[ 0 ] = intPoint == 0 ? intPoint : intPoint - 1;
- c[ 1 ] = intPoint;
- c[ 2 ] = intPoint > points.length - 2 ? intPoint : intPoint + 1;
- c[ 3 ] = intPoint > points.length - 3 ? intPoint : intPoint + 2;
- v.x = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].x, points[ c[ 1 ] ].x, points[ c[ 2 ] ].x, points[ c[ 3 ] ].x, weight );
- v.y = THREE.Curve.Utils.interpolate( points[ c[ 0 ] ].y, points[ c[ 1 ] ].y, points[ c[ 2 ] ].y, points[ c[ 3 ] ].y, weight );
- return v;
- };
- /**************************************************************
- * Arc curve
- **************************************************************/
- THREE.ArcCurve = function ( aX, aY, aRadius,
- aStartAngle, aEndAngle,
- aClockwise ) {
- this.aX = aX;
- this.aY = aY;
- this.aRadius = aRadius;
- this.aStartAngle = aStartAngle;
- this.aEndAngle = aEndAngle;
- this.aClockwise = aClockwise;
- };
- THREE.ArcCurve.prototype = new THREE.Curve();
- THREE.ArcCurve.prototype.constructor = THREE.ArcCurve;
- THREE.ArcCurve.prototype.getPoint = function ( t ) {
- var deltaAngle = this.aEndAngle - this.aStartAngle;
- if ( !this.aClockwise ) {
- t = 1 - t;
- }
- var angle = this.aStartAngle + t * deltaAngle;
- var tx = this.aX + this.aRadius * Math.cos( angle );
- var ty = this.aY + this.aRadius * Math.sin( angle );
- return new THREE.Vector2( tx, ty );
- };
- /**************************************************************
- * Utils
- **************************************************************/
- THREE.Curve.Utils = {
- tangentQuadraticBezier: function ( t, p0, p1, p2 ) {
- return 2 * ( 1 - t ) * ( p1 - p0 ) + 2 * t * ( p2 - p1 );
- },
- // Puay Bing, thanks for helping with this derivative!
- tangentCubicBezier: function (t, p0, p1, p2, p3 ) {
- return -3 * p0 * (1 - t) * (1 - t) +
- 3 * p1 * (1 - t) * (1-t) - 6 *t *p1 * (1-t) +
- 6 * t * p2 * (1-t) - 3 * t * t * p2 +
- 3 * t * t * p3;
- },
- tangentSpline: function ( t, p0, p1, p2, p3 ) {
- // To check if my formulas are correct
- var h00 = 6 * t * t - 6 * t; // derived from 2t^3 − 3t^2 + 1
- var h10 = 3 * t * t - 4 * t + 1; // t^3 − 2t^2 + t
- var h01 = -6 * t * t + 6 * t; // − 2t3 + 3t2
- var h11 = 3 * t * t - 2 * t; // t3 − t2
- return h00 + h10 + h01 + h11;
- },
- // Catmull-Rom
- interpolate: function( p0, p1, p2, p3, t ) {
- var v0 = ( p2 - p0 ) * 0.5;
- var v1 = ( p3 - p1 ) * 0.5;
- var t2 = t * t;
- var t3 = t * t2;
- return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;
- }
- };
- /*
- getPoint DONE
- getLength DONE
- getLengths DONE
- curve.getPoints(); DONE
- curve.getPointAtArcLength(t); DONE
- curve.transform(params);
- curve.getTangentAt(t); DONE
- */
- /**************************************************************
- * 3D Curves
- **************************************************************/
- // A Factory method for creating new curve subclasses
- THREE.Curve.create = function( constructor, getPointFunc ) {
- var subClass = constructor;
- subClass.prototype = new THREE.Curve();
- subClass.prototype.constructor = constructor;
- subClass.prototype.getPoint = getPointFunc;
- return subClass;
- };
- /**************************************************************
- * Line3D
- **************************************************************/
- THREE.LineCurve3 = THREE.Curve.create(
- function ( v1, v2 ) {
- this.v1 = v1;
- this.v2 = v2;
- },
- function ( t ) {
- var r = new THREE.Vector3();
- r.sub( v2, v1 ); // diff
- r.multiplyScalar( t );
- r.addSelf( this.v1 );
- return r;
- }
- );
- /**************************************************************
- * Quadratic Bezier 3D curve
- **************************************************************/
- THREE.QuadraticBezierCurve3 = THREE.Curve.create(
- function ( v0, v1, v2 ) {
- this.v0 = v0;
- this.v1 = v1;
- this.v2 = v2;
- },
- function ( t ) {
- var tx, ty, tz;
- tx = THREE.Shape.Utils.b2( t, this.v0.x, this.v1.x, this.v2.x );
- ty = THREE.Shape.Utils.b2( t, this.v0.y, this.v1.y, this.v2.y );
- tz = THREE.Shape.Utils.b2( t, this.v0.z, this.v1.z, this.v2.z );
- return new THREE.Vector3( tx, ty, tz );
- }
- );
|