EXRLoader.js 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. *
  4. * OpenEXR loader which, currently, supports reading 16 bit half data, in either
  5. * uncompressed or PIZ wavelet compressed form.
  6. *
  7. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  8. * implementation, so I have preserved their copyright notices.
  9. */
  10. // /*
  11. // Copyright (c) 2014 - 2017, Syoyo Fujita
  12. // All rights reserved.
  13. // Redistribution and use in source and binary forms, with or without
  14. // modification, are permitted provided that the following conditions are met:
  15. // * Redistributions of source code must retain the above copyright
  16. // notice, this list of conditions and the following disclaimer.
  17. // * Redistributions in binary form must reproduce the above copyright
  18. // notice, this list of conditions and the following disclaimer in the
  19. // documentation and/or other materials provided with the distribution.
  20. // * Neither the name of the Syoyo Fujita nor the
  21. // names of its contributors may be used to endorse or promote products
  22. // derived from this software without specific prior written permission.
  23. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  24. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  25. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  26. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  27. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  28. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  29. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  30. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  32. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33. // */
  34. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  35. // ///////////////////////////////////////////////////////////////////////////
  36. // //
  37. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  38. // // Digital Ltd. LLC
  39. // //
  40. // // All rights reserved.
  41. // //
  42. // // Redistribution and use in source and binary forms, with or without
  43. // // modification, are permitted provided that the following conditions are
  44. // // met:
  45. // // * Redistributions of source code must retain the above copyright
  46. // // notice, this list of conditions and the following disclaimer.
  47. // // * Redistributions in binary form must reproduce the above
  48. // // copyright notice, this list of conditions and the following disclaimer
  49. // // in the documentation and/or other materials provided with the
  50. // // distribution.
  51. // // * Neither the name of Industrial Light & Magic nor the names of
  52. // // its contributors may be used to endorse or promote products derived
  53. // // from this software without specific prior written permission.
  54. // //
  55. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  56. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  57. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  58. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  59. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  60. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  61. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  62. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  63. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  64. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  65. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  66. // //
  67. // ///////////////////////////////////////////////////////////////////////////
  68. // // End of OpenEXR license -------------------------------------------------
  69. THREE.EXRLoader = function ( manager ) {
  70. this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
  71. };
  72. THREE.EXRLoader.prototype = Object.create( THREE.DataTextureLoader.prototype );
  73. THREE.EXRLoader.prototype._parser = function ( buffer ) {
  74. var date = new Date();
  75. var startTime = date.getTime();
  76. const USHORT_RANGE = (1 << 16);
  77. const BITMAP_SIZE = (USHORT_RANGE >> 3);
  78. const HUF_ENCBITS = 16; // literal (value) bit length
  79. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  80. const HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
  81. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  82. const HUF_DECMASK = HUF_DECSIZE - 1;
  83. const SHORT_ZEROCODE_RUN = 59;
  84. const LONG_ZEROCODE_RUN = 63;
  85. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  86. const LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
  87. const BYTES_PER_HALF = 2;
  88. const ULONG_SIZE = 8;
  89. const FLOAT32_SIZE = 4;
  90. const INT32_SIZE = 4;
  91. const INT16_SIZE = 2;
  92. const INT8_SIZE = 1;
  93. function reverseLutFromBitmap(bitmap, lut) {
  94. var k = 0;
  95. for (var i = 0; i < USHORT_RANGE; ++i) {
  96. if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) {
  97. lut[k++] = i;
  98. }
  99. }
  100. var n = k - 1;
  101. while (k < USHORT_RANGE) lut[k++] = 0;
  102. return n;
  103. }
  104. function hufClearDecTable(hdec) {
  105. for (var i = 0; i < HUF_DECSIZE; i++) {
  106. hdec[i] = {}
  107. hdec[i].len = 0;
  108. hdec[i].lit = 0;
  109. hdec[i].p = null;
  110. }
  111. }
  112. function getBits(nBits, c, lc, inDataView, inOffset) {
  113. while (lc < nBits) {
  114. c = (c << 8) | parseUint8(inDataView, inOffset);
  115. lc += 8;
  116. }
  117. lc -= nBits;
  118. return { l: (c >> lc) & ((1 << nBits) - 1), c: c, lc: lc };
  119. }
  120. function hufCanonicalCodeTable(hcode) {
  121. var n = new Array(59);
  122. for (var i = 0; i <= 58; ++i) n[i] = 0;
  123. for (var i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1;
  124. var c = 0;
  125. for (var i = 58; i > 0; --i) {
  126. var nc = ((c + n[i]) >> 1);
  127. n[i] = c;
  128. c = nc;
  129. }
  130. for (var i = 0; i < HUF_ENCSIZE; ++i) {
  131. var l = hcode[i];
  132. if (l > 0) hcode[i] = l | (n[l]++ << 6);
  133. }
  134. }
  135. function hufUnpackEncTable(inDataView, inOffset, ni, im, iM, hcode) {
  136. var p = inOffset;
  137. var c = 0;
  138. var lc = 0;
  139. for (; im <= iM; im++) {
  140. if (p.value - inOffset.value > ni) {
  141. return false;
  142. }
  143. var bits = getBits(6, c, lc, inDataView, p);
  144. var l = bits.l;
  145. c = bits.c;
  146. lc = bits.lc;
  147. hcode[im] = l;
  148. if (l == LONG_ZEROCODE_RUN) {
  149. if (p.value - inOffset.value > ni) {
  150. throw 'Something wrong with hufUnpackEncTable';
  151. }
  152. var bits = getBits(8, c, lc, inDataView, p);
  153. var zerun = bits.l + SHORTEST_LONG_RUN;
  154. c = bits.c;
  155. lc = bits.lc;
  156. if (im + zerun > iM + 1) {
  157. throw 'Something wrong with hufUnpackEncTable';
  158. }
  159. while (zerun--) hcode[im++] = 0;
  160. im--;
  161. } else if (l >= SHORT_ZEROCODE_RUN) {
  162. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  163. if (im + zerun > iM + 1) {
  164. throw 'Something wrong with hufUnpackEncTable';
  165. }
  166. while (zerun--) hcode[im++] = 0;
  167. im--;
  168. }
  169. }
  170. hufCanonicalCodeTable(hcode);
  171. }
  172. function hufLength(code) { return code & 63; }
  173. function hufCode(code) { return code >> 6; }
  174. function hufBuildDecTable(hcode, im, iM, hdecod) {
  175. for (; im <= iM; im++) {
  176. var c = hufCode(hcode[im]);
  177. var l = hufLength(hcode[im]);
  178. if (c >> l) {
  179. throw 'Invalid table entry';
  180. }
  181. if (l > HUF_DECBITS) {
  182. var pl = hdecod[(c >> (l - HUF_DECBITS))];
  183. if (pl.len) {
  184. throw 'Invalid table entry';
  185. }
  186. pl.lit++;
  187. if (pl.p) {
  188. var p = pl.p;
  189. pl.p = new Array(pl.lit);
  190. for (var i = 0; i < pl.lit - 1; ++i) {
  191. pl.p[i] = p[i];
  192. }
  193. } else {
  194. pl.p = new Array(1);
  195. }
  196. pl.p[pl.lit - 1] = im;
  197. } else if (l) {
  198. var plOffset = 0;
  199. for (var i = 1 << (HUF_DECBITS - l); i > 0; i--) {
  200. var pl = hdecod[(c << (HUF_DECBITS - l)) + plOffset];
  201. if (pl.len || pl.p) {
  202. throw 'Invalid table entry';
  203. }
  204. pl.len = l;
  205. pl.lit = im;
  206. plOffset++;
  207. }
  208. }
  209. }
  210. return true;
  211. }
  212. function getChar(c, lc, inDataView, inOffset) {
  213. c = (c << 8) | parseUint8(inDataView, inOffset);
  214. lc += 8;
  215. return { c: c, lc: lc };
  216. }
  217. function getCode(po, rlc, c, lc, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset) {
  218. if (po == rlc) {
  219. if (lc < 8) {
  220. var temp = getChar(c, lc, inDataView, inOffset);
  221. c = temp.c;
  222. lc = temp.lc;
  223. }
  224. lc -= 8;
  225. var cs = (c >> lc);
  226. if (out + cs > oe) {
  227. throw 'Issue with getCode';
  228. }
  229. var s = out[-1];
  230. while (cs-- > 0) {
  231. outBuffer[outBufferOffset.value++] = s;
  232. }
  233. } else if (outBufferOffset.value < outBufferEndOffset) {
  234. outBuffer[outBufferOffset.value++] = po;
  235. } else {
  236. throw 'Issue with getCode';
  237. }
  238. return { c: c, lc: lc };
  239. }
  240. var NBITS = 16;
  241. var A_OFFSET = 1 << (NBITS - 1);
  242. var M_OFFSET = 1 << (NBITS - 1);
  243. var MOD_MASK = (1 << NBITS) - 1;
  244. function UInt16(value) {
  245. return (value & 0xFFFF);
  246. };
  247. function Int16(value) {
  248. var ref = UInt16(value);
  249. return (ref > 0x7FFF) ? ref - 0x10000 : ref;
  250. };
  251. function wdec14(l, h) {
  252. var ls = Int16(l);
  253. var hs = Int16(h);
  254. var hi = hs;
  255. var ai = ls + (hi & 1) + (hi >> 1);
  256. var as = ai;
  257. var bs = ai - hi;
  258. return {a: as, b: bs}
  259. }
  260. function wav2Decode(j, buffer, nx, ox, ny, oy, mx) {
  261. var n = (nx > ny) ? ny : nx;
  262. var p = 1;
  263. var p2;
  264. while (p <= n) p <<= 1;
  265. p >>= 1;
  266. p2 = p;
  267. p >>= 1;
  268. while (p >= 1) {
  269. var py = 0;
  270. var ey = py + oy * (ny - p2);
  271. var oy1 = oy * p;
  272. var oy2 = oy * p2;
  273. var ox1 = ox * p;
  274. var ox2 = ox * p2;
  275. var i00, i01, i10, i11;
  276. for (; py <= ey; py += oy2) {
  277. var px = py;
  278. var ex = py + ox * (nx - p2);
  279. for (; px <= ex; px += ox2) {
  280. var p01 = px + ox1;
  281. var p10 = px + oy1;
  282. var p11 = p10 + ox1;
  283. var tmp = wdec14(buffer[px + j], buffer[p10 + j]);
  284. i00 = tmp.a;
  285. i10 = tmp.b;
  286. var tmp = wdec14(buffer[p01 + j], buffer[p11 + j]);
  287. i01 = tmp.a;
  288. i11 = tmp.b;
  289. var tmp = wdec14(i00, i01);
  290. buffer[px + j] = tmp.a;
  291. buffer[p01 + j] = tmp.b;
  292. var tmp = wdec14(i10, i11);
  293. buffer[p10 + j] = tmp.a;
  294. buffer[p11 + j] = tmp.b;
  295. }
  296. if (nx & p) {
  297. var p10 = px + oy1;
  298. var tmp = wdec14(buffer[px + j], buffer[p10 + j]);
  299. i00 = tmp.a;
  300. buffer[p10 + j] = tmp.b;
  301. buffer[px + j] = i00;
  302. }
  303. }
  304. if (ny & p) {
  305. var px = py;
  306. var ex = py + ox * (nx - p2);
  307. for (; px <= ex; px += ox2) {
  308. var p01 = px + ox1;
  309. var tmp = wdec14(buffer[px + j], buffer[p01 + j]);
  310. i00 = tmp.a;
  311. buffer[p01 + j] = tmp.b;
  312. buffer[px + j] = i00;
  313. }
  314. }
  315. p2 = p;
  316. p >>= 1;
  317. }
  318. return py;
  319. }
  320. function hufDecode(encodingTable, decodingTable, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset) {
  321. var c = 0;
  322. var lc = 0;
  323. var outBufferEndOffset = no;
  324. var inOffsetEnd = parseInt(inOffset.value + (ni + 7) / 8);
  325. while (inOffset.value < inOffsetEnd) {
  326. var temp = getChar(c, lc, inDataView, inOffset);
  327. c = temp.c;
  328. lc = temp.lc;
  329. while (lc >= HUF_DECBITS) {
  330. var index = (c >> (lc - HUF_DECBITS)) & HUF_DECMASK;
  331. var pl = decodingTable[index];
  332. if (pl.len) {
  333. lc -= pl.len;
  334. var temp = getCode(pl.lit, rlc, c, lc, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
  335. c = temp.c;
  336. lc = temp.lc;
  337. } else {
  338. if (!pl.p) {
  339. throw 'hufDecode issues';
  340. }
  341. var j;
  342. for (j = 0; j < pl.lit; j++) {
  343. var l = hufLength(encodingTable[pl.p[j]]);
  344. while (lc < l && inOffset.value < inOffsetEnd) {
  345. var temp = getChar(c, lc, inDataView, inOffset);
  346. c = temp.c;
  347. lc = temp.lc;
  348. }
  349. if (lc >= l) {
  350. if (hufCode(encodingTable[pl.p[j]]) ==
  351. ((c >> (lc - l)) & ((1 << l) - 1))) {
  352. lc -= l;
  353. var temp = getCode(pl.p[j], rlc, c, lc, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
  354. c = temp.c;
  355. lc = temp.lc;
  356. break;
  357. }
  358. }
  359. }
  360. if (j == pl.lit) {
  361. throw 'hufDecode issues';
  362. }
  363. }
  364. }
  365. }
  366. var i = (8 - ni) & 7;
  367. c >>= i;
  368. lc -= i;
  369. while (lc > 0) {
  370. var pl = decodingTable[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
  371. if (pl.len) {
  372. lc -= pl.len;
  373. var temp = getCode(pl.lit, rlc, c, lc, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset);
  374. c = temp.c;
  375. lc = temp.lc;
  376. } else {
  377. throw 'hufDecode issues';
  378. }
  379. }
  380. return true;
  381. }
  382. function hufUncompress(inDataView, inOffset, nCompressed, outBuffer, outOffset, nRaw) {
  383. var initialInOffset = inOffset.value;
  384. var im = parseUint32(inDataView, inOffset);
  385. var iM = parseUint32(inDataView, inOffset);
  386. inOffset.value += 4;
  387. var nBits = parseUint32(inDataView, inOffset);
  388. inOffset.value += 4;
  389. if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) {
  390. throw 'Something wrong with HUF_ENCSIZE';
  391. }
  392. var freq = new Array(HUF_ENCSIZE);
  393. var hdec = new Array(HUF_DECSIZE);
  394. hufClearDecTable(hdec);
  395. var ni = nCompressed - (inOffset.value - initialInOffset);
  396. hufUnpackEncTable(inDataView, inOffset, ni, im, iM, freq);
  397. if (nBits > 8 * (nCompressed - (inOffset.value - initialInOffset))) {
  398. throw 'Something wrong with hufUncompress';
  399. }
  400. hufBuildDecTable(freq, im, iM, hdec);
  401. hufDecode(freq, hdec, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset);
  402. }
  403. function applyLut(lut, data, nData) {
  404. for (var i = 0; i < nData; ++i) {
  405. data[i] = lut[data[i]];
  406. }
  407. }
  408. function decompressPIZ(outBuffer, outOffset, inDataView, inOffset, tmpBufSize, num_channels, exrChannelInfos, dataWidth, num_lines) {
  409. var bitmap = new Uint8Array(BITMAP_SIZE);
  410. var minNonZero = parseUint16(inDataView, inOffset);
  411. var maxNonZero = parseUint16(inDataView, inOffset);
  412. if (maxNonZero >= BITMAP_SIZE) {
  413. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE'
  414. }
  415. if (minNonZero <= maxNonZero) {
  416. for (var i = 0; i < maxNonZero - minNonZero + 1; i++) {
  417. bitmap[i + minNonZero] = parseUint8(inDataView, inOffset);
  418. }
  419. }
  420. var lut = new Uint16Array(USHORT_RANGE);
  421. var maxValue = reverseLutFromBitmap(bitmap, lut);
  422. var length = parseUint32(inDataView, inOffset);
  423. hufUncompress(inDataView, inOffset, length, outBuffer, outOffset, tmpBufSize);
  424. var pizChannelData = new Array(num_channels);
  425. var outBufferEnd = 0
  426. for (var i = 0; i < num_channels; i++) {
  427. var exrChannelInfo = exrChannelInfos[i];
  428. var pixelSize = 2; // assumes HALF_FLOAT
  429. pizChannelData[i] = {};
  430. pizChannelData[i]['start'] = outBufferEnd;
  431. pizChannelData[i]['end'] = pizChannelData[i]['start'];
  432. pizChannelData[i]['nx'] = dataWidth;
  433. pizChannelData[i]['ny'] = num_lines;
  434. pizChannelData[i]['size'] = 1;
  435. outBufferEnd += pizChannelData[i].nx * pizChannelData[i].ny * pizChannelData[i].size;
  436. }
  437. var fooOffset = 0;
  438. for (var i = 0; i < num_channels; i++) {
  439. for (var j = 0; j < pizChannelData[i].size; ++j) {
  440. fooOffset += wav2Decode(
  441. j + fooOffset,
  442. outBuffer,
  443. pizChannelData[i].nx,
  444. pizChannelData[i].size,
  445. pizChannelData[i].ny,
  446. pizChannelData[i].nx * pizChannelData[i].size,
  447. maxValue
  448. );
  449. }
  450. }
  451. applyLut(lut, outBuffer, outBufferEnd);
  452. return true;
  453. }
  454. function parseNullTerminatedString( buffer, offset ) {
  455. var uintBuffer = new Uint8Array( buffer );
  456. var endOffset = 0;
  457. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  458. endOffset += 1;
  459. }
  460. var stringValue = new TextDecoder().decode(
  461. uintBuffer.slice( offset.value, offset.value + endOffset )
  462. );
  463. offset.value = offset.value + endOffset + 1;
  464. return stringValue;
  465. }
  466. function parseFixedLengthString( buffer, offset, size ) {
  467. var stringValue = new TextDecoder().decode(
  468. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  469. );
  470. offset.value = offset.value + size;
  471. return stringValue;
  472. }
  473. function parseUlong( dataView, offset ) {
  474. var uLong = dataView.getUint32( 0, true );
  475. offset.value = offset.value + ULONG_SIZE;
  476. return uLong;
  477. }
  478. function parseUint32( dataView, offset ) {
  479. var Uint32 = dataView.getUint32(offset.value, true);
  480. offset.value = offset.value + INT32_SIZE;
  481. return Uint32;
  482. }
  483. function parseUint8( dataView, offset ) {
  484. var Uint8 = dataView.getUint8(offset.value);
  485. offset.value = offset.value + INT8_SIZE;
  486. return Uint8;
  487. }
  488. function parseFloat32( dataView, offset ) {
  489. var float = dataView.getFloat32(offset.value, true);
  490. offset.value += FLOAT32_SIZE;
  491. return float;
  492. }
  493. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  494. function decodeFloat16( binary ) {
  495. var exponent = ( binary & 0x7C00 ) >> 10,
  496. fraction = binary & 0x03FF;
  497. return ( binary >> 15 ? - 1 : 1 ) * (
  498. exponent ?
  499. (
  500. exponent === 0x1F ?
  501. fraction ? NaN : Infinity :
  502. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  503. ) :
  504. 6.103515625e-5 * ( fraction / 0x400 )
  505. );
  506. }
  507. function parseUint16( dataView, offset ) {
  508. var Uint16 = dataView.getUint16( offset.value, true );
  509. offset.value += INT16_SIZE;
  510. return Uint16;
  511. }
  512. function parseFloat16( buffer, offset ) {
  513. return decodeFloat16( parseUint16( buffer, offset) );
  514. }
  515. function parseChlist( dataView, buffer, offset, size ) {
  516. var startOffset = offset.value;
  517. var channels = [];
  518. while ( offset.value < ( startOffset + size - 1 ) ) {
  519. var name = parseNullTerminatedString( buffer, offset );
  520. var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
  521. var pLinear = parseUint8( dataView, offset );
  522. offset.value += 3; // reserved, three chars
  523. var xSampling = parseUint32( dataView, offset );
  524. var ySampling = parseUint32( dataView, offset );
  525. channels.push( {
  526. name: name,
  527. pixelType: pixelType,
  528. pLinear: pLinear,
  529. xSampling: xSampling,
  530. ySampling: ySampling
  531. } );
  532. }
  533. offset.value += 1;
  534. return channels;
  535. }
  536. function parseChromaticities( dataView, offset ) {
  537. var redX = parseFloat32( dataView, offset );
  538. var redY = parseFloat32( dataView, offset );
  539. var greenX = parseFloat32( dataView, offset );
  540. var greenY = parseFloat32( dataView, offset );
  541. var blueX = parseFloat32( dataView, offset );
  542. var blueY = parseFloat32( dataView, offset );
  543. var whiteX = parseFloat32( dataView, offset );
  544. var whiteY = parseFloat32( dataView, offset );
  545. return { redX: redX, redY: redY, greenX, greenY, blueX, blueY, whiteX, whiteY };
  546. }
  547. function parseCompression( dataView, offset ) {
  548. var compressionCodes = [
  549. 'NO_COMPRESSION',
  550. 'RLE_COMPRESSION',
  551. 'ZIPS_COMPRESSION',
  552. 'ZIP_COMPRESSION',
  553. 'PIZ_COMPRESSION'
  554. ];
  555. var compression = parseUint8( dataView, offset );
  556. return compressionCodes[ compression ];
  557. }
  558. function parseBox2i( dataView, offset ) {
  559. var xMin = parseUint32( dataView, offset );
  560. var yMin = parseUint32( dataView, offset );
  561. var xMax = parseUint32( dataView, offset );
  562. var yMax = parseUint32( dataView, offset );
  563. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  564. }
  565. function parseLineOrder( dataView, offset ) {
  566. var lineOrders = [
  567. 'INCREASING_Y'
  568. ];
  569. var lineOrder = parseUint8( dataView, offset );
  570. return lineOrders[ lineOrder ];
  571. }
  572. function parseV2f( dataView, offset ) {
  573. var x = parseFloat32( dataView, offset );
  574. var y = parseFloat32( dataView, offset );
  575. return [ x, y ];
  576. }
  577. function parseValue( dataView, buffer, offset, type, size ) {
  578. if ( type == 'string' || type == 'iccProfile' ) {
  579. return parseFixedLengthString( buffer, offset, size );
  580. } else if ( type == 'chlist' ) {
  581. return parseChlist( dataView, buffer, offset, size );
  582. } else if ( type == 'chromaticities' ) {
  583. return parseChromaticities( buffer, offset );
  584. } else if ( type == 'compression' ) {
  585. return parseCompression( dataView, offset );
  586. } else if ( type == 'box2i' ) {
  587. return parseBox2i( dataView, offset );
  588. } else if ( type == 'lineOrder' ) {
  589. return parseLineOrder( dataView, offset );
  590. } else if ( type == 'float' ) {
  591. return parseFloat32( dataView, offset );
  592. } else if ( type == 'v2f' ) {
  593. return parseV2f( dataView, offset );
  594. } else {
  595. throw 'Cannot parse value for unsupported type: ' + type;
  596. }
  597. }
  598. var bufferDataView = new DataView(buffer);
  599. var EXRHeader = {};
  600. var magic = bufferDataView.getUint32( 0, true );
  601. var versionByteZero = bufferDataView.getUint8( 4, true );
  602. var fullMask = bufferDataView.getUint8( 5, true );
  603. // start of header
  604. var offset = { value: 8 }; // start at 8, after magic stuff
  605. var keepReading = true;
  606. while ( keepReading ) {
  607. var attributeName = parseNullTerminatedString( buffer, offset );
  608. if ( attributeName == 0 ) {
  609. keepReading = false;
  610. } else {
  611. var attributeType = parseNullTerminatedString( buffer, offset );
  612. var attributeSize = parseUint32( bufferDataView, offset );
  613. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  614. EXRHeader[ attributeName ] = attributeValue;
  615. }
  616. }
  617. // offsets
  618. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  619. var scanlineBlockSize = 1; // 1 for NO_COMPRESSION
  620. if (EXRHeader.compression == 'PIZ_COMPRESSION') {
  621. scanlineBlockSize = 32;
  622. }
  623. var numBlocks = dataWindowHeight / scanlineBlockSize;
  624. for ( var i = 0; i < numBlocks; i ++ ) {
  625. var scanlineOffset = parseUlong( bufferDataView, offset );
  626. }
  627. // we should be passed the scanline offset table, start reading pixel data
  628. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  629. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  630. var numChannels = EXRHeader.channels.length;
  631. var byteArray = new Float32Array( width * height * numChannels );
  632. var channelOffsets = {
  633. R: 0,
  634. G: 1,
  635. B: 2,
  636. A: 3
  637. };
  638. if (EXRHeader.compression == 'NO_COMPRESSION') {
  639. for ( var y = 0; y < height; y ++ ) {
  640. var y_scanline = parseUint32( buffer, offset );
  641. var dataSize = parseUint32( buffer, offset );
  642. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  643. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  644. if ( EXRHeader.channels[ channelID ].pixelType == 1 ) {
  645. // HALF
  646. for ( var x = 0; x < width; x ++ ) {
  647. var val = parseFloat16( buffer, offset );
  648. byteArray[ ( ( ( width - y_scanline ) * ( height * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  649. }
  650. } else {
  651. throw 'Only supported pixel format is HALF';
  652. }
  653. }
  654. }
  655. } else if (EXRHeader.compression == 'PIZ_COMPRESSION') {
  656. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx++ ) {
  657. var line_no = parseUint32( bufferDataView, offset );
  658. var data_len = parseUint32( bufferDataView, offset );
  659. var tmpBufferSize = width * scanlineBlockSize * (EXRHeader.channels.length * BYTES_PER_HALF);
  660. var tmpBuffer = new Uint16Array(tmpBufferSize);
  661. var tmpOffset = { value: 0 };
  662. decompressPIZ(tmpBuffer, tmpOffset, bufferDataView, offset, tmpBufferSize, numChannels, EXRHeader.channels, width, scanlineBlockSize);
  663. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  664. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  665. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  666. if ( EXRHeader.channels[ channelID ].pixelType == 1 ) {
  667. // HALF
  668. for ( var x = 0; x < width; x ++ ) {
  669. var val = decodeFloat16(tmpBuffer[ (channelID * (scanlineBlockSize * width)) + (line_y * width) + x ]);
  670. var true_y = line_y + (scanlineBlockIdx * scanlineBlockSize);
  671. byteArray[ ( ( (height - true_y) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  672. }
  673. } else {
  674. throw 'Only supported pixel format is HALF';
  675. }
  676. }
  677. }
  678. }
  679. } else {
  680. throw 'Cannot decompress unsupported compression';
  681. }
  682. var date = new Date();
  683. var endTime = date.getTime();
  684. console.log((endTime - startTime) + 'ms');
  685. return {
  686. header: EXRHeader,
  687. width: width,
  688. height: height,
  689. data: byteArray,
  690. format: THREE.RGBFormat,
  691. type: THREE.FloatType
  692. };
  693. };