GeometryUtils.js 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. console.warn( "THREE.GeometryUtils: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation." );
  2. THREE.GeometryUtils = {
  3. /**
  4. * Generates 2D-Coordinates in a very fast way.
  5. *
  6. * Based on work by:
  7. * @link http://www.openprocessing.org/sketch/15493
  8. *
  9. * @param center Center of Hilbert curve.
  10. * @param size Total width of Hilbert curve.
  11. * @param iterations Number of subdivisions.
  12. * @param v0 Corner index -X, -Z.
  13. * @param v1 Corner index -X, +Z.
  14. * @param v2 Corner index +X, +Z.
  15. * @param v3 Corner index +X, -Z.
  16. */
  17. hilbert2D: function ( center, size, iterations, v0, v1, v2, v3 ) {
  18. // Default Vars
  19. var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
  20. size = size !== undefined ? size : 10,
  21. half = size / 2,
  22. iterations = iterations !== undefined ? iterations : 1,
  23. v0 = v0 !== undefined ? v0 : 0,
  24. v1 = v1 !== undefined ? v1 : 1,
  25. v2 = v2 !== undefined ? v2 : 2,
  26. v3 = v3 !== undefined ? v3 : 3
  27. ;
  28. var vec_s = [
  29. new THREE.Vector3( center.x - half, center.y, center.z - half ),
  30. new THREE.Vector3( center.x - half, center.y, center.z + half ),
  31. new THREE.Vector3( center.x + half, center.y, center.z + half ),
  32. new THREE.Vector3( center.x + half, center.y, center.z - half )
  33. ];
  34. var vec = [
  35. vec_s[ v0 ],
  36. vec_s[ v1 ],
  37. vec_s[ v2 ],
  38. vec_s[ v3 ]
  39. ];
  40. // Recurse iterations
  41. if ( 0 <= -- iterations ) {
  42. var tmp = [];
  43. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) );
  44. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) );
  45. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) );
  46. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) );
  47. // Return recursive call
  48. return tmp;
  49. }
  50. // Return complete Hilbert Curve.
  51. return vec;
  52. },
  53. /**
  54. * Generates 3D-Coordinates in a very fast way.
  55. *
  56. * Based on work by:
  57. * @link http://www.openprocessing.org/visuals/?visualID=15599
  58. *
  59. * @param center Center of Hilbert curve.
  60. * @param size Total width of Hilbert curve.
  61. * @param iterations Number of subdivisions.
  62. * @param v0 Corner index -X, +Y, -Z.
  63. * @param v1 Corner index -X, +Y, +Z.
  64. * @param v2 Corner index -X, -Y, +Z.
  65. * @param v3 Corner index -X, -Y, -Z.
  66. * @param v4 Corner index +X, -Y, -Z.
  67. * @param v5 Corner index +X, -Y, +Z.
  68. * @param v6 Corner index +X, +Y, +Z.
  69. * @param v7 Corner index +X, +Y, -Z.
  70. */
  71. hilbert3D: function ( center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7 ) {
  72. // Default Vars
  73. var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
  74. size = size !== undefined ? size : 10,
  75. half = size / 2,
  76. iterations = iterations !== undefined ? iterations : 1,
  77. v0 = v0 !== undefined ? v0 : 0,
  78. v1 = v1 !== undefined ? v1 : 1,
  79. v2 = v2 !== undefined ? v2 : 2,
  80. v3 = v3 !== undefined ? v3 : 3,
  81. v4 = v4 !== undefined ? v4 : 4,
  82. v5 = v5 !== undefined ? v5 : 5,
  83. v6 = v6 !== undefined ? v6 : 6,
  84. v7 = v7 !== undefined ? v7 : 7
  85. ;
  86. var vec_s = [
  87. new THREE.Vector3( center.x - half, center.y + half, center.z - half ),
  88. new THREE.Vector3( center.x - half, center.y + half, center.z + half ),
  89. new THREE.Vector3( center.x - half, center.y - half, center.z + half ),
  90. new THREE.Vector3( center.x - half, center.y - half, center.z - half ),
  91. new THREE.Vector3( center.x + half, center.y - half, center.z - half ),
  92. new THREE.Vector3( center.x + half, center.y - half, center.z + half ),
  93. new THREE.Vector3( center.x + half, center.y + half, center.z + half ),
  94. new THREE.Vector3( center.x + half, center.y + half, center.z - half )
  95. ];
  96. var vec = [
  97. vec_s[ v0 ],
  98. vec_s[ v1 ],
  99. vec_s[ v2 ],
  100. vec_s[ v3 ],
  101. vec_s[ v4 ],
  102. vec_s[ v5 ],
  103. vec_s[ v6 ],
  104. vec_s[ v7 ]
  105. ];
  106. // Recurse iterations
  107. if ( -- iterations >= 0 ) {
  108. var tmp = [];
  109. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );
  110. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
  111. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
  112. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
  113. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
  114. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
  115. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
  116. Array.prototype.push.apply( tmp, THREE.GeometryUtils.hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) );
  117. // Return recursive call
  118. return tmp;
  119. }
  120. // Return complete Hilbert Curve.
  121. return vec;
  122. }
  123. };