GeometryUtils.js 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. ( function () {
  2. var GeometryUtils = {
  3. /**
  4. * Generates 2D-Coordinates in a very fast way.
  5. *
  6. * Based on work by:
  7. * @link http://www.openprocessing.org/sketch/15493
  8. *
  9. * @param center Center of Hilbert curve.
  10. * @param size Total width of Hilbert curve.
  11. * @param iterations Number of subdivisions.
  12. * @param v0 Corner index -X, -Z.
  13. * @param v1 Corner index -X, +Z.
  14. * @param v2 Corner index +X, +Z.
  15. * @param v3 Corner index +X, -Z.
  16. */
  17. hilbert2D: function ( center, size, iterations, v0, v1, v2, v3 ) {
  18. // Default Vars
  19. var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
  20. size = size !== undefined ? size : 10,
  21. half = size / 2,
  22. iterations = iterations !== undefined ? iterations : 1,
  23. v0 = v0 !== undefined ? v0 : 0,
  24. v1 = v1 !== undefined ? v1 : 1,
  25. v2 = v2 !== undefined ? v2 : 2,
  26. v3 = v3 !== undefined ? v3 : 3;
  27. var vec_s = [ new THREE.Vector3( center.x - half, center.y, center.z - half ), new THREE.Vector3( center.x - half, center.y, center.z + half ), new THREE.Vector3( center.x + half, center.y, center.z + half ), new THREE.Vector3( center.x + half, center.y, center.z - half ) ];
  28. var vec = [ vec_s[ v0 ], vec_s[ v1 ], vec_s[ v2 ], vec_s[ v3 ] ]; // Recurse iterations
  29. if ( 0 <= -- iterations ) {
  30. var tmp = [];
  31. Array.prototype.push.apply( tmp, GeometryUtils.hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) );
  32. Array.prototype.push.apply( tmp, GeometryUtils.hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) );
  33. Array.prototype.push.apply( tmp, GeometryUtils.hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) );
  34. Array.prototype.push.apply( tmp, GeometryUtils.hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) ); // Return recursive call
  35. return tmp;
  36. } // Return complete Hilbert Curve.
  37. return vec;
  38. },
  39. /**
  40. * Generates 3D-Coordinates in a very fast way.
  41. *
  42. * Based on work by:
  43. * @link http://www.openprocessing.org/visuals/?visualID=15599
  44. *
  45. * @param center Center of Hilbert curve.
  46. * @param size Total width of Hilbert curve.
  47. * @param iterations Number of subdivisions.
  48. * @param v0 Corner index -X, +Y, -Z.
  49. * @param v1 Corner index -X, +Y, +Z.
  50. * @param v2 Corner index -X, -Y, +Z.
  51. * @param v3 Corner index -X, -Y, -Z.
  52. * @param v4 Corner index +X, -Y, -Z.
  53. * @param v5 Corner index +X, -Y, +Z.
  54. * @param v6 Corner index +X, +Y, +Z.
  55. * @param v7 Corner index +X, +Y, -Z.
  56. */
  57. hilbert3D: function ( center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7 ) {
  58. // Default Vars
  59. var center = center !== undefined ? center : new THREE.Vector3( 0, 0, 0 ),
  60. size = size !== undefined ? size : 10,
  61. half = size / 2,
  62. iterations = iterations !== undefined ? iterations : 1,
  63. v0 = v0 !== undefined ? v0 : 0,
  64. v1 = v1 !== undefined ? v1 : 1,
  65. v2 = v2 !== undefined ? v2 : 2,
  66. v3 = v3 !== undefined ? v3 : 3,
  67. v4 = v4 !== undefined ? v4 : 4,
  68. v5 = v5 !== undefined ? v5 : 5,
  69. v6 = v6 !== undefined ? v6 : 6,
  70. v7 = v7 !== undefined ? v7 : 7;
  71. var vec_s = [ new THREE.Vector3( center.x - half, center.y + half, center.z - half ), new THREE.Vector3( center.x - half, center.y + half, center.z + half ), new THREE.Vector3( center.x - half, center.y - half, center.z + half ), new THREE.Vector3( center.x - half, center.y - half, center.z - half ), new THREE.Vector3( center.x + half, center.y - half, center.z - half ), new THREE.Vector3( center.x + half, center.y - half, center.z + half ), new THREE.Vector3( center.x + half, center.y + half, center.z + half ), new THREE.Vector3( center.x + half, center.y + half, center.z - half ) ];
  72. var vec = [ vec_s[ v0 ], vec_s[ v1 ], vec_s[ v2 ], vec_s[ v3 ], vec_s[ v4 ], vec_s[ v5 ], vec_s[ v6 ], vec_s[ v7 ] ]; // Recurse iterations
  73. if ( -- iterations >= 0 ) {
  74. var tmp = [];
  75. Array.prototype.push.apply( tmp, GeometryUtils.hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );
  76. Array.prototype.push.apply( tmp, GeometryUtils.hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
  77. Array.prototype.push.apply( tmp, GeometryUtils.hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );
  78. Array.prototype.push.apply( tmp, GeometryUtils.hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
  79. Array.prototype.push.apply( tmp, GeometryUtils.hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );
  80. Array.prototype.push.apply( tmp, GeometryUtils.hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
  81. Array.prototype.push.apply( tmp, GeometryUtils.hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );
  82. Array.prototype.push.apply( tmp, GeometryUtils.hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) ); // Return recursive call
  83. return tmp;
  84. } // Return complete Hilbert Curve.
  85. return vec;
  86. },
  87. /**
  88. * Generates a Gosper curve (lying in the XY plane)
  89. *
  90. * https://gist.github.com/nitaku/6521802
  91. *
  92. * @param size The size of a single gosper island.
  93. */
  94. gosper: function ( size ) {
  95. size = size !== undefined ? size : 1;
  96. function fractalize( config ) {
  97. var output;
  98. var input = config.axiom;
  99. for ( var i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {
  100. output = '';
  101. for ( var j = 0, jl = input.length; j < jl; j ++ ) {
  102. var char = input[ j ];
  103. if ( char in config.rules ) {
  104. output += config.rules[ char ];
  105. } else {
  106. output += char;
  107. }
  108. }
  109. input = output;
  110. }
  111. return output;
  112. }
  113. function toPoints( config ) {
  114. var currX = 0,
  115. currY = 0;
  116. var angle = 0;
  117. var path = [ 0, 0, 0 ];
  118. var fractal = config.fractal;
  119. for ( var i = 0, l = fractal.length; i < l; i ++ ) {
  120. var char = fractal[ i ];
  121. if ( char === '+' ) {
  122. angle += config.angle;
  123. } else if ( char === '-' ) {
  124. angle -= config.angle;
  125. } else if ( char === 'F' ) {
  126. currX += config.size * Math.cos( angle );
  127. currY += - config.size * Math.sin( angle );
  128. path.push( currX, currY, 0 );
  129. }
  130. }
  131. return path;
  132. } //
  133. var gosper = fractalize( {
  134. axiom: 'A',
  135. steps: 4,
  136. rules: {
  137. A: 'A+BF++BF-FA--FAFA-BF+',
  138. B: '-FA+BFBF++BF+FA--FA-B'
  139. }
  140. } );
  141. var points = toPoints( {
  142. fractal: gosper,
  143. size: size,
  144. angle: Math.PI / 3 // 60 degrees
  145. } );
  146. return points;
  147. }
  148. };
  149. THREE.GeometryUtils = GeometryUtils;
  150. } )();