123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- <!DOCTYPE html>
- <html lang="en">
- <head>
- <meta charset="utf-8" />
- <base href="../../../" />
- <script src="list.js"></script>
- <script src="page.js"></script>
- <link type="text/css" rel="stylesheet" href="page.css" />
- </head>
- <body>
- <h1>[name]</h1>
- <p class="desc">
- Implementation of a [link:http://en.wikipedia.org/wiki/Quaternion quaternion].
- This is used for [link:https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation rotating things]
- without encountering the dreaded
- [link:http://en.wikipedia.org/wiki/Gimbal_lock gimbal lock] issue, amongst other
- advantages.
- </p>
- <h2>Example</h2>
- <code>
- var quaternion = new THREE.Quaternion();
- quaternion.setFromAxisAngle( new THREE.Vector3( 0, 1, 0 ), Math.PI / 2 );
- var vector = new THREE.Vector3( 1, 0, 0 );
- vector.applyQuaternion( quaternion );
- </code>
- <h2>Constructor</h2>
- <h3>[name]( [param:Float x], [param:Float y], [param:Float z], [param:Float w] )</h3>
- <p>
- [page:Float x] - x coordinate<br />
- [page:Float y] - y coordinate<br />
- [page:Float z] - z coordinate<br />
- [page:Float w] - w coordinate
- </p>
- <h2>Properties</h2>
- <h3>[property:Boolean isQuaternion]</h3>
- <p>
- Used to check whether this or derived classes are Quaternions. Default is *true*.<br /><br />
- You should not change this, as it is used internally for optimisation.
- </p>
- <h3>[property:Float x]</h3>
- <p>Changing this property will result in [page:.onChangeCallback onChangeCallback] being called.</p>
- <h3>[property:Float y]</h3>
- <p>Changing this property will result in [page:.onChangeCallback onChangeCallback] being called.</p>
- <h3>[property:Float z]</h3>
- <p>Changing this property will result in [page:.onChangeCallback onChangeCallback] being called.</p>
- <h3>[property:Float w]</h3>
- <p>Changing this property will result in [page:.onChangeCallback onChangeCallback] being called.</p>
- <h2>Methods</h2>
- <h3>[method:Float angleTo]( [param:Quaternion q] )</h3>
- <p>
- Returns the angle between this quaternion and quaternion [page:Quaternion q] in radians.
- </p>
- <h3>[method:Quaternion clone]()</h3>
- <p>
- Creates a new Quaternion with identical [page:.x x], [page:.y y],
- [page:.z z] and [page:.w w] properties to this one.
- </p>
- <h3>[method:Quaternion conjugate]()</h3>
- <p>
- Returns the rotational conjugate of this quaternion. The conjugate of a quaternion
- represents the same rotation in the opposite direction about the rotational axis.
- </p>
- <h3>[method:Quaternion copy]( [param:Quaternion q] )</h3>
- <p>
- Copies the [page:.x x], [page:.y y], [page:.z z] and [page:.w w] properties
- of [page:Quaternion q] into this quaternion.
- </p>
- <h3>[method:Boolean equals]( [param:Quaternion v] )</h3>
- <p>
- [page:Quaternion v] - Quaternion that this quaternion will be compared to.<br /><br />
- Compares the [page:.x x], [page:.y y], [page:.z z] and [page:.w w] properties of
- [page:Quaternion v] to the equivalent properties of this quaternion to determine if they
- represent the same rotation.
- </p>
- <h3>[method:Float dot]( [param:Quaternion v] )</h3>
- <p>
- Calculates the [link:https://en.wikipedia.org/wiki/Dot_product dot product] of
- quaternions [page:Quaternion v] and this one.
- </p>
- <h3>[method:Quaternion fromArray]( [param:Array array], [param:Integer offset] )</h3>
- <p>
- [page:Array array] - array of format (x, y, z, w) used to construct the quaternion.<br />
- [page:Integer offset] - (optional) an offset into the array.<br /><br />
- Sets this quaternion's [page:.x x], [page:.y y], [page:.z z] and [page:.w w] properties
- from an array.
- </p>
- <h3>[method:Quaternion inverse]()</h3>
- <p>
- Inverts this quaternion - calculate the [page:.conjugate conjugate] and then
- [page:.normalize normalizes] the result.
- </p>
- <h3>[method:Float length]()</h3>
- <p>Computes the [link:https://en.wikipedia.org/wiki/Euclidean_distance Euclidean length]
- (straight-line length) of this quaternion, considered as a 4 dimensional vector.</p>
- <h3>[method:Float lengthSq]()</h3>
- <p>
- Computes the [link:https://en.wikipedia.org/wiki/Euclidean_distance Euclidean length]
- (straight-line length) of this quaternion, considered as a 4 dimensional
- vector. This can be useful if you are comparing the lengths of two quaternions,
- as this is a slightly more efficient calculation than [page:.length length]().
- </p>
- <h3>[method:Quaternion normalize]()</h3>
- <p>
- [link:https://en.wikipedia.org/wiki/Normalized_vector Normalizes] this quaternion - that is,
- calculated the quaternion that performs the same rotation as this one, but has [page:.length length]
- equal to *1*.
- </p>
- <h3>[method:Quaternion multiply]( [param:Quaternion q] )</h3>
- <p>Multiplies this quaternion by [page:Quaternion q].</p>
- <h3>[method:Quaternion multiplyQuaternions]( [param:Quaternion a], [param:Quaternion b] )</h3>
- <p>
- Sets this quaternion to [page:Quaternion a] x [page:Quaternion b].<br />
- Adapted from the method outlined [link:http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm here].
- </p>
- <h3>[method:Quaternion onChange]( [param:Function onChangeCallback] )</h3>
- <p>Sets the [page:.onChangeCallback onChangeCallback]() method.</p>
- <h3>[method:Quaternion onChangeCallback]( )</h3>
- <p>
- This function is called whenever any of the following occurs:
- <ul>
- <li>
- The [page:.x x], [page:.y y], [page:.z z] or
- [page:.w w] properties are changed.
- </li>
- <li>
- The [page:.set set](), [page:.copy copy](), [page:.clone clone](),
- [page:.setFromAxisAngle setFromAxisAngle](), [page:.setFromRotationMatrix setFromRotationMatrix](),
- [page:.conjugate conjugate](), [page:.normalize normalize](),
- [page:.multiplyQuaternions multiplyQuaternions](), [page:.slerp slerp]() or [page:.fromArray fromArray]()
- functions are called.
- </li>
- <li>
- [page:.setFromEuler setFromEuler]() function is called with its *update* argument set to true.
- </li>
- </ul>
- By default it is the empty function, however you can change it if needed using [page:.onChange onChange]( [page:Function onChangeCallback] ).
- </p>
- <h3>[method:Quaternion premultiply]( [param:Quaternion q] )</h3>
- <p>Pre-multiplies this quaternion by [page:Quaternion q].</p>
- <h3>[method:Quaternion rotateTowards]( [param:Quaternion q], [param:Float step] )</h3>
- <p>
- [page:Quaternion q] - The target quaternion.<br />
- [page:float step] - The angular step in radians.<br /><br />
- Rotates this quaternion by a given angular step to the defined quaternion *q*.
- The method ensures that the final quaternion will not overshoot *q*.
- </p>
- <h3>[method:Quaternion slerp]( [param:Quaternion qb], [param:float t] )</h3>
- <p>
- [page:Quaternion qb] - The other quaternion rotation<br />
- [page:float t] - interpolation factor in the closed interval [0, 1].<br /><br />
- Handles the spherical linear interpolation between quaternions. [page:float t] represents the
- amount of rotation between this quaternion (where [page:float t] is 0) and [page:Quaternion qb] (where
- [page:float t] is 1). This quaternion is set to the result. Also see the static version of the
- *slerp* below.
- <code>
- // rotate a mesh towards a target quaternion
- mesh.quaternion.slerp( endQuaternion, 0.01 );
- </code>
- </p>
- <h3>[method:Quaternion set]( [param:Float x], [param:Float y], [param:Float z], [param:Float w] )</h3>
- <p>Sets [page:.x x], [page:.y y], [page:.z z], [page:.w w] properties of this quaternion.</p>
- <h3>[method:Quaternion setFromAxisAngle]( [param:Vector3 axis], [param:Float angle] )</h3>
- <p>
- Sets this quaternion from rotation specified by [page:Vector3 axis] and [page:Float angle].<br />
- Adapted from the method [link:http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm here].<br />
- *Axis* is assumed to be normalized, *angle* is in radians.
- </p>
- <h3>[method:Quaternion setFromEuler]( [param:Euler euler] )</h3>
- <p>Sets this quaternion from the rotation specified by [page:Euler] angle.</p>
- <h3>[method:Quaternion setFromRotationMatrix]( [param:Matrix4 m] )</h3>
- <p>
- Sets this quaternion from rotation component of [page:Matrix4 m].<br />
- Adapted from the method [link:http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm here].
- </p>
- <h3>[method:Quaternion setFromUnitVectors]( [param:Vector3 vFrom], [param:Vector3 vTo] )</h3>
- <p>
- Sets this quaternion to the rotation required to rotate direction vector [page:Vector3 vFrom] to
- direction vector [page:Vector3 vTo].<br />
- Adapted from the method [link:http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors here].<br />
- [page:Vector3 vFrom] and [page:Vector3 vTo] are assumed to be normalized.
- </p>
- <h3>[method:Array toArray]( [param:Array array], [param:Integer offset] )</h3>
- <p>
- [page:Array array] - An optional array to store the quaternion. If not specified, a new array will be created.<br/>
- [page:Integer offset] - (optional) if specified, the result will be copied
- into this [page:Array].<br /><br />
- Returns the numerical elements of this quaternion in an array of format [x, y, z, w].
- </p>
- <h2>Static Methods</h2>
- <p>
- Static methods (as opposed to instance methods) are designed to be called directly from the class,
- rather than from a specific instance. So to use the static version of, call it like so:
- <code>
- THREE.Quaternion.slerp( qStart, qEnd, qTarget, t );
- </code>
- By contrast, to call the 'normal' or instanced slerp method, you would do the following:
- <code>
- //instantiate a quaternion with default values
- var q = new THREE.Quaternion();
- //call the instanced slerp method
- q.slerp( qb, t )
- </code>
- </p>
- <h3>[method:Quaternion slerp]( [param:Quaternion qStart], [param:Quaternion qEnd], [param:Quaternion qTarget], [param:Float t] )</h3>
- <p>
- [page:Quaternion qStart] - The starting quaternion (where [page:Float t] is 0)<br />
- [page:Quaternion qEnd] - The ending quaternion (where [page:Float t] is 1)<br />
- [page:Quaternion qTarget] - The target quaternion that gets set with the result<br />
- [page:float t] - interpolation factor in the closed interval [0, 1].<br /><br />
- Unlike the normal method, the static version of slerp sets a target quaternion to the result of the slerp operation.
- <code>
- // Code setup
- var startQuaternion = new THREE.Quaternion().set( 0, 0, 0, 1 ).normalize();
- var endQuaternion = new THREE.Quaternion().set( 1, 1, 1, 1 ).normalize();
- var t = 0;
- // Update a mesh's rotation in the loop
- t = ( t + 0.01 ) % 1; // constant angular momentum
- THREE.Quaternion.slerp( startQuaternion, endQuaternion, mesh.quaternion, t );
- </code>
- </p>
- <h3>[method:null slerpFlat]( [param:Array dst], [param:Integer dstOffset], [param:Array src0], [param:Integer srcOffset0], [param:Array src1], [param:Integer srcOffset1], [param:Float t] )</h3>
- <p>
- [page:Array dst] - The output array.<br />
- [page:Integer dstOffset] - An offset into the output array.<br />
- [page:Array src0] - The source array of the starting quaternion.<br />
- [page:Integer srcOffset0] - An offset into the array *src0*.<br />
- [page:Array src1] - The source array of the target quatnerion.<br />
- [page:Integer srcOffset1] - An offset into the array *src1*.<br />
- [page:float t] - Normalized interpolation factor (between 0 and 1).<br /><br />
- </p>
- <p>
- Like the static *slerp* method above, but operates directly on flat arrays of numbers.
- </p>
- <!-- Note: Do not add non-static methods to the bottom of this page. Put them above the <h2>Static Methods</h2> -->
- <h2>Source</h2>
- [link:https://github.com/mrdoob/three.js/blob/master/src/[path].js src/[path].js]
- </body>
- </html>
|