EXRLoader.js 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. *
  4. * OpenEXR loader which, currently, supports reading 16 bit half data, in either
  5. * uncompressed or PIZ wavelet compressed form.
  6. *
  7. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  8. * implementation, so I have preserved their copyright notices.
  9. */
  10. // /*
  11. // Copyright (c) 2014 - 2017, Syoyo Fujita
  12. // All rights reserved.
  13. // Redistribution and use in source and binary forms, with or without
  14. // modification, are permitted provided that the following conditions are met:
  15. // * Redistributions of source code must retain the above copyright
  16. // notice, this list of conditions and the following disclaimer.
  17. // * Redistributions in binary form must reproduce the above copyright
  18. // notice, this list of conditions and the following disclaimer in the
  19. // documentation and/or other materials provided with the distribution.
  20. // * Neither the name of the Syoyo Fujita nor the
  21. // names of its contributors may be used to endorse or promote products
  22. // derived from this software without specific prior written permission.
  23. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  24. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  25. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  26. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  27. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  28. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  29. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  30. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  32. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33. // */
  34. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  35. // ///////////////////////////////////////////////////////////////////////////
  36. // //
  37. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  38. // // Digital Ltd. LLC
  39. // //
  40. // // All rights reserved.
  41. // //
  42. // // Redistribution and use in source and binary forms, with or without
  43. // // modification, are permitted provided that the following conditions are
  44. // // met:
  45. // // * Redistributions of source code must retain the above copyright
  46. // // notice, this list of conditions and the following disclaimer.
  47. // // * Redistributions in binary form must reproduce the above
  48. // // copyright notice, this list of conditions and the following disclaimer
  49. // // in the documentation and/or other materials provided with the
  50. // // distribution.
  51. // // * Neither the name of Industrial Light & Magic nor the names of
  52. // // its contributors may be used to endorse or promote products derived
  53. // // from this software without specific prior written permission.
  54. // //
  55. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  56. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  57. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  58. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  59. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  60. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  61. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  62. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  63. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  64. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  65. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  66. // //
  67. // ///////////////////////////////////////////////////////////////////////////
  68. // // End of OpenEXR license -------------------------------------------------
  69. THREE.EXRLoader = function ( manager ) {
  70. this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
  71. };
  72. THREE.EXRLoader.prototype = Object.create( THREE.DataTextureLoader.prototype );
  73. THREE.EXRLoader.prototype._parser = function ( buffer ) {
  74. const USHORT_RANGE = (1 << 16);
  75. const BITMAP_SIZE = (USHORT_RANGE >> 3);
  76. const HUF_ENCBITS = 16; // literal (value) bit length
  77. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  78. const HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
  79. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  80. const HUF_DECMASK = HUF_DECSIZE - 1;
  81. const SHORT_ZEROCODE_RUN = 59;
  82. const LONG_ZEROCODE_RUN = 63;
  83. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  84. const LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
  85. const BYTES_PER_HALF = 2;
  86. const ULONG_SIZE = 8;
  87. const FLOAT32_SIZE = 4;
  88. const INT32_SIZE = 4;
  89. const INT16_SIZE = 2;
  90. const INT8_SIZE = 1;
  91. function reverseLutFromBitmap(bitmap, lut) {
  92. var k = 0;
  93. for (var i = 0; i < USHORT_RANGE; ++i) {
  94. if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) {
  95. lut[k++] = i;
  96. }
  97. }
  98. var n = k - 1;
  99. while (k < USHORT_RANGE) lut[k++] = 0;
  100. return n;
  101. }
  102. function hufClearDecTable(hdec) {
  103. for (var i = 0; i < HUF_DECSIZE; i++) {
  104. hdec[i] = {}
  105. hdec[i].len = 0;
  106. hdec[i].lit = 0;
  107. hdec[i].p = null;
  108. }
  109. }
  110. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  111. function getBits(nBits, c, lc, uInt8Array, inOffset) {
  112. while (lc < nBits) {
  113. c = (c << 8) | parseUint8Array(uInt8Array, inOffset);
  114. lc += 8;
  115. }
  116. lc -= nBits;
  117. getBitsReturn.l = (c >> lc) & ((1 << nBits) - 1);
  118. getBitsReturn.c = c;
  119. getBitsReturn.lc = lc;
  120. }
  121. const hufTableBuffer = new Array(59);
  122. function hufCanonicalCodeTable(hcode) {
  123. for (var i = 0; i <= 58; ++i) hufTableBuffer[i] = 0;
  124. for (var i = 0; i < HUF_ENCSIZE; ++i) hufTableBuffer[hcode[i]] += 1;
  125. var c = 0;
  126. for (var i = 58; i > 0; --i) {
  127. var nc = ((c + hufTableBuffer[i]) >> 1);
  128. hufTableBuffer[i] = c;
  129. c = nc;
  130. }
  131. for (var i = 0; i < HUF_ENCSIZE; ++i) {
  132. var l = hcode[i];
  133. if (l > 0) hcode[i] = l | (hufTableBuffer[l]++ << 6);
  134. }
  135. }
  136. function hufUnpackEncTable(uInt8Array, inDataView, inOffset, ni, im, iM, hcode) {
  137. var p = inOffset;
  138. var c = 0;
  139. var lc = 0;
  140. for (; im <= iM; im++) {
  141. if (p.value - inOffset.value > ni) {
  142. return false;
  143. }
  144. getBits(6, c, lc, uInt8Array, p);
  145. var l = getBitsReturn.l;
  146. c = getBitsReturn.c;
  147. lc = getBitsReturn.lc;
  148. hcode[im] = l;
  149. if (l == LONG_ZEROCODE_RUN) {
  150. if (p.value - inOffset.value > ni) {
  151. throw 'Something wrong with hufUnpackEncTable';
  152. }
  153. getBits(8, c, lc, uInt8Array, p);
  154. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  155. c = getBitsReturn.c;
  156. lc = getBitsReturn.lc;
  157. if (im + zerun > iM + 1) {
  158. throw 'Something wrong with hufUnpackEncTable';
  159. }
  160. while (zerun--) hcode[im++] = 0;
  161. im--;
  162. } else if (l >= SHORT_ZEROCODE_RUN) {
  163. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  164. if (im + zerun > iM + 1) {
  165. throw 'Something wrong with hufUnpackEncTable';
  166. }
  167. while (zerun--) hcode[im++] = 0;
  168. im--;
  169. }
  170. }
  171. hufCanonicalCodeTable(hcode);
  172. }
  173. function hufLength(code) { return code & 63; }
  174. function hufCode(code) { return code >> 6; }
  175. function hufBuildDecTable(hcode, im, iM, hdecod) {
  176. for (; im <= iM; im++) {
  177. var c = hufCode(hcode[im]);
  178. var l = hufLength(hcode[im]);
  179. if (c >> l) {
  180. throw 'Invalid table entry';
  181. }
  182. if (l > HUF_DECBITS) {
  183. var pl = hdecod[(c >> (l - HUF_DECBITS))];
  184. if (pl.len) {
  185. throw 'Invalid table entry';
  186. }
  187. pl.lit++;
  188. if (pl.p) {
  189. var p = pl.p;
  190. pl.p = new Array(pl.lit);
  191. for (var i = 0; i < pl.lit - 1; ++i) {
  192. pl.p[i] = p[i];
  193. }
  194. } else {
  195. pl.p = new Array(1);
  196. }
  197. pl.p[pl.lit - 1] = im;
  198. } else if (l) {
  199. var plOffset = 0;
  200. for (var i = 1 << (HUF_DECBITS - l); i > 0; i--) {
  201. var pl = hdecod[(c << (HUF_DECBITS - l)) + plOffset];
  202. if (pl.len || pl.p) {
  203. throw 'Invalid table entry';
  204. }
  205. pl.len = l;
  206. pl.lit = im;
  207. plOffset++;
  208. }
  209. }
  210. }
  211. return true;
  212. }
  213. const getCharReturn = { c: 0, lc: 0 };
  214. function getChar(c, lc, uInt8Array, inOffset) {
  215. c = (c << 8) | parseUint8Array(uInt8Array, inOffset);
  216. lc += 8;
  217. getCharReturn.c = c;
  218. getCharReturn.lc = lc;
  219. }
  220. const getCodeReturn = { c: 0, lc: 0 };
  221. function getCode(po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset) {
  222. if (po == rlc) {
  223. if (lc < 8) {
  224. getChar(c, lc, uInt8Array, inOffset);
  225. c = getCharReturn.c;
  226. lc = getCharReturn.lc;
  227. }
  228. lc -= 8;
  229. var cs = (c >> lc);
  230. if (out + cs > oe) {
  231. throw 'Issue with getCode';
  232. }
  233. var s = out[-1];
  234. while (cs-- > 0) {
  235. outBuffer[outBufferOffset.value++] = s;
  236. }
  237. } else if (outBufferOffset.value < outBufferEndOffset) {
  238. outBuffer[outBufferOffset.value++] = po;
  239. } else {
  240. throw 'Issue with getCode';
  241. }
  242. getCodeReturn.c = c;
  243. getCodeReturn.lc = lc;
  244. }
  245. var NBITS = 16;
  246. var A_OFFSET = 1 << (NBITS - 1);
  247. var M_OFFSET = 1 << (NBITS - 1);
  248. var MOD_MASK = (1 << NBITS) - 1;
  249. function UInt16(value) {
  250. return (value & 0xFFFF);
  251. };
  252. function Int16(value) {
  253. var ref = UInt16(value);
  254. return (ref > 0x7FFF) ? ref - 0x10000 : ref;
  255. };
  256. const wdec14Return = { a: 0, b: 0 };
  257. function wdec14(l, h) {
  258. var ls = Int16(l);
  259. var hs = Int16(h);
  260. var hi = hs;
  261. var ai = ls + (hi & 1) + (hi >> 1);
  262. var as = ai;
  263. var bs = ai - hi;
  264. wdec14Return.a = as;
  265. wdec14Return.b = bs;
  266. }
  267. function wav2Decode(j, buffer, nx, ox, ny, oy, mx) {
  268. var n = (nx > ny) ? ny : nx;
  269. var p = 1;
  270. var p2;
  271. while (p <= n) p <<= 1;
  272. p >>= 1;
  273. p2 = p;
  274. p >>= 1;
  275. while (p >= 1) {
  276. var py = 0;
  277. var ey = py + oy * (ny - p2);
  278. var oy1 = oy * p;
  279. var oy2 = oy * p2;
  280. var ox1 = ox * p;
  281. var ox2 = ox * p2;
  282. var i00, i01, i10, i11;
  283. for (; py <= ey; py += oy2) {
  284. var px = py;
  285. var ex = py + ox * (nx - p2);
  286. for (; px <= ex; px += ox2) {
  287. var p01 = px + ox1;
  288. var p10 = px + oy1;
  289. var p11 = p10 + ox1;
  290. wdec14(buffer[px + j], buffer[p10 + j]);
  291. i00 = wdec14Return.a;
  292. i10 = wdec14Return.b;
  293. wdec14(buffer[p01 + j], buffer[p11 + j]);
  294. i01 = wdec14Return.a;
  295. i11 = wdec14Return.b;
  296. wdec14(i00, i01);
  297. buffer[px + j] = wdec14Return.a;
  298. buffer[p01 + j] = wdec14Return.b;
  299. wdec14(i10, i11);
  300. buffer[p10 + j] = wdec14Return.a;
  301. buffer[p11 + j] = wdec14Return.b;
  302. }
  303. if (nx & p) {
  304. var p10 = px + oy1;
  305. wdec14(buffer[px + j], buffer[p10 + j]);
  306. i00 = wdec14Return.a;
  307. buffer[p10 + j] = wdec14Return.b;
  308. buffer[px + j] = i00;
  309. }
  310. }
  311. if (ny & p) {
  312. var px = py;
  313. var ex = py + ox * (nx - p2);
  314. for (; px <= ex; px += ox2) {
  315. var p01 = px + ox1;
  316. wdec14(buffer[px + j], buffer[p01 + j]);
  317. i00 = wdec14Return.a;
  318. buffer[p01 + j] = wdec14Return.b;
  319. buffer[px + j] = i00;
  320. }
  321. }
  322. p2 = p;
  323. p >>= 1;
  324. }
  325. return py;
  326. }
  327. function hufDecode(encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset) {
  328. var c = 0;
  329. var lc = 0;
  330. var outBufferEndOffset = no;
  331. var inOffsetEnd = Math.trunc(inOffset.value + (ni + 7) / 8);
  332. while (inOffset.value < inOffsetEnd) {
  333. getChar(c, lc, uInt8Array, inOffset);
  334. c = getCharReturn.c;
  335. lc = getCharReturn.lc;
  336. while (lc >= HUF_DECBITS) {
  337. var index = (c >> (lc - HUF_DECBITS)) & HUF_DECMASK;
  338. var pl = decodingTable[index];
  339. if (pl.len) {
  340. lc -= pl.len;
  341. getCode(pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
  342. c = getCodeReturn.c;
  343. lc = getCodeReturn.lc;
  344. } else {
  345. if (!pl.p) {
  346. throw 'hufDecode issues';
  347. }
  348. var j;
  349. for (j = 0; j < pl.lit; j++) {
  350. var l = hufLength(encodingTable[pl.p[j]]);
  351. while (lc < l && inOffset.value < inOffsetEnd) {
  352. getChar(c, lc, uInt8Array, inOffset);
  353. c = getCharReturn.c;
  354. lc = getCharReturn.lc;
  355. }
  356. if (lc >= l) {
  357. if (hufCode(encodingTable[pl.p[j]]) ==
  358. ((c >> (lc - l)) & ((1 << l) - 1))) {
  359. lc -= l;
  360. getCode(pl.p[j], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
  361. c = getCodeReturn.c;
  362. lc = getCodeReturn.lc;
  363. break;
  364. }
  365. }
  366. }
  367. if (j == pl.lit) {
  368. throw 'hufDecode issues';
  369. }
  370. }
  371. }
  372. }
  373. var i = (8 - ni) & 7;
  374. c >>= i;
  375. lc -= i;
  376. while (lc > 0) {
  377. var pl = decodingTable[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
  378. if (pl.len) {
  379. lc -= pl.len;
  380. getCode(pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
  381. c = getCodeReturn.c;
  382. lc = getCodeReturn.lc;
  383. } else {
  384. throw 'hufDecode issues';
  385. }
  386. }
  387. return true;
  388. }
  389. function hufUncompress(uInt8Array, inDataView, inOffset, nCompressed, outBuffer, outOffset, nRaw) {
  390. var initialInOffset = inOffset.value;
  391. var im = parseUint32(inDataView, inOffset);
  392. var iM = parseUint32(inDataView, inOffset);
  393. inOffset.value += 4;
  394. var nBits = parseUint32(inDataView, inOffset);
  395. inOffset.value += 4;
  396. if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) {
  397. throw 'Something wrong with HUF_ENCSIZE';
  398. }
  399. var freq = new Array(HUF_ENCSIZE);
  400. var hdec = new Array(HUF_DECSIZE);
  401. hufClearDecTable(hdec);
  402. var ni = nCompressed - (inOffset.value - initialInOffset);
  403. hufUnpackEncTable(uInt8Array, inDataView, inOffset, ni, im, iM, freq);
  404. if (nBits > 8 * (nCompressed - (inOffset.value - initialInOffset))) {
  405. throw 'Something wrong with hufUncompress';
  406. }
  407. hufBuildDecTable(freq, im, iM, hdec);
  408. hufDecode(freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset);
  409. }
  410. function applyLut(lut, data, nData) {
  411. for (var i = 0; i < nData; ++i) {
  412. data[i] = lut[data[i]];
  413. }
  414. }
  415. function decompressPIZ(outBuffer, outOffset, uInt8Array, inDataView, inOffset, tmpBufSize, num_channels, exrChannelInfos, dataWidth, num_lines) {
  416. var bitmap = new Uint8Array(BITMAP_SIZE);
  417. var minNonZero = parseUint16(inDataView, inOffset);
  418. var maxNonZero = parseUint16(inDataView, inOffset);
  419. if (maxNonZero >= BITMAP_SIZE) {
  420. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE'
  421. }
  422. if (minNonZero <= maxNonZero) {
  423. for (var i = 0; i < maxNonZero - minNonZero + 1; i++) {
  424. bitmap[i + minNonZero] = parseUint8(inDataView, inOffset);
  425. }
  426. }
  427. var lut = new Uint16Array(USHORT_RANGE);
  428. var maxValue = reverseLutFromBitmap(bitmap, lut);
  429. var length = parseUint32(inDataView, inOffset);
  430. hufUncompress(uInt8Array, inDataView, inOffset, length, outBuffer, outOffset, tmpBufSize);
  431. var pizChannelData = new Array(num_channels);
  432. var outBufferEnd = 0
  433. for (var i = 0; i < num_channels; i++) {
  434. var exrChannelInfo = exrChannelInfos[i];
  435. var pixelSize = 2; // assumes HALF_FLOAT
  436. pizChannelData[i] = {};
  437. pizChannelData[i]['start'] = outBufferEnd;
  438. pizChannelData[i]['end'] = pizChannelData[i]['start'];
  439. pizChannelData[i]['nx'] = dataWidth;
  440. pizChannelData[i]['ny'] = num_lines;
  441. pizChannelData[i]['size'] = 1;
  442. outBufferEnd += pizChannelData[i].nx * pizChannelData[i].ny * pizChannelData[i].size;
  443. }
  444. var fooOffset = 0;
  445. for (var i = 0; i < num_channels; i++) {
  446. for (var j = 0; j < pizChannelData[i].size; ++j) {
  447. fooOffset += wav2Decode(
  448. j + fooOffset,
  449. outBuffer,
  450. pizChannelData[i].nx,
  451. pizChannelData[i].size,
  452. pizChannelData[i].ny,
  453. pizChannelData[i].nx * pizChannelData[i].size,
  454. maxValue
  455. );
  456. }
  457. }
  458. applyLut(lut, outBuffer, outBufferEnd);
  459. return true;
  460. }
  461. function parseNullTerminatedString( buffer, offset ) {
  462. var uintBuffer = new Uint8Array( buffer );
  463. var endOffset = 0;
  464. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  465. endOffset += 1;
  466. }
  467. var stringValue = new TextDecoder().decode(
  468. uintBuffer.slice( offset.value, offset.value + endOffset )
  469. );
  470. offset.value = offset.value + endOffset + 1;
  471. return stringValue;
  472. }
  473. function parseFixedLengthString( buffer, offset, size ) {
  474. var stringValue = new TextDecoder().decode(
  475. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  476. );
  477. offset.value = offset.value + size;
  478. return stringValue;
  479. }
  480. function parseUlong( dataView, offset ) {
  481. var uLong = dataView.getUint32( 0, true );
  482. offset.value = offset.value + ULONG_SIZE;
  483. return uLong;
  484. }
  485. function parseUint32( dataView, offset ) {
  486. var Uint32 = dataView.getUint32(offset.value, true);
  487. offset.value = offset.value + INT32_SIZE;
  488. return Uint32;
  489. }
  490. function parseUint8Array( uInt8Array, offset ) {
  491. var Uint8 = uInt8Array[offset.value];
  492. offset.value = offset.value + INT8_SIZE;
  493. return Uint8;
  494. }
  495. function parseUint8( dataView, offset ) {
  496. var Uint8 = dataView.getUint8(offset.value);
  497. offset.value = offset.value + INT8_SIZE;
  498. return Uint8;
  499. }
  500. function parseFloat32( dataView, offset ) {
  501. var float = dataView.getFloat32(offset.value, true);
  502. offset.value += FLOAT32_SIZE;
  503. return float;
  504. }
  505. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  506. function decodeFloat16( binary ) {
  507. var exponent = ( binary & 0x7C00 ) >> 10,
  508. fraction = binary & 0x03FF;
  509. return ( binary >> 15 ? - 1 : 1 ) * (
  510. exponent ?
  511. (
  512. exponent === 0x1F ?
  513. fraction ? NaN : Infinity :
  514. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  515. ) :
  516. 6.103515625e-5 * ( fraction / 0x400 )
  517. );
  518. }
  519. function parseUint16( dataView, offset ) {
  520. var Uint16 = dataView.getUint16( offset.value, true );
  521. offset.value += INT16_SIZE;
  522. return Uint16;
  523. }
  524. function parseFloat16( buffer, offset ) {
  525. return decodeFloat16( parseUint16( buffer, offset) );
  526. }
  527. function parseChlist( dataView, buffer, offset, size ) {
  528. var startOffset = offset.value;
  529. var channels = [];
  530. while ( offset.value < ( startOffset + size - 1 ) ) {
  531. var name = parseNullTerminatedString( buffer, offset );
  532. var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
  533. var pLinear = parseUint8( dataView, offset );
  534. offset.value += 3; // reserved, three chars
  535. var xSampling = parseUint32( dataView, offset );
  536. var ySampling = parseUint32( dataView, offset );
  537. channels.push( {
  538. name: name,
  539. pixelType: pixelType,
  540. pLinear: pLinear,
  541. xSampling: xSampling,
  542. ySampling: ySampling
  543. } );
  544. }
  545. offset.value += 1;
  546. return channels;
  547. }
  548. function parseChromaticities( dataView, offset ) {
  549. var redX = parseFloat32( dataView, offset );
  550. var redY = parseFloat32( dataView, offset );
  551. var greenX = parseFloat32( dataView, offset );
  552. var greenY = parseFloat32( dataView, offset );
  553. var blueX = parseFloat32( dataView, offset );
  554. var blueY = parseFloat32( dataView, offset );
  555. var whiteX = parseFloat32( dataView, offset );
  556. var whiteY = parseFloat32( dataView, offset );
  557. return { redX: redX, redY: redY, greenX, greenY, blueX, blueY, whiteX, whiteY };
  558. }
  559. function parseCompression( dataView, offset ) {
  560. var compressionCodes = [
  561. 'NO_COMPRESSION',
  562. 'RLE_COMPRESSION',
  563. 'ZIPS_COMPRESSION',
  564. 'ZIP_COMPRESSION',
  565. 'PIZ_COMPRESSION'
  566. ];
  567. var compression = parseUint8( dataView, offset );
  568. return compressionCodes[ compression ];
  569. }
  570. function parseBox2i( dataView, offset ) {
  571. var xMin = parseUint32( dataView, offset );
  572. var yMin = parseUint32( dataView, offset );
  573. var xMax = parseUint32( dataView, offset );
  574. var yMax = parseUint32( dataView, offset );
  575. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  576. }
  577. function parseLineOrder( dataView, offset ) {
  578. var lineOrders = [
  579. 'INCREASING_Y'
  580. ];
  581. var lineOrder = parseUint8( dataView, offset );
  582. return lineOrders[ lineOrder ];
  583. }
  584. function parseV2f( dataView, offset ) {
  585. var x = parseFloat32( dataView, offset );
  586. var y = parseFloat32( dataView, offset );
  587. return [ x, y ];
  588. }
  589. function parseValue( dataView, buffer, offset, type, size ) {
  590. if ( type == 'string' || type == 'iccProfile' ) {
  591. return parseFixedLengthString( buffer, offset, size );
  592. } else if ( type == 'chlist' ) {
  593. return parseChlist( dataView, buffer, offset, size );
  594. } else if ( type == 'chromaticities' ) {
  595. return parseChromaticities( dataView, offset );
  596. } else if ( type == 'compression' ) {
  597. return parseCompression( dataView, offset );
  598. } else if ( type == 'box2i' ) {
  599. return parseBox2i( dataView, offset );
  600. } else if ( type == 'lineOrder' ) {
  601. return parseLineOrder( dataView, offset );
  602. } else if ( type == 'float' ) {
  603. return parseFloat32( dataView, offset );
  604. } else if ( type == 'v2f' ) {
  605. return parseV2f( dataView, offset );
  606. } else if ( type == 'int' ) {
  607. return parseUint32( dataView, offset );
  608. } else {
  609. throw 'Cannot parse value for unsupported type: ' + type;
  610. }
  611. }
  612. var bufferDataView = new DataView(buffer);
  613. var uInt8Array = new Uint8Array(buffer);
  614. var EXRHeader = {};
  615. var magic = bufferDataView.getUint32( 0, true );
  616. var versionByteZero = bufferDataView.getUint8( 4, true );
  617. var fullMask = bufferDataView.getUint8( 5, true );
  618. // start of header
  619. var offset = { value: 8 }; // start at 8, after magic stuff
  620. var keepReading = true;
  621. while ( keepReading ) {
  622. var attributeName = parseNullTerminatedString( buffer, offset );
  623. if ( attributeName == 0 ) {
  624. keepReading = false;
  625. } else {
  626. var attributeType = parseNullTerminatedString( buffer, offset );
  627. var attributeSize = parseUint32( bufferDataView, offset );
  628. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  629. EXRHeader[ attributeName ] = attributeValue;
  630. }
  631. }
  632. // offsets
  633. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  634. var scanlineBlockSize = 1; // 1 for NO_COMPRESSION
  635. if (EXRHeader.compression == 'PIZ_COMPRESSION') {
  636. scanlineBlockSize = 32;
  637. }
  638. var numBlocks = dataWindowHeight / scanlineBlockSize;
  639. for ( var i = 0; i < numBlocks; i ++ ) {
  640. var scanlineOffset = parseUlong( bufferDataView, offset );
  641. }
  642. // we should be passed the scanline offset table, start reading pixel data
  643. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  644. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  645. var numChannels = EXRHeader.channels.length;
  646. var byteArray = new Float32Array( width * height * numChannels );
  647. var channelOffsets = {
  648. R: 0,
  649. G: 1,
  650. B: 2,
  651. A: 3
  652. };
  653. if (EXRHeader.compression == 'NO_COMPRESSION') {
  654. for ( var y = 0; y < height; y ++ ) {
  655. var y_scanline = parseUint32( bufferDataView, offset );
  656. var dataSize = parseUint32( bufferDataView, offset );
  657. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  658. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  659. if ( EXRHeader.channels[ channelID ].pixelType == 1 ) {
  660. // HALF
  661. for ( var x = 0; x < width; x ++ ) {
  662. var val = parseFloat16( bufferDataView, offset );
  663. byteArray[ ( ( (height - y_scanline) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  664. }
  665. } else {
  666. throw 'Only supported pixel format is HALF';
  667. }
  668. }
  669. }
  670. } else if (EXRHeader.compression == 'PIZ_COMPRESSION') {
  671. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx++ ) {
  672. var line_no = parseUint32( bufferDataView, offset );
  673. var data_len = parseUint32( bufferDataView, offset );
  674. var tmpBufferSize = width * scanlineBlockSize * (EXRHeader.channels.length * BYTES_PER_HALF);
  675. var tmpBuffer = new Uint16Array(tmpBufferSize);
  676. var tmpOffset = { value: 0 };
  677. decompressPIZ(tmpBuffer, tmpOffset, uInt8Array, bufferDataView, offset, tmpBufferSize, numChannels, EXRHeader.channels, width, scanlineBlockSize);
  678. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  679. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  680. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  681. if ( EXRHeader.channels[ channelID ].pixelType == 1 ) {
  682. // HALF
  683. for ( var x = 0; x < width; x ++ ) {
  684. var val = decodeFloat16(tmpBuffer[ (channelID * (scanlineBlockSize * width)) + (line_y * width) + x ]);
  685. var true_y = line_y + (scanlineBlockIdx * scanlineBlockSize);
  686. byteArray[ ( ( (height - true_y) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  687. }
  688. } else {
  689. throw 'Only supported pixel format is HALF';
  690. }
  691. }
  692. }
  693. }
  694. } else {
  695. throw 'Cannot decompress unsupported compression';
  696. }
  697. return {
  698. header: EXRHeader,
  699. width: width,
  700. height: height,
  701. data: byteArray,
  702. format: THREE.RGBFormat,
  703. type: THREE.FloatType
  704. };
  705. };