GPUComputationRenderer.js 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. /**
  2. * @author yomboprime https://github.com/yomboprime
  3. *
  4. * GPUComputationRenderer, based on SimulationRenderer by zz85
  5. *
  6. * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
  7. * for each compute element (texel)
  8. *
  9. * Each variable has a fragment shader that defines the computation made to obtain the variable in question.
  10. * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
  11. * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
  12. *
  13. * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
  14. * as inputs to render the textures of the next frame.
  15. *
  16. * The render targets of the variables can be used as input textures for your visualization shaders.
  17. *
  18. * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
  19. * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
  20. *
  21. * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
  22. * #DEFINE resolution vec2( 1024.0, 1024.0 )
  23. *
  24. * -------------
  25. *
  26. * Basic use:
  27. *
  28. * // Initialization...
  29. *
  30. * // Create computation renderer
  31. * var gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );
  32. *
  33. * // Create initial state float textures
  34. * var pos0 = gpuCompute.createTexture();
  35. * var vel0 = gpuCompute.createTexture();
  36. * // and fill in here the texture data...
  37. *
  38. * // Add texture variables
  39. * var velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
  40. * var posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
  41. *
  42. * // Add variable dependencies
  43. * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
  44. * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
  45. *
  46. * // Add custom uniforms
  47. * velVar.material.uniforms.time = { type: "f", value: 0.0 };
  48. *
  49. * // Check for completeness
  50. * var error = gpuCompute.init();
  51. * if ( error !== null ) {
  52. * console.error( error );
  53. * }
  54. *
  55. *
  56. * // In each frame...
  57. *
  58. * // Compute!
  59. * gpuCompute.compute();
  60. *
  61. * // Update texture uniforms in your visualization materials with the gpu renderer output
  62. * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
  63. *
  64. * // Do your rendering
  65. * renderer.render( myScene, myCamera );
  66. *
  67. * -------------
  68. *
  69. * Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)
  70. * Note that the shaders can have multiple input textures.
  71. *
  72. * var myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { type: "t", value: null } } );
  73. * var myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { type: "t", value: null } } );
  74. *
  75. * var inputTexture = gpuCompute.createTexture();
  76. *
  77. * // Fill in here inputTexture...
  78. *
  79. * myFilter1.uniforms.theTexture.value = inputTexture;
  80. *
  81. * var myRenderTarget = gpuCompute.createRenderTarget();
  82. * myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
  83. *
  84. * var outputRenderTarget = gpuCompute.createRenderTarget();
  85. *
  86. * // Now use the output texture where you want:
  87. * myMaterial.uniforms.map.value = outputRenderTarget.texture;
  88. *
  89. * // And compute each frame, before rendering to screen:
  90. * gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
  91. * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
  92. *
  93. *
  94. *
  95. * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
  96. * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
  97. * @param {WebGLRenderer} renderer The renderer
  98. */
  99. function GPUComputationRenderer( sizeX, sizeY, renderer ) {
  100. this.variables = [];
  101. this.currentTextureIndex = 0;
  102. var scene = new THREE.Scene();
  103. var camera = new THREE.Camera();
  104. camera.position.z = 1;
  105. var passThruUniforms = {
  106. texture: { type: "t", value: null }
  107. };
  108. var passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
  109. var mesh = new THREE.Mesh( new THREE.PlaneBufferGeometry( 2, 2 ), passThruShader );
  110. scene.add( mesh );
  111. this.addVariable = function( variableName, computeFragmentShader, initialValueTexture ) {
  112. var material = this.createShaderMaterial( computeFragmentShader );
  113. var variable = {
  114. name: variableName,
  115. initialValueTexture: initialValueTexture,
  116. material: material,
  117. dependencies: null,
  118. renderTargets: [],
  119. wrapS: null,
  120. wrapT: null
  121. };
  122. this.variables.push( variable );
  123. return variable;
  124. };
  125. this.setVariableDependencies = function( variable, dependencies ) {
  126. variable.dependencies = dependencies;
  127. };
  128. this.init = function() {
  129. if ( ! renderer.extensions.get( "OES_texture_float" ) ) {
  130. return "No OES_texture_float support for float textures.";
  131. }
  132. if ( renderer.capabilities.maxVertexTextures === 0 ) {
  133. return "No support for vertex shader textures.";
  134. }
  135. for ( var i = 0; i < this.variables.length; i++ ) {
  136. var variable = this.variables[ i ];
  137. // Creates rendertargets and initialize them with input texture
  138. variable.renderTargets[ 0 ] = this.createRenderTarget( variable.wrapS, variable.wrapT );
  139. variable.renderTargets[ 1 ] = this.createRenderTarget( variable.wrapS, variable.wrapT );
  140. this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
  141. this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] );
  142. // Adds dependencies uniforms to the ShaderMaterial
  143. var material = variable.material;
  144. var uniforms = material.uniforms;
  145. if ( variable.dependencies !== null ) {
  146. for ( var d = 0; d < variable.dependencies.length; d++ ) {
  147. var depVar = variable.dependencies[ d ];
  148. if ( depVar.name !== variable.name ) {
  149. // Checks if variable exists
  150. var found = false;
  151. for ( var j = 0; j < this.variables.length; j++ ) {
  152. if ( depVar.name === this.variables[ j ].name ) {
  153. found = true;
  154. break;
  155. }
  156. }
  157. if ( ! found ) {
  158. return "Variable dependency not found. Variable=" + variable.name + ", dependency=" + depVar.name;
  159. }
  160. }
  161. uniforms[ depVar.name ] = { type: "t", value: null };
  162. material.fragmentShader = "\nuniform sampler2D " + depVar.name + ";\n" + variable.material.fragmentShader;
  163. }
  164. }
  165. }
  166. this.currentTextureIndex = 0;
  167. return null;
  168. };
  169. this.compute = function() {
  170. var currentTextureIndex = this.currentTextureIndex;
  171. var nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
  172. for ( var i = 0; i < this.variables.length; i++ ) {
  173. var variable = this.variables[ i ];
  174. // Sets texture dependencies uniforms
  175. var uniforms = variable.material.uniforms;
  176. for ( var d = 0; d < variable.dependencies.length; d++ ) {
  177. var depVar = variable.dependencies[ d ];
  178. uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
  179. }
  180. // Performs the computation for this variable
  181. this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
  182. }
  183. this.currentTextureIndex = nextTextureIndex;
  184. };
  185. this.getCurrentRenderTarget = function( variable ) {
  186. return variable.renderTargets[ this.currentTextureIndex ];
  187. };
  188. this.getAlternateRenderTarget = function( variable ) {
  189. return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
  190. };
  191. function addResolutionDefine( materialShader ) {
  192. materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + " )";
  193. };
  194. this.addResolutionDefine = addResolutionDefine;
  195. // The following functions can be used to compute things manually
  196. function createShaderMaterial( computeFragmentShader, uniforms ) {
  197. uniforms = uniforms || {};
  198. var material = new THREE.ShaderMaterial( {
  199. uniforms: uniforms,
  200. vertexShader: getPassThroughVertexShader(),
  201. fragmentShader: computeFragmentShader
  202. } );
  203. addResolutionDefine( material );
  204. return material;
  205. };
  206. this.createShaderMaterial = createShaderMaterial;
  207. this.createRenderTarget = function( wrapS, wrapT, sizeXTexture, sizeYTexture ) {
  208. wrapS = wrapS || THREE.ClampToEdgeWrapping;
  209. wrapT = wrapT || THREE.ClampToEdgeWrapping;
  210. sizeXTexture = sizeXTexture || sizeX;
  211. sizeYTexture = sizeYTexture || sizeY;
  212. var renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, {
  213. wrapS: wrapS,
  214. wrapT: wrapT,
  215. minFilter: THREE.NearestFilter,
  216. magFilter: THREE.NearestFilter,
  217. format: THREE.RGBAFormat,
  218. type: THREE.FloatType,
  219. stencilBuffer: false
  220. } );
  221. return renderTarget;
  222. };
  223. this.createTexture = function( sizeXTexture, sizeYTexture ) {
  224. sizeXTexture = sizeXTexture || sizeX;
  225. sizeYTexture = sizeYTexture || sizeY;
  226. var a = new Float32Array( sizeXTexture * sizeYTexture * 4 );
  227. var texture = new THREE.DataTexture( a, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType );
  228. texture.needsUpdate = true;
  229. return texture;
  230. };
  231. this.renderTexture = function( input, output ) {
  232. // Takes a texture, and render out in rendertarget
  233. // input = Texture
  234. // output = RenderTarget
  235. passThruUniforms.texture.value = input;
  236. this.doRenderTarget( passThruShader, output);
  237. };
  238. this.doRenderTarget = function( material, output ) {
  239. mesh.material = material;
  240. renderer.render( scene, camera, output );
  241. };
  242. // Shaders
  243. function getPassThroughVertexShader() {
  244. return "void main() {\n" +
  245. "\n" +
  246. " gl_Position = vec4( position, 1.0 );\n" +
  247. "\n" +
  248. "}\n";
  249. }
  250. function getPassThroughFragmentShader() {
  251. return "uniform sampler2D texture;\n" +
  252. "\n" +
  253. "void main() {\n" +
  254. "\n" +
  255. " vec2 uv = gl_FragCoord.xy / resolution.xy;\n" +
  256. "\n" +
  257. " gl_FragColor = texture2D( texture, uv );\n" +
  258. "\n" +
  259. "}\n";
  260. }
  261. }