MSAAPass.js 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. /**
  2. * @author bhouston / http://clara.io/ *
  3. */
  4. THREE.MSAAPass = function ( scene, camera, params ) {
  5. this.scene = scene;
  6. this.camera = camera;
  7. this.sampleLevel = 4; // specified as n, where the number of samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16.
  8. this.params = params || { minFilter: THREE.NearestFilter, magFilter: THREE.NearestFilter, format: THREE.RGBAFormat };
  9. this.params.minFilter = THREE.NearestFilter;
  10. this.params.maxFilter = THREE.NearestFilter;
  11. console.log( 'this.params', this.params );
  12. this.enabled = true;
  13. this.needsSwap = true;
  14. if ( THREE.CompositeShader === undefined ) {
  15. console.error( "THREE.MSAAPass relies on THREE.CompositeShader" );
  16. }
  17. var compositeShader = THREE.CompositeShader;
  18. this.uniforms = THREE.UniformsUtils.clone( compositeShader.uniforms );
  19. this.materialComposite = new THREE.ShaderMaterial( {
  20. uniforms: this.uniforms,
  21. vertexShader: compositeShader.vertexShader,
  22. fragmentShader: compositeShader.fragmentShader,
  23. transparent: true,
  24. blending: THREE.CustomBlending,
  25. blendSrc: THREE.OneFactor,
  26. blendDst: THREE.OneMinusSrcAlphaFactor,
  27. blendEquation: THREE.AddEquation,
  28. depthTest: false,
  29. depthWrite: false
  30. } );
  31. this.camera2 = new THREE.OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );
  32. this.scene2 = new THREE.Scene();
  33. this.quad2 = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), this.materialComposite );
  34. this.scene2.add( this.quad2 );
  35. };
  36. THREE.MSAAPass.prototype = {
  37. dispose: function() {
  38. if ( this.sampleRenderTarget ) {
  39. this.sampleRenderTarget.dispose();
  40. this.sampleRenderTarget = null;
  41. }
  42. },
  43. setSize: function ( width, height ) {
  44. this.sampleRenderTarget.setSize( width, height );
  45. },
  46. render: function ( renderer, writeBuffer, readBuffer, delta ) {
  47. if ( ! this.sampleRenderTarget ) {
  48. this.sampleRenderTarget = new THREE.WebGLRenderTarget( readBuffer.width, readBuffer.height, this.params, "msaa.renderTarget0" );
  49. }
  50. var camera = ( this.camera || this.scene.camera );
  51. var jitterOffsets = THREE.MSAAPass.JitterVectors[ Math.max( 0, Math.min( this.sampleLevel, 5 ) ) ];
  52. var autoClear = renderer.autoClear;
  53. renderer.autoClear = false;
  54. this.uniforms[ "tForeground" ].value = this.sampleRenderTarget;
  55. // render the scene multiple times, each slightly jitter offset from the last and accumulate the results.
  56. for ( var i = 0; i < jitterOffsets.length; i ++ ) {
  57. // only jitters perspective cameras. TODO: add support for jittering orthogonal cameras
  58. if ( camera.setViewOffset ) camera.setViewOffset( readBuffer.width, readBuffer.height, jitterOffsets[ i ].x, jitterOffsets[ i ].y, readBuffer.width, readBuffer.height );
  59. // on first sample, no need to accumulate
  60. if ( i == 0 ) {
  61. renderer.render( this.scene, camera, writeBuffer, true );
  62. }
  63. else {
  64. renderer.render( this.scene, camera, this.sampleRenderTarget, true );
  65. // this accumulation strategy is used to prevent decimation at low bit depths with lots of samples.
  66. this.uniforms[ "scale" ].value = 1.0 / ( i + 1 );
  67. renderer.render( this.scene2, this.camera2, writeBuffer, false );
  68. }
  69. }
  70. // reset jitter to nothing. TODO: add support for orthogonal cameras
  71. if ( camera.setViewOffset ) camera.setViewOffset( undefined, undefined, undefined, undefined, undefined, undefined );
  72. renderer.autoClear = true;
  73. }
  74. };
  75. THREE.MSAAPass.normalizedJitterOffsets = function( jitterVectors ) {
  76. var scaledJitterOffsets = [];
  77. for ( var i = 0; i < jitterVectors.length; i ++ ) {
  78. scaledJitterOffsets.push( new THREE.Vector2( jitterVectors[ i ][ 0 ], jitterVectors[ i ][ 1 ] ).multiplyScalar( 1.0 / 16.0 ) );
  79. }
  80. return scaledJitterOffsets;
  81. },
  82. // These jitter vectors are specified in integers because it is easier.
  83. // I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5)
  84. // before being used, thus these integers need to be scaled by 1/16.
  85. //
  86. // Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
  87. THREE.MSAAPass.JitterVectors = [
  88. THREE.MSAAPass.normalizedJitterOffsets( [
  89. [ 0, 0 ]
  90. ] ),
  91. THREE.MSAAPass.normalizedJitterOffsets( [
  92. [ 4, 4 ], [ - 4, - 4 ]
  93. ] ),
  94. THREE.MSAAPass.normalizedJitterOffsets( [
  95. [ - 2, - 6 ], [ 6, - 2 ], [ - 6, 2 ], [ 2, 6 ]
  96. ] ),
  97. THREE.MSAAPass.normalizedJitterOffsets( [
  98. [ 1, - 3 ], [ - 1, 3 ], [ 5, 1 ], [ - 3, - 5 ],
  99. [ - 5, 5 ], [ - 7, - 1 ], [ 3, 7 ], [ 7, - 7 ]
  100. ] ),
  101. THREE.MSAAPass.normalizedJitterOffsets( [
  102. [ 1, 1 ], [ - 1, - 3 ], [ - 3, 2 ], [ 4, - 1 ],
  103. [ - 5, - 2 ], [ 2, 5 ], [ 5, 3 ], [ 3, - 5 ],
  104. [ - 2, 6 ], [ 0, - 7 ], [ - 4, - 6 ], [ - 6, 4 ],
  105. [ - 8, 0 ], [ 7, - 4 ], [ 6, 7 ], [ - 7, - 8 ]
  106. ] ),
  107. THREE.MSAAPass.normalizedJitterOffsets( [
  108. [ - 4, - 7 ], [ - 7, - 5 ], [ - 3, - 5 ], [ - 5, - 4 ],
  109. [ - 1, - 4 ], [ - 2, - 2 ], [ - 6, - 1 ], [ - 4, 0 ],
  110. [ - 7, 1 ], [ - 1, 2 ], [ - 6, 3 ], [ - 3, 3 ],
  111. [ - 7, 6 ], [ - 3, 6 ], [ - 5, 7 ], [ - 1, 7 ],
  112. [ 5, - 7 ], [ 1, - 6 ], [ 6, - 5 ], [ 4, - 4 ],
  113. [ 2, - 3 ], [ 7, - 2 ], [ 1, - 1 ], [ 4, - 1 ],
  114. [ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ],
  115. [ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ]
  116. ] )
  117. ];