EXRLoader.js 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449
  1. /**
  2. * OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression.
  3. * Supports reading as UnsignedByte, HalfFloat and Float type data texture.
  4. *
  5. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  6. * implementation, so I have preserved their copyright notices.
  7. */
  8. // /*
  9. // Copyright (c) 2014 - 2017, Syoyo Fujita
  10. // All rights reserved.
  11. // Redistribution and use in source and binary forms, with or without
  12. // modification, are permitted provided that the following conditions are met:
  13. // * Redistributions of source code must retain the above copyright
  14. // notice, this list of conditions and the following disclaimer.
  15. // * Redistributions in binary form must reproduce the above copyright
  16. // notice, this list of conditions and the following disclaimer in the
  17. // documentation and/or other materials provided with the distribution.
  18. // * Neither the name of the Syoyo Fujita nor the
  19. // names of its contributors may be used to endorse or promote products
  20. // derived from this software without specific prior written permission.
  21. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  22. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  23. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  24. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  25. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  26. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  27. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  28. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  29. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  30. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  31. // */
  32. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  33. // ///////////////////////////////////////////////////////////////////////////
  34. // //
  35. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  36. // // Digital Ltd. LLC
  37. // //
  38. // // All rights reserved.
  39. // //
  40. // // Redistribution and use in source and binary forms, with or without
  41. // // modification, are permitted provided that the following conditions are
  42. // // met:
  43. // // * Redistributions of source code must retain the above copyright
  44. // // notice, this list of conditions and the following disclaimer.
  45. // // * Redistributions in binary form must reproduce the above
  46. // // copyright notice, this list of conditions and the following disclaimer
  47. // // in the documentation and/or other materials provided with the
  48. // // distribution.
  49. // // * Neither the name of Industrial Light & Magic nor the names of
  50. // // its contributors may be used to endorse or promote products derived
  51. // // from this software without specific prior written permission.
  52. // //
  53. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  54. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  55. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  56. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  57. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  58. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  59. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  60. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  61. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  62. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  63. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  64. // //
  65. // ///////////////////////////////////////////////////////////////////////////
  66. // // End of OpenEXR license -------------------------------------------------
  67. THREE.EXRLoader = function ( manager ) {
  68. THREE.DataTextureLoader.call( this, manager );
  69. this.type = THREE.FloatType;
  70. };
  71. THREE.EXRLoader.prototype = Object.assign( Object.create( THREE.DataTextureLoader.prototype ), {
  72. constructor: THREE.EXRLoader,
  73. parse: function ( buffer ) {
  74. const USHORT_RANGE = ( 1 << 16 );
  75. const BITMAP_SIZE = ( USHORT_RANGE >> 3 );
  76. const HUF_ENCBITS = 16; // literal (value) bit length
  77. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  78. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  79. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  80. const HUF_DECMASK = HUF_DECSIZE - 1;
  81. const NBITS = 16;
  82. const A_OFFSET = 1 << ( NBITS - 1 );
  83. const MOD_MASK = ( 1 << NBITS ) - 1;
  84. const SHORT_ZEROCODE_RUN = 59;
  85. const LONG_ZEROCODE_RUN = 63;
  86. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  87. const ULONG_SIZE = 8;
  88. const FLOAT32_SIZE = 4;
  89. const INT32_SIZE = 4;
  90. const INT16_SIZE = 2;
  91. const INT8_SIZE = 1;
  92. const STATIC_HUFFMAN = 0;
  93. const DEFLATE = 1;
  94. const UNKNOWN = 0;
  95. const LOSSY_DCT = 1;
  96. const RLE = 2;
  97. const logBase = Math.pow( 2.7182818, 2.2 );
  98. var tmpDataView = new DataView( new ArrayBuffer( 8 ) );
  99. function frexp( value ) {
  100. if ( value === 0 ) return [ value, 0 ];
  101. tmpDataView.setFloat64( 0, value );
  102. var bits = ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF;
  103. if ( bits === 0 ) { // denormal
  104. tmpDataView.setFloat64( 0, value * Math.pow( 2, 64 ) ); // exp + 64
  105. bits = ( ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF ) - 64;
  106. }
  107. var exponent = bits - 1022;
  108. var mantissa = ldexp( value, - exponent );
  109. return [ mantissa, exponent ];
  110. }
  111. function ldexp( mantissa, exponent ) {
  112. var steps = Math.min( 3, Math.ceil( Math.abs( exponent ) / 1023 ) );
  113. var result = mantissa;
  114. for ( var i = 0; i < steps; i ++ )
  115. result *= Math.pow( 2, Math.floor( ( exponent + i ) / steps ) );
  116. return result;
  117. }
  118. function reverseLutFromBitmap( bitmap, lut ) {
  119. var k = 0;
  120. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  121. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  122. lut[ k ++ ] = i;
  123. }
  124. }
  125. var n = k - 1;
  126. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  127. return n;
  128. }
  129. function hufClearDecTable( hdec ) {
  130. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  131. hdec[ i ] = {};
  132. hdec[ i ].len = 0;
  133. hdec[ i ].lit = 0;
  134. hdec[ i ].p = null;
  135. }
  136. }
  137. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  138. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  139. while ( lc < nBits ) {
  140. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  141. lc += 8;
  142. }
  143. lc -= nBits;
  144. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  145. getBitsReturn.c = c;
  146. getBitsReturn.lc = lc;
  147. }
  148. const hufTableBuffer = new Array( 59 );
  149. function hufCanonicalCodeTable( hcode ) {
  150. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  151. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  152. var c = 0;
  153. for ( var i = 58; i > 0; -- i ) {
  154. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  155. hufTableBuffer[ i ] = c;
  156. c = nc;
  157. }
  158. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  159. var l = hcode[ i ];
  160. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  161. }
  162. }
  163. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  164. var p = inOffset;
  165. var c = 0;
  166. var lc = 0;
  167. for ( ; im <= iM; im ++ ) {
  168. if ( p.value - inOffset.value > ni ) return false;
  169. getBits( 6, c, lc, uInt8Array, p );
  170. var l = getBitsReturn.l;
  171. c = getBitsReturn.c;
  172. lc = getBitsReturn.lc;
  173. hcode[ im ] = l;
  174. if ( l == LONG_ZEROCODE_RUN ) {
  175. if ( p.value - inOffset.value > ni ) {
  176. throw 'Something wrong with hufUnpackEncTable';
  177. }
  178. getBits( 8, c, lc, uInt8Array, p );
  179. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  180. c = getBitsReturn.c;
  181. lc = getBitsReturn.lc;
  182. if ( im + zerun > iM + 1 ) {
  183. throw 'Something wrong with hufUnpackEncTable';
  184. }
  185. while ( zerun -- ) hcode[ im ++ ] = 0;
  186. im --;
  187. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  188. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  189. if ( im + zerun > iM + 1 ) {
  190. throw 'Something wrong with hufUnpackEncTable';
  191. }
  192. while ( zerun -- ) hcode[ im ++ ] = 0;
  193. im --;
  194. }
  195. }
  196. hufCanonicalCodeTable( hcode );
  197. }
  198. function hufLength( code ) {
  199. return code & 63;
  200. }
  201. function hufCode( code ) {
  202. return code >> 6;
  203. }
  204. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  205. for ( ; im <= iM; im ++ ) {
  206. var c = hufCode( hcode[ im ] );
  207. var l = hufLength( hcode[ im ] );
  208. if ( c >> l ) {
  209. throw 'Invalid table entry';
  210. }
  211. if ( l > HUF_DECBITS ) {
  212. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  213. if ( pl.len ) {
  214. throw 'Invalid table entry';
  215. }
  216. pl.lit ++;
  217. if ( pl.p ) {
  218. var p = pl.p;
  219. pl.p = new Array( pl.lit );
  220. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  221. pl.p[ i ] = p[ i ];
  222. }
  223. } else {
  224. pl.p = new Array( 1 );
  225. }
  226. pl.p[ pl.lit - 1 ] = im;
  227. } else if ( l ) {
  228. var plOffset = 0;
  229. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  230. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  231. if ( pl.len || pl.p ) {
  232. throw 'Invalid table entry';
  233. }
  234. pl.len = l;
  235. pl.lit = im;
  236. plOffset ++;
  237. }
  238. }
  239. }
  240. return true;
  241. }
  242. const getCharReturn = { c: 0, lc: 0 };
  243. function getChar( c, lc, uInt8Array, inOffset ) {
  244. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  245. lc += 8;
  246. getCharReturn.c = c;
  247. getCharReturn.lc = lc;
  248. }
  249. const getCodeReturn = { c: 0, lc: 0 };
  250. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  251. if ( po == rlc ) {
  252. if ( lc < 8 ) {
  253. getChar( c, lc, uInt8Array, inOffset );
  254. c = getCharReturn.c;
  255. lc = getCharReturn.lc;
  256. }
  257. lc -= 8;
  258. var cs = ( c >> lc );
  259. var cs = new Uint8Array( [ cs ] )[ 0 ];
  260. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  261. return false;
  262. }
  263. var s = outBuffer[ outBufferOffset.value - 1 ];
  264. while ( cs -- > 0 ) {
  265. outBuffer[ outBufferOffset.value ++ ] = s;
  266. }
  267. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  268. outBuffer[ outBufferOffset.value ++ ] = po;
  269. } else {
  270. return false;
  271. }
  272. getCodeReturn.c = c;
  273. getCodeReturn.lc = lc;
  274. }
  275. function UInt16( value ) {
  276. return ( value & 0xFFFF );
  277. }
  278. function Int16( value ) {
  279. var ref = UInt16( value );
  280. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  281. }
  282. const wdec14Return = { a: 0, b: 0 };
  283. function wdec14( l, h ) {
  284. var ls = Int16( l );
  285. var hs = Int16( h );
  286. var hi = hs;
  287. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  288. var as = ai;
  289. var bs = ai - hi;
  290. wdec14Return.a = as;
  291. wdec14Return.b = bs;
  292. }
  293. function wdec16( l, h ) {
  294. var m = UInt16( l );
  295. var d = UInt16( h );
  296. var bb = ( m - ( d >> 1 ) ) & MOD_MASK;
  297. var aa = ( d + bb - A_OFFSET ) & MOD_MASK;
  298. wdec14Return.a = aa;
  299. wdec14Return.b = bb;
  300. }
  301. function wav2Decode( buffer, j, nx, ox, ny, oy, mx ) {
  302. var w14 = mx < ( 1 << 14 );
  303. var n = ( nx > ny ) ? ny : nx;
  304. var p = 1;
  305. var p2;
  306. while ( p <= n ) p <<= 1;
  307. p >>= 1;
  308. p2 = p;
  309. p >>= 1;
  310. while ( p >= 1 ) {
  311. var py = 0;
  312. var ey = py + oy * ( ny - p2 );
  313. var oy1 = oy * p;
  314. var oy2 = oy * p2;
  315. var ox1 = ox * p;
  316. var ox2 = ox * p2;
  317. var i00, i01, i10, i11;
  318. for ( ; py <= ey; py += oy2 ) {
  319. var px = py;
  320. var ex = py + ox * ( nx - p2 );
  321. for ( ; px <= ex; px += ox2 ) {
  322. var p01 = px + ox1;
  323. var p10 = px + oy1;
  324. var p11 = p10 + ox1;
  325. if ( w14 ) {
  326. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  327. i00 = wdec14Return.a;
  328. i10 = wdec14Return.b;
  329. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  330. i01 = wdec14Return.a;
  331. i11 = wdec14Return.b;
  332. wdec14( i00, i01 );
  333. buffer[ px + j ] = wdec14Return.a;
  334. buffer[ p01 + j ] = wdec14Return.b;
  335. wdec14( i10, i11 );
  336. buffer[ p10 + j ] = wdec14Return.a;
  337. buffer[ p11 + j ] = wdec14Return.b;
  338. } else {
  339. wdec16( buffer[ px + j ], buffer[ p10 + j ] );
  340. i00 = wdec14Return.a;
  341. i10 = wdec14Return.b;
  342. wdec16( buffer[ p01 + j ], buffer[ p11 + j ] );
  343. i01 = wdec14Return.a;
  344. i11 = wdec14Return.b;
  345. wdec16( i00, i01 );
  346. buffer[ px + j ] = wdec14Return.a;
  347. buffer[ p01 + j ] = wdec14Return.b;
  348. wdec16( i10, i11 );
  349. buffer[ p10 + j ] = wdec14Return.a;
  350. buffer[ p11 + j ] = wdec14Return.b;
  351. }
  352. }
  353. if ( nx & p ) {
  354. var p10 = px + oy1;
  355. if ( w14 )
  356. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  357. else
  358. wdec16( buffer[ px + j ], buffer[ p10 + j ] );
  359. i00 = wdec14Return.a;
  360. buffer[ p10 + j ] = wdec14Return.b;
  361. buffer[ px + j ] = i00;
  362. }
  363. }
  364. if ( ny & p ) {
  365. var px = py;
  366. var ex = py + ox * ( nx - p2 );
  367. for ( ; px <= ex; px += ox2 ) {
  368. var p01 = px + ox1;
  369. if ( w14 )
  370. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  371. else
  372. wdec16( buffer[ px + j ], buffer[ p01 + j ] );
  373. i00 = wdec14Return.a;
  374. buffer[ p01 + j ] = wdec14Return.b;
  375. buffer[ px + j ] = i00;
  376. }
  377. }
  378. p2 = p;
  379. p >>= 1;
  380. }
  381. return py;
  382. }
  383. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  384. var c = 0;
  385. var lc = 0;
  386. var outBufferEndOffset = no;
  387. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  388. while ( inOffset.value < inOffsetEnd ) {
  389. getChar( c, lc, uInt8Array, inOffset );
  390. c = getCharReturn.c;
  391. lc = getCharReturn.lc;
  392. while ( lc >= HUF_DECBITS ) {
  393. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  394. var pl = decodingTable[ index ];
  395. if ( pl.len ) {
  396. lc -= pl.len;
  397. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  398. c = getCodeReturn.c;
  399. lc = getCodeReturn.lc;
  400. } else {
  401. if ( ! pl.p ) {
  402. throw 'hufDecode issues';
  403. }
  404. var j;
  405. for ( j = 0; j < pl.lit; j ++ ) {
  406. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  407. while ( lc < l && inOffset.value < inOffsetEnd ) {
  408. getChar( c, lc, uInt8Array, inOffset );
  409. c = getCharReturn.c;
  410. lc = getCharReturn.lc;
  411. }
  412. if ( lc >= l ) {
  413. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  414. lc -= l;
  415. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  416. c = getCodeReturn.c;
  417. lc = getCodeReturn.lc;
  418. break;
  419. }
  420. }
  421. }
  422. if ( j == pl.lit ) {
  423. throw 'hufDecode issues';
  424. }
  425. }
  426. }
  427. }
  428. var i = ( 8 - ni ) & 7;
  429. c >>= i;
  430. lc -= i;
  431. while ( lc > 0 ) {
  432. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  433. if ( pl.len ) {
  434. lc -= pl.len;
  435. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  436. c = getCodeReturn.c;
  437. lc = getCodeReturn.lc;
  438. } else {
  439. throw 'hufDecode issues';
  440. }
  441. }
  442. return true;
  443. }
  444. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  445. var outOffset = { value: 0 };
  446. var initialInOffset = inOffset.value;
  447. var im = parseUint32( inDataView, inOffset );
  448. var iM = parseUint32( inDataView, inOffset );
  449. inOffset.value += 4;
  450. var nBits = parseUint32( inDataView, inOffset );
  451. inOffset.value += 4;
  452. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  453. throw 'Something wrong with HUF_ENCSIZE';
  454. }
  455. var freq = new Array( HUF_ENCSIZE );
  456. var hdec = new Array( HUF_DECSIZE );
  457. hufClearDecTable( hdec );
  458. var ni = nCompressed - ( inOffset.value - initialInOffset );
  459. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  460. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  461. throw 'Something wrong with hufUncompress';
  462. }
  463. hufBuildDecTable( freq, im, iM, hdec );
  464. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  465. }
  466. function applyLut( lut, data, nData ) {
  467. for ( var i = 0; i < nData; ++ i ) {
  468. data[ i ] = lut[ data[ i ] ];
  469. }
  470. }
  471. function predictor( source ) {
  472. for ( var t = 1; t < source.length; t ++ ) {
  473. var d = source[ t - 1 ] + source[ t ] - 128;
  474. source[ t ] = d;
  475. }
  476. }
  477. function interleaveScalar( source, out ) {
  478. var t1 = 0;
  479. var t2 = Math.floor( ( source.length + 1 ) / 2 );
  480. var s = 0;
  481. var stop = source.length - 1;
  482. while ( true ) {
  483. if ( s > stop ) break;
  484. out[ s ++ ] = source[ t1 ++ ];
  485. if ( s > stop ) break;
  486. out[ s ++ ] = source[ t2 ++ ];
  487. }
  488. }
  489. function decodeRunLength( source ) {
  490. var size = source.byteLength;
  491. var out = new Array();
  492. var p = 0;
  493. var reader = new DataView( source );
  494. while ( size > 0 ) {
  495. var l = reader.getInt8( p ++ );
  496. if ( l < 0 ) {
  497. var count = - l;
  498. size -= count + 1;
  499. for ( var i = 0; i < count; i ++ ) {
  500. out.push( reader.getUint8( p ++ ) );
  501. }
  502. } else {
  503. var count = l;
  504. size -= 2;
  505. var value = reader.getUint8( p ++ );
  506. for ( var i = 0; i < count + 1; i ++ ) {
  507. out.push( value );
  508. }
  509. }
  510. }
  511. return out;
  512. }
  513. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  514. var dataView = new DataView( outBuffer.buffer );
  515. var width = channelData[ cscSet.idx[ 0 ] ].width;
  516. var height = channelData[ cscSet.idx[ 0 ] ].height;
  517. var numComp = 3;
  518. var numFullBlocksX = Math.floor( width / 8.0 );
  519. var numBlocksX = Math.ceil( width / 8.0 );
  520. var numBlocksY = Math.ceil( height / 8.0 );
  521. var leftoverX = width - ( numBlocksX - 1 ) * 8;
  522. var leftoverY = height - ( numBlocksY - 1 ) * 8;
  523. var currAcComp = { value: 0 };
  524. var currDcComp = new Array( numComp );
  525. var dctData = new Array( numComp );
  526. var halfZigBlock = new Array( numComp );
  527. var rowBlock = new Array( numComp );
  528. var rowOffsets = new Array( numComp );
  529. for ( let comp = 0; comp < numComp; ++ comp ) {
  530. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  531. currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  532. dctData[ comp ] = new Float32Array( 64 );
  533. halfZigBlock[ comp ] = new Uint16Array( 64 );
  534. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  535. }
  536. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  537. var maxY = 8;
  538. if ( blocky == numBlocksY - 1 )
  539. maxY = leftoverY;
  540. var maxX = 8;
  541. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  542. if ( blockx == numBlocksX - 1 )
  543. maxX = leftoverX;
  544. for ( let comp = 0; comp < numComp; ++ comp ) {
  545. halfZigBlock[ comp ].fill( 0 );
  546. // set block DC component
  547. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ];
  548. // set block AC components
  549. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
  550. // UnZigZag block to float
  551. unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
  552. // decode float dct
  553. dctInverse( dctData[ comp ] );
  554. }
  555. if ( numComp == 3 ) {
  556. csc709Inverse( dctData );
  557. }
  558. for ( let comp = 0; comp < numComp; ++ comp ) {
  559. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  560. }
  561. } // blockx
  562. let offset = 0;
  563. for ( let comp = 0; comp < numComp; ++ comp ) {
  564. const type = channelData[ cscSet.idx[ comp ] ].type;
  565. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  566. offset = rowOffsets[ comp ][ y ];
  567. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  568. const src = blockx * 64 + ( ( y & 0x7 ) * 8 );
  569. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  570. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  571. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  572. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  573. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  574. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  575. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  576. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  577. offset += 8 * INT16_SIZE * type;
  578. }
  579. }
  580. // handle partial X blocks
  581. if ( numFullBlocksX != numBlocksX ) {
  582. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  583. const offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  584. const src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 );
  585. for ( let x = 0; x < maxX; ++ x ) {
  586. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  587. }
  588. }
  589. }
  590. } // comp
  591. } // blocky
  592. var halfRow = new Uint16Array( width );
  593. var dataView = new DataView( outBuffer.buffer );
  594. // convert channels back to float, if needed
  595. for ( var comp = 0; comp < numComp; ++ comp ) {
  596. channelData[ cscSet.idx[ comp ] ].decoded = true;
  597. var type = channelData[ cscSet.idx[ comp ] ].type;
  598. if ( channelData[ comp ].type != 2 ) continue;
  599. for ( var y = 0; y < height; ++ y ) {
  600. const offset = rowOffsets[ comp ][ y ];
  601. for ( var x = 0; x < width; ++ x ) {
  602. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  603. }
  604. for ( var x = 0; x < width; ++ x ) {
  605. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  606. }
  607. }
  608. }
  609. }
  610. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  611. var acValue;
  612. var dctComp = 1;
  613. while ( dctComp < 64 ) {
  614. acValue = acBuffer[ currAcComp.value ];
  615. if ( acValue == 0xff00 ) {
  616. dctComp = 64;
  617. } else if ( acValue >> 8 == 0xff ) {
  618. dctComp += acValue & 0xff;
  619. } else {
  620. halfZigBlock[ dctComp ] = acValue;
  621. dctComp ++;
  622. }
  623. currAcComp.value ++;
  624. }
  625. }
  626. function unZigZag( src, dst ) {
  627. dst[ 0 ] = decodeFloat16( src[ 0 ] );
  628. dst[ 1 ] = decodeFloat16( src[ 1 ] );
  629. dst[ 2 ] = decodeFloat16( src[ 5 ] );
  630. dst[ 3 ] = decodeFloat16( src[ 6 ] );
  631. dst[ 4 ] = decodeFloat16( src[ 14 ] );
  632. dst[ 5 ] = decodeFloat16( src[ 15 ] );
  633. dst[ 6 ] = decodeFloat16( src[ 27 ] );
  634. dst[ 7 ] = decodeFloat16( src[ 28 ] );
  635. dst[ 8 ] = decodeFloat16( src[ 2 ] );
  636. dst[ 9 ] = decodeFloat16( src[ 4 ] );
  637. dst[ 10 ] = decodeFloat16( src[ 7 ] );
  638. dst[ 11 ] = decodeFloat16( src[ 13 ] );
  639. dst[ 12 ] = decodeFloat16( src[ 16 ] );
  640. dst[ 13 ] = decodeFloat16( src[ 26 ] );
  641. dst[ 14 ] = decodeFloat16( src[ 29 ] );
  642. dst[ 15 ] = decodeFloat16( src[ 42 ] );
  643. dst[ 16 ] = decodeFloat16( src[ 3 ] );
  644. dst[ 17 ] = decodeFloat16( src[ 8 ] );
  645. dst[ 18 ] = decodeFloat16( src[ 12 ] );
  646. dst[ 19 ] = decodeFloat16( src[ 17 ] );
  647. dst[ 20 ] = decodeFloat16( src[ 25 ] );
  648. dst[ 21 ] = decodeFloat16( src[ 30 ] );
  649. dst[ 22 ] = decodeFloat16( src[ 41 ] );
  650. dst[ 23 ] = decodeFloat16( src[ 43 ] );
  651. dst[ 24 ] = decodeFloat16( src[ 9 ] );
  652. dst[ 25 ] = decodeFloat16( src[ 11 ] );
  653. dst[ 26 ] = decodeFloat16( src[ 18 ] );
  654. dst[ 27 ] = decodeFloat16( src[ 24 ] );
  655. dst[ 28 ] = decodeFloat16( src[ 31 ] );
  656. dst[ 29 ] = decodeFloat16( src[ 40 ] );
  657. dst[ 30 ] = decodeFloat16( src[ 44 ] );
  658. dst[ 31 ] = decodeFloat16( src[ 53 ] );
  659. dst[ 32 ] = decodeFloat16( src[ 10 ] );
  660. dst[ 33 ] = decodeFloat16( src[ 19 ] );
  661. dst[ 34 ] = decodeFloat16( src[ 23 ] );
  662. dst[ 35 ] = decodeFloat16( src[ 32 ] );
  663. dst[ 36 ] = decodeFloat16( src[ 39 ] );
  664. dst[ 37 ] = decodeFloat16( src[ 45 ] );
  665. dst[ 38 ] = decodeFloat16( src[ 52 ] );
  666. dst[ 39 ] = decodeFloat16( src[ 54 ] );
  667. dst[ 40 ] = decodeFloat16( src[ 20 ] );
  668. dst[ 41 ] = decodeFloat16( src[ 22 ] );
  669. dst[ 42 ] = decodeFloat16( src[ 33 ] );
  670. dst[ 43 ] = decodeFloat16( src[ 38 ] );
  671. dst[ 44 ] = decodeFloat16( src[ 46 ] );
  672. dst[ 45 ] = decodeFloat16( src[ 51 ] );
  673. dst[ 46 ] = decodeFloat16( src[ 55 ] );
  674. dst[ 47 ] = decodeFloat16( src[ 60 ] );
  675. dst[ 48 ] = decodeFloat16( src[ 21 ] );
  676. dst[ 49 ] = decodeFloat16( src[ 34 ] );
  677. dst[ 50 ] = decodeFloat16( src[ 37 ] );
  678. dst[ 51 ] = decodeFloat16( src[ 47 ] );
  679. dst[ 52 ] = decodeFloat16( src[ 50 ] );
  680. dst[ 53 ] = decodeFloat16( src[ 56 ] );
  681. dst[ 54 ] = decodeFloat16( src[ 59 ] );
  682. dst[ 55 ] = decodeFloat16( src[ 61 ] );
  683. dst[ 56 ] = decodeFloat16( src[ 35 ] );
  684. dst[ 57 ] = decodeFloat16( src[ 36 ] );
  685. dst[ 58 ] = decodeFloat16( src[ 48 ] );
  686. dst[ 59 ] = decodeFloat16( src[ 49 ] );
  687. dst[ 60 ] = decodeFloat16( src[ 57 ] );
  688. dst[ 61 ] = decodeFloat16( src[ 58 ] );
  689. dst[ 62 ] = decodeFloat16( src[ 62 ] );
  690. dst[ 63 ] = decodeFloat16( src[ 63 ] );
  691. }
  692. function dctInverse( data ) {
  693. const a = 0.5 * Math.cos( 3.14159 / 4.0 );
  694. const b = 0.5 * Math.cos( 3.14159 / 16.0 );
  695. const c = 0.5 * Math.cos( 3.14159 / 8.0 );
  696. const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
  697. const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
  698. const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
  699. const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
  700. var alpha = new Array( 4 );
  701. var beta = new Array( 4 );
  702. var theta = new Array( 4 );
  703. var gamma = new Array( 4 );
  704. for ( var row = 0; row < 8; ++ row ) {
  705. var rowPtr = row * 8;
  706. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  707. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  708. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  709. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  710. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  711. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  712. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  713. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  714. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  715. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  716. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  717. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  718. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  719. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  720. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  721. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  722. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  723. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  724. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  725. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  726. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  727. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  728. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  729. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  730. }
  731. for ( var column = 0; column < 8; ++ column ) {
  732. alpha[ 0 ] = c * data[ 16 + column ];
  733. alpha[ 1 ] = f * data[ 16 + column ];
  734. alpha[ 2 ] = c * data[ 48 + column ];
  735. alpha[ 3 ] = f * data[ 48 + column ];
  736. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  737. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  738. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  739. beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  740. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  741. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  742. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  743. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  744. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  745. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  746. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  747. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  748. data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
  749. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  750. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  751. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  752. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  753. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  754. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  755. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  756. }
  757. }
  758. function csc709Inverse( data ) {
  759. for ( var i = 0; i < 64; ++ i ) {
  760. var y = data[ 0 ][ i ];
  761. var cb = data[ 1 ][ i ];
  762. var cr = data[ 2 ][ i ];
  763. data[ 0 ][ i ] = y + 1.5747 * cr;
  764. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  765. data[ 2 ][ i ] = y + 1.8556 * cb;
  766. }
  767. }
  768. function convertToHalf( src, dst, idx ) {
  769. for ( var i = 0; i < 64; ++ i ) {
  770. dst[ idx + i ] = encodeFloat16( toLinear( src[ i ] ) );
  771. }
  772. }
  773. function toLinear( float ) {
  774. if ( float <= 1 ) {
  775. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  776. } else {
  777. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  778. }
  779. }
  780. function uncompressRAW( info ) {
  781. return new DataView( info.array.buffer, info.offset.value, info.size );
  782. }
  783. function uncompressRLE( info ) {
  784. var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  785. var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  786. var tmpBuffer = new Uint8Array( rawBuffer.length );
  787. predictor( rawBuffer ); // revert predictor
  788. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  789. return new DataView( tmpBuffer.buffer );
  790. }
  791. function uncompressZIP( info ) {
  792. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  793. if ( typeof Inflate === 'undefined' ) {
  794. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  795. }
  796. var inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  797. var rawBuffer = new Uint8Array( inflate.decompress().buffer );
  798. var tmpBuffer = new Uint8Array( rawBuffer.length );
  799. predictor( rawBuffer ); // revert predictor
  800. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  801. return new DataView( tmpBuffer.buffer );
  802. }
  803. function uncompressPIZ( info ) {
  804. var inDataView = info.viewer;
  805. var inOffset = { value: info.offset.value };
  806. var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
  807. var outBuffer = new Uint16Array( tmpBufSize );
  808. var bitmap = new Uint8Array( BITMAP_SIZE );
  809. // Setup channel info
  810. var outBufferEnd = 0;
  811. var pizChannelData = new Array( info.channels );
  812. for ( var i = 0; i < info.channels; i ++ ) {
  813. pizChannelData[ i ] = {};
  814. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  815. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  816. pizChannelData[ i ][ 'nx' ] = info.width;
  817. pizChannelData[ i ][ 'ny' ] = info.lines;
  818. pizChannelData[ i ][ 'size' ] = info.type;
  819. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  820. }
  821. // Read range compression data
  822. var minNonZero = parseUint16( inDataView, inOffset );
  823. var maxNonZero = parseUint16( inDataView, inOffset );
  824. if ( maxNonZero >= BITMAP_SIZE ) {
  825. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  826. }
  827. if ( minNonZero <= maxNonZero ) {
  828. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  829. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  830. }
  831. }
  832. // Reverse LUT
  833. var lut = new Uint16Array( USHORT_RANGE );
  834. var maxValue = reverseLutFromBitmap( bitmap, lut );
  835. var length = parseUint32( inDataView, inOffset );
  836. // Huffman decoding
  837. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
  838. // Wavelet decoding
  839. for ( var i = 0; i < info.channels; ++ i ) {
  840. var cd = pizChannelData[ i ];
  841. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  842. wav2Decode(
  843. outBuffer,
  844. cd.start + j,
  845. cd.nx,
  846. cd.size,
  847. cd.ny,
  848. cd.nx * cd.size,
  849. maxValue
  850. );
  851. }
  852. }
  853. // Expand the pixel data to their original range
  854. applyLut( lut, outBuffer, outBufferEnd );
  855. // Rearrange the pixel data into the format expected by the caller.
  856. var tmpOffset = 0;
  857. var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  858. for ( var y = 0; y < info.lines; y ++ ) {
  859. for ( var c = 0; c < info.channels; c ++ ) {
  860. var cd = pizChannelData[ c ];
  861. var n = cd.nx * cd.size;
  862. var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  863. tmpBuffer.set( cp, tmpOffset );
  864. tmpOffset += n * INT16_SIZE;
  865. cd.end += n;
  866. }
  867. }
  868. return new DataView( tmpBuffer.buffer );
  869. }
  870. function uncompressPXR( info ) {
  871. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  872. if ( typeof Inflate === 'undefined' ) {
  873. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  874. }
  875. const inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  876. const rawBuffer = new Uint8Array( inflate.decompress().buffer );
  877. const sz = info.lines * info.channels * info.width;
  878. const tmpBuffer = ( info.type == 1 ) ? new Uint16Array( sz ) : new Uint32Array( sz );
  879. let tmpBufferEnd = 0;
  880. let writePtr = 0;
  881. const ptr = new Array( 4 );
  882. for ( let y = 0; y < info.lines; y ++ ) {
  883. for ( let c = 0; c < info.channels; c ++ ) {
  884. let pixel = 0;
  885. switch ( info.type ) {
  886. case 1:
  887. ptr[ 0 ] = tmpBufferEnd;
  888. ptr[ 1 ] = ptr[ 0 ] + info.width;
  889. tmpBufferEnd = ptr[ 1 ] + info.width;
  890. for ( let j = 0; j < info.width; ++ j ) {
  891. const diff = ( rawBuffer[ ptr[ 0 ] ++ ] << 8 ) | rawBuffer[ ptr[ 1 ] ++ ];
  892. pixel += diff;
  893. tmpBuffer[ writePtr ] = pixel;
  894. writePtr ++;
  895. }
  896. break;
  897. case 2:
  898. ptr[ 0 ] = tmpBufferEnd;
  899. ptr[ 1 ] = ptr[ 0 ] + info.width;
  900. ptr[ 2 ] = ptr[ 1 ] + info.width;
  901. tmpBufferEnd = ptr[ 2 ] + info.width;
  902. for ( let j = 0; j < info.width; ++ j ) {
  903. const diff = ( rawBuffer[ ptr[ 0 ] ++ ] << 24 ) | ( rawBuffer[ ptr[ 1 ] ++ ] << 16 ) | ( rawBuffer[ ptr[ 2 ] ++ ] << 8 );
  904. pixel += diff;
  905. tmpBuffer[ writePtr ] = pixel;
  906. writePtr ++;
  907. }
  908. break;
  909. }
  910. }
  911. }
  912. return new DataView( tmpBuffer.buffer );
  913. }
  914. function uncompressDWA( info ) {
  915. var inDataView = info.viewer;
  916. var inOffset = { value: info.offset.value };
  917. var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) );
  918. // Read compression header information
  919. var dwaHeader = {
  920. version: parseInt64( inDataView, inOffset ),
  921. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  922. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  923. acCompressedSize: parseInt64( inDataView, inOffset ),
  924. dcCompressedSize: parseInt64( inDataView, inOffset ),
  925. rleCompressedSize: parseInt64( inDataView, inOffset ),
  926. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  927. rleRawSize: parseInt64( inDataView, inOffset ),
  928. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  929. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  930. acCompression: parseInt64( inDataView, inOffset )
  931. };
  932. if ( dwaHeader.version < 2 )
  933. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported';
  934. // Read channel ruleset information
  935. var channelRules = new Array();
  936. var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  937. while ( ruleSize > 0 ) {
  938. var name = parseNullTerminatedString( inDataView.buffer, inOffset );
  939. var value = parseUint8( inDataView, inOffset );
  940. var compression = ( value >> 2 ) & 3;
  941. var csc = ( value >> 4 ) - 1;
  942. var index = new Int8Array( [ csc ] )[ 0 ];
  943. var type = parseUint8( inDataView, inOffset );
  944. channelRules.push( {
  945. name: name,
  946. index: index,
  947. type: type,
  948. compression: compression,
  949. } );
  950. ruleSize -= name.length + 3;
  951. }
  952. // Classify channels
  953. var channels = EXRHeader.channels;
  954. var channelData = new Array( info.channels );
  955. for ( var i = 0; i < info.channels; ++ i ) {
  956. var cd = channelData[ i ] = {};
  957. var channel = channels[ i ];
  958. cd.name = channel.name;
  959. cd.compression = UNKNOWN;
  960. cd.decoded = false;
  961. cd.type = channel.pixelType;
  962. cd.pLinear = channel.pLinear;
  963. cd.width = info.width;
  964. cd.height = info.lines;
  965. }
  966. var cscSet = {
  967. idx: new Array( 3 )
  968. };
  969. for ( var offset = 0; offset < info.channels; ++ offset ) {
  970. var cd = channelData[ offset ];
  971. for ( var i = 0; i < channelRules.length; ++ i ) {
  972. var rule = channelRules[ i ];
  973. if ( cd.name == rule.name ) {
  974. cd.compression = rule.compression;
  975. if ( rule.index >= 0 ) {
  976. cscSet.idx[ rule.index ] = offset;
  977. }
  978. cd.offset = offset;
  979. }
  980. }
  981. }
  982. // Read DCT - AC component data
  983. if ( dwaHeader.acCompressedSize > 0 ) {
  984. switch ( dwaHeader.acCompression ) {
  985. case STATIC_HUFFMAN:
  986. var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  987. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  988. break;
  989. case DEFLATE:
  990. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  991. var inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  992. var acBuffer = new Uint16Array( inflate.decompress().buffer );
  993. inOffset.value += dwaHeader.totalAcUncompressedCount;
  994. break;
  995. }
  996. }
  997. // Read DCT - DC component data
  998. if ( dwaHeader.dcCompressedSize > 0 ) {
  999. var zlibInfo = {
  1000. array: info.array,
  1001. offset: inOffset,
  1002. size: dwaHeader.dcCompressedSize
  1003. };
  1004. var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  1005. inOffset.value += dwaHeader.dcCompressedSize;
  1006. }
  1007. // Read RLE compressed data
  1008. if ( dwaHeader.rleRawSize > 0 ) {
  1009. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  1010. var inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  1011. var rleBuffer = decodeRunLength( inflate.decompress().buffer );
  1012. inOffset.value += dwaHeader.rleCompressedSize;
  1013. }
  1014. // Prepare outbuffer data offset
  1015. var outBufferEnd = 0;
  1016. var rowOffsets = new Array( channelData.length );
  1017. for ( var i = 0; i < rowOffsets.length; ++ i ) {
  1018. rowOffsets[ i ] = new Array();
  1019. }
  1020. for ( var y = 0; y < info.lines; ++ y ) {
  1021. for ( var chan = 0; chan < channelData.length; ++ chan ) {
  1022. rowOffsets[ chan ].push( outBufferEnd );
  1023. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  1024. }
  1025. }
  1026. // Lossy DCT decode RGB channels
  1027. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
  1028. // Decode other channels
  1029. for ( var i = 0; i < channelData.length; ++ i ) {
  1030. var cd = channelData[ i ];
  1031. if ( cd.decoded ) continue;
  1032. switch ( cd.compression ) {
  1033. case RLE:
  1034. var row = 0;
  1035. var rleOffset = 0;
  1036. for ( var y = 0; y < info.lines; ++ y ) {
  1037. var rowOffsetBytes = rowOffsets[ i ][ row ];
  1038. for ( var x = 0; x < cd.width; ++ x ) {
  1039. for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  1040. outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  1041. }
  1042. rleOffset ++;
  1043. }
  1044. row ++;
  1045. }
  1046. break;
  1047. case LOSSY_DCT: // skip
  1048. default:
  1049. throw 'EXRLoader.parse: unsupported channel compression';
  1050. }
  1051. }
  1052. return new DataView( outBuffer.buffer );
  1053. }
  1054. function parseNullTerminatedString( buffer, offset ) {
  1055. var uintBuffer = new Uint8Array( buffer );
  1056. var endOffset = 0;
  1057. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  1058. endOffset += 1;
  1059. }
  1060. var stringValue = new TextDecoder().decode(
  1061. uintBuffer.slice( offset.value, offset.value + endOffset )
  1062. );
  1063. offset.value = offset.value + endOffset + 1;
  1064. return stringValue;
  1065. }
  1066. function parseFixedLengthString( buffer, offset, size ) {
  1067. var stringValue = new TextDecoder().decode(
  1068. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  1069. );
  1070. offset.value = offset.value + size;
  1071. return stringValue;
  1072. }
  1073. function parseUlong( dataView, offset ) {
  1074. var uLong = dataView.getUint32( 0, true );
  1075. offset.value = offset.value + ULONG_SIZE;
  1076. return uLong;
  1077. }
  1078. function parseRational( dataView, offset ) {
  1079. var x = parseInt32( dataView, offset );
  1080. var y = parseUint32( dataView, offset );
  1081. return [ x, y ];
  1082. }
  1083. function parseTimecode( dataView, offset ) {
  1084. var x = parseUint32( dataView, offset );
  1085. var y = parseUint32( dataView, offset );
  1086. return [ x, y ];
  1087. }
  1088. function parseInt32( dataView, offset ) {
  1089. var Int32 = dataView.getInt32( offset.value, true );
  1090. offset.value = offset.value + INT32_SIZE;
  1091. return Int32;
  1092. }
  1093. function parseUint32( dataView, offset ) {
  1094. var Uint32 = dataView.getUint32( offset.value, true );
  1095. offset.value = offset.value + INT32_SIZE;
  1096. return Uint32;
  1097. }
  1098. function parseUint8Array( uInt8Array, offset ) {
  1099. var Uint8 = uInt8Array[ offset.value ];
  1100. offset.value = offset.value + INT8_SIZE;
  1101. return Uint8;
  1102. }
  1103. function parseUint8( dataView, offset ) {
  1104. var Uint8 = dataView.getUint8( offset.value );
  1105. offset.value = offset.value + INT8_SIZE;
  1106. return Uint8;
  1107. }
  1108. function parseInt64( dataView, offset ) {
  1109. var int = Number( dataView.getBigInt64( offset.value, true ) );
  1110. offset.value += ULONG_SIZE;
  1111. return int;
  1112. }
  1113. function parseFloat32( dataView, offset ) {
  1114. var float = dataView.getFloat32( offset.value, true );
  1115. offset.value += FLOAT32_SIZE;
  1116. return float;
  1117. }
  1118. function decodeFloat32( dataView, offset ) {
  1119. return encodeFloat16( parseFloat32( dataView, offset ) );
  1120. }
  1121. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1122. function decodeFloat16( binary ) {
  1123. var exponent = ( binary & 0x7C00 ) >> 10,
  1124. fraction = binary & 0x03FF;
  1125. return ( binary >> 15 ? - 1 : 1 ) * (
  1126. exponent ?
  1127. (
  1128. exponent === 0x1F ?
  1129. fraction ? NaN : Infinity :
  1130. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  1131. ) :
  1132. 6.103515625e-5 * ( fraction / 0x400 )
  1133. );
  1134. }
  1135. // http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
  1136. function encodeFloat16( val ) {
  1137. /* This method is faster than the OpenEXR implementation (very often
  1138. * used, eg. in Ogre), with the additional benefit of rounding, inspired
  1139. * by James Tursa?s half-precision code.
  1140. */
  1141. tmpDataView.setFloat32( 0, val );
  1142. var x = tmpDataView.getInt32( 0 );
  1143. var bits = ( x >> 16 ) & 0x8000; /* Get the sign */
  1144. var m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */
  1145. var e = ( x >> 23 ) & 0xff; /* Using int is faster here */
  1146. /* If zero, or denormal, or exponent underflows too much for a denormal
  1147. * half, return signed zero. */
  1148. if ( e < 103 ) return bits;
  1149. /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  1150. if ( e > 142 ) {
  1151. bits |= 0x7c00;
  1152. /* If exponent was 0xff and one mantissa bit was set, it means NaN,
  1153. * not Inf, so make sure we set one mantissa bit too. */
  1154. bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff );
  1155. return bits;
  1156. }
  1157. /* If exponent underflows but not too much, return a denormal */
  1158. if ( e < 113 ) {
  1159. m |= 0x0800;
  1160. /* Extra rounding may overflow and set mantissa to 0 and exponent
  1161. * to 1, which is OK. */
  1162. bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 );
  1163. return bits;
  1164. }
  1165. bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 );
  1166. /* Extra rounding. An overflow will set mantissa to 0 and increment
  1167. * the exponent, which is OK. */
  1168. bits += m & 1;
  1169. return bits;
  1170. }
  1171. function parseUint16( dataView, offset ) {
  1172. var Uint16 = dataView.getUint16( offset.value, true );
  1173. offset.value += INT16_SIZE;
  1174. return Uint16;
  1175. }
  1176. function parseFloat16( buffer, offset ) {
  1177. return decodeFloat16( parseUint16( buffer, offset ) );
  1178. }
  1179. function parseChlist( dataView, buffer, offset, size ) {
  1180. var startOffset = offset.value;
  1181. var channels = [];
  1182. while ( offset.value < ( startOffset + size - 1 ) ) {
  1183. var name = parseNullTerminatedString( buffer, offset );
  1184. var pixelType = parseInt32( dataView, offset );
  1185. var pLinear = parseUint8( dataView, offset );
  1186. offset.value += 3; // reserved, three chars
  1187. var xSampling = parseInt32( dataView, offset );
  1188. var ySampling = parseInt32( dataView, offset );
  1189. channels.push( {
  1190. name: name,
  1191. pixelType: pixelType,
  1192. pLinear: pLinear,
  1193. xSampling: xSampling,
  1194. ySampling: ySampling
  1195. } );
  1196. }
  1197. offset.value += 1;
  1198. return channels;
  1199. }
  1200. function parseChromaticities( dataView, offset ) {
  1201. var redX = parseFloat32( dataView, offset );
  1202. var redY = parseFloat32( dataView, offset );
  1203. var greenX = parseFloat32( dataView, offset );
  1204. var greenY = parseFloat32( dataView, offset );
  1205. var blueX = parseFloat32( dataView, offset );
  1206. var blueY = parseFloat32( dataView, offset );
  1207. var whiteX = parseFloat32( dataView, offset );
  1208. var whiteY = parseFloat32( dataView, offset );
  1209. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  1210. }
  1211. function parseCompression( dataView, offset ) {
  1212. var compressionCodes = [
  1213. 'NO_COMPRESSION',
  1214. 'RLE_COMPRESSION',
  1215. 'ZIPS_COMPRESSION',
  1216. 'ZIP_COMPRESSION',
  1217. 'PIZ_COMPRESSION',
  1218. 'PXR24_COMPRESSION',
  1219. 'B44_COMPRESSION',
  1220. 'B44A_COMPRESSION',
  1221. 'DWAA_COMPRESSION',
  1222. 'DWAB_COMPRESSION'
  1223. ];
  1224. var compression = parseUint8( dataView, offset );
  1225. return compressionCodes[ compression ];
  1226. }
  1227. function parseBox2i( dataView, offset ) {
  1228. var xMin = parseUint32( dataView, offset );
  1229. var yMin = parseUint32( dataView, offset );
  1230. var xMax = parseUint32( dataView, offset );
  1231. var yMax = parseUint32( dataView, offset );
  1232. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  1233. }
  1234. function parseLineOrder( dataView, offset ) {
  1235. var lineOrders = [
  1236. 'INCREASING_Y'
  1237. ];
  1238. var lineOrder = parseUint8( dataView, offset );
  1239. return lineOrders[ lineOrder ];
  1240. }
  1241. function parseV2f( dataView, offset ) {
  1242. var x = parseFloat32( dataView, offset );
  1243. var y = parseFloat32( dataView, offset );
  1244. return [ x, y ];
  1245. }
  1246. function parseV3f( dataView, offset ) {
  1247. var x = parseFloat32( dataView, offset );
  1248. var y = parseFloat32( dataView, offset );
  1249. var z = parseFloat32( dataView, offset );
  1250. return [ x, y, z ];
  1251. }
  1252. function parseValue( dataView, buffer, offset, type, size ) {
  1253. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1254. return parseFixedLengthString( buffer, offset, size );
  1255. } else if ( type === 'chlist' ) {
  1256. return parseChlist( dataView, buffer, offset, size );
  1257. } else if ( type === 'chromaticities' ) {
  1258. return parseChromaticities( dataView, offset );
  1259. } else if ( type === 'compression' ) {
  1260. return parseCompression( dataView, offset );
  1261. } else if ( type === 'box2i' ) {
  1262. return parseBox2i( dataView, offset );
  1263. } else if ( type === 'lineOrder' ) {
  1264. return parseLineOrder( dataView, offset );
  1265. } else if ( type === 'float' ) {
  1266. return parseFloat32( dataView, offset );
  1267. } else if ( type === 'v2f' ) {
  1268. return parseV2f( dataView, offset );
  1269. } else if ( type === 'v3f' ) {
  1270. return parseV3f( dataView, offset );
  1271. } else if ( type === 'int' ) {
  1272. return parseInt32( dataView, offset );
  1273. } else if ( type === 'rational' ) {
  1274. return parseRational( dataView, offset );
  1275. } else if ( type === 'timecode' ) {
  1276. return parseTimecode( dataView, offset );
  1277. } else if ( type === 'preview' ) {
  1278. offset.value += size;
  1279. return 'skipped';
  1280. } else {
  1281. offset.value += size;
  1282. return undefined;
  1283. }
  1284. }
  1285. var bufferDataView = new DataView( buffer );
  1286. var uInt8Array = new Uint8Array( buffer );
  1287. var EXRHeader = {};
  1288. bufferDataView.getUint32( 0, true ); // magic
  1289. bufferDataView.getUint8( 4, true ); // versionByteZero
  1290. bufferDataView.getUint8( 5, true ); // fullMask
  1291. // start of header
  1292. var offset = { value: 8 }; // start at 8, after magic stuff
  1293. var keepReading = true;
  1294. while ( keepReading ) {
  1295. var attributeName = parseNullTerminatedString( buffer, offset );
  1296. if ( attributeName == 0 ) {
  1297. keepReading = false;
  1298. } else {
  1299. var attributeType = parseNullTerminatedString( buffer, offset );
  1300. var attributeSize = parseUint32( bufferDataView, offset );
  1301. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  1302. if ( attributeValue === undefined ) {
  1303. console.warn( `EXRLoader.parse: skipped unknown header attribute type \'${ attributeType }\'.` );
  1304. } else {
  1305. EXRHeader[ attributeName ] = attributeValue;
  1306. }
  1307. }
  1308. }
  1309. // offsets
  1310. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  1311. var uncompress;
  1312. var scanlineBlockSize;
  1313. switch ( EXRHeader.compression ) {
  1314. case 'NO_COMPRESSION':
  1315. scanlineBlockSize = 1;
  1316. uncompress = uncompressRAW;
  1317. break;
  1318. case 'RLE_COMPRESSION':
  1319. scanlineBlockSize = 1;
  1320. uncompress = uncompressRLE;
  1321. break;
  1322. case 'ZIPS_COMPRESSION':
  1323. scanlineBlockSize = 1;
  1324. uncompress = uncompressZIP;
  1325. break;
  1326. case 'ZIP_COMPRESSION':
  1327. scanlineBlockSize = 16;
  1328. uncompress = uncompressZIP;
  1329. break;
  1330. case 'PIZ_COMPRESSION':
  1331. scanlineBlockSize = 32;
  1332. uncompress = uncompressPIZ;
  1333. break;
  1334. case 'PXR24_COMPRESSION':
  1335. scanlineBlockSize = 16;
  1336. uncompress = uncompressPXR;
  1337. break;
  1338. case 'DWAA_COMPRESSION':
  1339. scanlineBlockSize = 32;
  1340. uncompress = uncompressDWA;
  1341. break;
  1342. case 'DWAB_COMPRESSION':
  1343. scanlineBlockSize = 256;
  1344. uncompress = uncompressDWA;
  1345. break;
  1346. default:
  1347. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
  1348. }
  1349. var size_t;
  1350. var getValue;
  1351. // mixed pixelType not supported
  1352. var pixelType = EXRHeader.channels[ 0 ].pixelType;
  1353. if ( pixelType === 1 ) { // half
  1354. switch ( this.type ) {
  1355. case THREE.UnsignedByteType:
  1356. case THREE.FloatType:
  1357. getValue = parseFloat16;
  1358. size_t = INT16_SIZE;
  1359. break;
  1360. case THREE.HalfFloatType:
  1361. getValue = parseUint16;
  1362. size_t = INT16_SIZE;
  1363. break;
  1364. }
  1365. } else if ( pixelType === 2 ) { // float
  1366. switch ( this.type ) {
  1367. case THREE.UnsignedByteType:
  1368. case THREE.FloatType:
  1369. getValue = parseFloat32;
  1370. size_t = FLOAT32_SIZE;
  1371. break;
  1372. case THREE.HalfFloatType:
  1373. getValue = decodeFloat32;
  1374. size_t = FLOAT32_SIZE;
  1375. }
  1376. } else {
  1377. throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
  1378. }
  1379. var numBlocks = dataWindowHeight / scanlineBlockSize;
  1380. for ( var i = 0; i < numBlocks; i ++ ) {
  1381. parseUlong( bufferDataView, offset ); // scanlineOffset
  1382. }
  1383. // we should be passed the scanline offset table, start reading pixel data
  1384. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  1385. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  1386. // Firefox only supports RGBA (half) float textures
  1387. // var numChannels = EXRHeader.channels.length;
  1388. var numChannels = 4;
  1389. var size = width * height * numChannels;
  1390. // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1391. switch ( this.type ) {
  1392. case THREE.UnsignedByteType:
  1393. case THREE.FloatType:
  1394. var byteArray = new Float32Array( size );
  1395. if ( EXRHeader.channels.length < numChannels ) {
  1396. byteArray.fill( 1, 0, size );
  1397. }
  1398. break;
  1399. case THREE.HalfFloatType:
  1400. var byteArray = new Uint16Array( size );
  1401. if ( EXRHeader.channels.length < numChannels ) {
  1402. byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1403. }
  1404. break;
  1405. default:
  1406. console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
  1407. break;
  1408. }
  1409. var channelOffsets = {
  1410. R: 0,
  1411. G: 1,
  1412. B: 2,
  1413. A: 3
  1414. };
  1415. var compressionInfo = {
  1416. size: 0,
  1417. width: width,
  1418. lines: scanlineBlockSize,
  1419. offset: offset,
  1420. array: uInt8Array,
  1421. viewer: bufferDataView,
  1422. type: pixelType,
  1423. channels: EXRHeader.channels.length,
  1424. };
  1425. var line;
  1426. var size;
  1427. var viewer;
  1428. var tmpOffset = { value: 0 };
  1429. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  1430. line = parseUint32( bufferDataView, offset ); // line_no
  1431. size = parseUint32( bufferDataView, offset ); // data_len
  1432. compressionInfo.lines = ( line + scanlineBlockSize > height ) ? height - line : scanlineBlockSize;
  1433. compressionInfo.offset = offset;
  1434. compressionInfo.size = size;
  1435. viewer = uncompress( compressionInfo );
  1436. offset.value += size;
  1437. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  1438. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  1439. if ( true_y >= height ) break;
  1440. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  1441. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1442. for ( var x = 0; x < width; x ++ ) {
  1443. var idx = ( line_y * ( EXRHeader.channels.length * width ) ) + ( channelID * width ) + x;
  1444. tmpOffset.value = idx * size_t;
  1445. var val = getValue( viewer, tmpOffset );
  1446. byteArray[ ( ( ( height - 1 - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  1447. }
  1448. }
  1449. }
  1450. }
  1451. if ( this.type === THREE.UnsignedByteType ) {
  1452. let v, i;
  1453. const size = byteArray.length;
  1454. const RGBEArray = new Uint8Array( size );
  1455. for ( let h = 0; h < height; ++ h ) {
  1456. for ( let w = 0; w < width; ++ w ) {
  1457. i = h * width * 4 + w * 4;
  1458. const red = byteArray[ i ];
  1459. const green = byteArray[ i + 1 ];
  1460. const blue = byteArray[ i + 2 ];
  1461. v = ( red > green ) ? red : green;
  1462. v = ( blue > v ) ? blue : v;
  1463. if ( v < 1e-32 ) {
  1464. RGBEArray[ i ] = RGBEArray[ i + 1 ] = RGBEArray[ i + 2 ] = RGBEArray[ i + 3 ] = 0;
  1465. } else {
  1466. const res = frexp( v );
  1467. v = res[ 0 ] * 256 / v;
  1468. RGBEArray[ i ] = red * v;
  1469. RGBEArray[ i + 1 ] = green * v;
  1470. RGBEArray[ i + 2 ] = blue * v;
  1471. RGBEArray[ i + 3 ] = res[ 1 ] + 128;
  1472. }
  1473. }
  1474. }
  1475. byteArray = RGBEArray;
  1476. }
  1477. const format = ( this.type === THREE.UnsignedByteType ) ? THREE.RGBEFormat : ( numChannels === 4 ) ? THREE.RGBAFormat : THREE.RGBFormat;
  1478. return {
  1479. header: EXRHeader,
  1480. width: width,
  1481. height: height,
  1482. data: byteArray,
  1483. format: format,
  1484. type: this.type
  1485. };
  1486. },
  1487. setDataType: function ( value ) {
  1488. this.type = value;
  1489. return this;
  1490. },
  1491. load: function ( url, onLoad, onProgress, onError ) {
  1492. function onLoadCallback( texture, texData ) {
  1493. switch ( texture.type ) {
  1494. case THREE.UnsignedByteType:
  1495. texture.encoding = THREE.RGBEEncoding;
  1496. texture.minFilter = THREE.NearestFilter;
  1497. texture.magFilter = THREE.NearestFilter;
  1498. texture.generateMipmaps = false;
  1499. texture.flipY = false;
  1500. break;
  1501. case THREE.FloatType:
  1502. case THREE.HalfFloatType:
  1503. texture.encoding = THREE.LinearEncoding;
  1504. texture.minFilter = THREE.LinearFilter;
  1505. texture.magFilter = THREE.LinearFilter;
  1506. texture.generateMipmaps = false;
  1507. texture.flipY = false;
  1508. break;
  1509. }
  1510. if ( onLoad ) onLoad( texture, texData );
  1511. }
  1512. return THREE.DataTextureLoader.prototype.load.call( this, url, onLoadCallback, onProgress, onError );
  1513. }
  1514. } );