EXRLoader.js 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450
  1. console.warn( "THREE.EXRLoader: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/#manual/en/introduction/Installation." );
  2. /**
  3. * OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression.
  4. * Supports reading as UnsignedByte, HalfFloat and Float type data texture.
  5. *
  6. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  7. * implementation, so I have preserved their copyright notices.
  8. */
  9. // /*
  10. // Copyright (c) 2014 - 2017, Syoyo Fujita
  11. // All rights reserved.
  12. // Redistribution and use in source and binary forms, with or without
  13. // modification, are permitted provided that the following conditions are met:
  14. // * Redistributions of source code must retain the above copyright
  15. // notice, this list of conditions and the following disclaimer.
  16. // * Redistributions in binary form must reproduce the above copyright
  17. // notice, this list of conditions and the following disclaimer in the
  18. // documentation and/or other materials provided with the distribution.
  19. // * Neither the name of the Syoyo Fujita nor the
  20. // names of its contributors may be used to endorse or promote products
  21. // derived from this software without specific prior written permission.
  22. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  23. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  24. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  25. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  26. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  27. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  28. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  29. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  30. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  31. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  32. // */
  33. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  34. // ///////////////////////////////////////////////////////////////////////////
  35. // //
  36. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  37. // // Digital Ltd. LLC
  38. // //
  39. // // All rights reserved.
  40. // //
  41. // // Redistribution and use in source and binary forms, with or without
  42. // // modification, are permitted provided that the following conditions are
  43. // // met:
  44. // // * Redistributions of source code must retain the above copyright
  45. // // notice, this list of conditions and the following disclaimer.
  46. // // * Redistributions in binary form must reproduce the above
  47. // // copyright notice, this list of conditions and the following disclaimer
  48. // // in the documentation and/or other materials provided with the
  49. // // distribution.
  50. // // * Neither the name of Industrial Light & Magic nor the names of
  51. // // its contributors may be used to endorse or promote products derived
  52. // // from this software without specific prior written permission.
  53. // //
  54. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  55. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  56. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  57. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  58. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  59. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  60. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  61. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  62. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  63. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  64. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  65. // //
  66. // ///////////////////////////////////////////////////////////////////////////
  67. // // End of OpenEXR license -------------------------------------------------
  68. THREE.EXRLoader = function ( manager ) {
  69. THREE.DataTextureLoader.call( this, manager );
  70. this.type = THREE.FloatType;
  71. };
  72. THREE.EXRLoader.prototype = Object.assign( Object.create( THREE.DataTextureLoader.prototype ), {
  73. constructor: THREE.EXRLoader,
  74. parse: function ( buffer ) {
  75. const USHORT_RANGE = ( 1 << 16 );
  76. const BITMAP_SIZE = ( USHORT_RANGE >> 3 );
  77. const HUF_ENCBITS = 16; // literal (value) bit length
  78. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  79. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  80. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  81. const HUF_DECMASK = HUF_DECSIZE - 1;
  82. const NBITS = 16;
  83. const A_OFFSET = 1 << ( NBITS - 1 );
  84. const MOD_MASK = ( 1 << NBITS ) - 1;
  85. const SHORT_ZEROCODE_RUN = 59;
  86. const LONG_ZEROCODE_RUN = 63;
  87. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  88. const ULONG_SIZE = 8;
  89. const FLOAT32_SIZE = 4;
  90. const INT32_SIZE = 4;
  91. const INT16_SIZE = 2;
  92. const INT8_SIZE = 1;
  93. const STATIC_HUFFMAN = 0;
  94. const DEFLATE = 1;
  95. const UNKNOWN = 0;
  96. const LOSSY_DCT = 1;
  97. const RLE = 2;
  98. const logBase = Math.pow( 2.7182818, 2.2 );
  99. var tmpDataView = new DataView( new ArrayBuffer( 8 ) );
  100. function frexp( value ) {
  101. if ( value === 0 ) return [ value, 0 ];
  102. tmpDataView.setFloat64( 0, value );
  103. var bits = ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF;
  104. if ( bits === 0 ) { // denormal
  105. tmpDataView.setFloat64( 0, value * Math.pow( 2, 64 ) ); // exp + 64
  106. bits = ( ( tmpDataView.getUint32( 0 ) >>> 20 ) & 0x7FF ) - 64;
  107. }
  108. var exponent = bits - 1022;
  109. var mantissa = ldexp( value, - exponent );
  110. return [ mantissa, exponent ];
  111. }
  112. function ldexp( mantissa, exponent ) {
  113. var steps = Math.min( 3, Math.ceil( Math.abs( exponent ) / 1023 ) );
  114. var result = mantissa;
  115. for ( var i = 0; i < steps; i ++ )
  116. result *= Math.pow( 2, Math.floor( ( exponent + i ) / steps ) );
  117. return result;
  118. }
  119. function reverseLutFromBitmap( bitmap, lut ) {
  120. var k = 0;
  121. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  122. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  123. lut[ k ++ ] = i;
  124. }
  125. }
  126. var n = k - 1;
  127. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  128. return n;
  129. }
  130. function hufClearDecTable( hdec ) {
  131. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  132. hdec[ i ] = {};
  133. hdec[ i ].len = 0;
  134. hdec[ i ].lit = 0;
  135. hdec[ i ].p = null;
  136. }
  137. }
  138. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  139. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  140. while ( lc < nBits ) {
  141. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  142. lc += 8;
  143. }
  144. lc -= nBits;
  145. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  146. getBitsReturn.c = c;
  147. getBitsReturn.lc = lc;
  148. }
  149. const hufTableBuffer = new Array( 59 );
  150. function hufCanonicalCodeTable( hcode ) {
  151. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  152. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  153. var c = 0;
  154. for ( var i = 58; i > 0; -- i ) {
  155. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  156. hufTableBuffer[ i ] = c;
  157. c = nc;
  158. }
  159. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  160. var l = hcode[ i ];
  161. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  162. }
  163. }
  164. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  165. var p = inOffset;
  166. var c = 0;
  167. var lc = 0;
  168. for ( ; im <= iM; im ++ ) {
  169. if ( p.value - inOffset.value > ni ) return false;
  170. getBits( 6, c, lc, uInt8Array, p );
  171. var l = getBitsReturn.l;
  172. c = getBitsReturn.c;
  173. lc = getBitsReturn.lc;
  174. hcode[ im ] = l;
  175. if ( l == LONG_ZEROCODE_RUN ) {
  176. if ( p.value - inOffset.value > ni ) {
  177. throw 'Something wrong with hufUnpackEncTable';
  178. }
  179. getBits( 8, c, lc, uInt8Array, p );
  180. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  181. c = getBitsReturn.c;
  182. lc = getBitsReturn.lc;
  183. if ( im + zerun > iM + 1 ) {
  184. throw 'Something wrong with hufUnpackEncTable';
  185. }
  186. while ( zerun -- ) hcode[ im ++ ] = 0;
  187. im --;
  188. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  189. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  190. if ( im + zerun > iM + 1 ) {
  191. throw 'Something wrong with hufUnpackEncTable';
  192. }
  193. while ( zerun -- ) hcode[ im ++ ] = 0;
  194. im --;
  195. }
  196. }
  197. hufCanonicalCodeTable( hcode );
  198. }
  199. function hufLength( code ) {
  200. return code & 63;
  201. }
  202. function hufCode( code ) {
  203. return code >> 6;
  204. }
  205. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  206. for ( ; im <= iM; im ++ ) {
  207. var c = hufCode( hcode[ im ] );
  208. var l = hufLength( hcode[ im ] );
  209. if ( c >> l ) {
  210. throw 'Invalid table entry';
  211. }
  212. if ( l > HUF_DECBITS ) {
  213. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  214. if ( pl.len ) {
  215. throw 'Invalid table entry';
  216. }
  217. pl.lit ++;
  218. if ( pl.p ) {
  219. var p = pl.p;
  220. pl.p = new Array( pl.lit );
  221. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  222. pl.p[ i ] = p[ i ];
  223. }
  224. } else {
  225. pl.p = new Array( 1 );
  226. }
  227. pl.p[ pl.lit - 1 ] = im;
  228. } else if ( l ) {
  229. var plOffset = 0;
  230. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  231. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  232. if ( pl.len || pl.p ) {
  233. throw 'Invalid table entry';
  234. }
  235. pl.len = l;
  236. pl.lit = im;
  237. plOffset ++;
  238. }
  239. }
  240. }
  241. return true;
  242. }
  243. const getCharReturn = { c: 0, lc: 0 };
  244. function getChar( c, lc, uInt8Array, inOffset ) {
  245. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  246. lc += 8;
  247. getCharReturn.c = c;
  248. getCharReturn.lc = lc;
  249. }
  250. const getCodeReturn = { c: 0, lc: 0 };
  251. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  252. if ( po == rlc ) {
  253. if ( lc < 8 ) {
  254. getChar( c, lc, uInt8Array, inOffset );
  255. c = getCharReturn.c;
  256. lc = getCharReturn.lc;
  257. }
  258. lc -= 8;
  259. var cs = ( c >> lc );
  260. var cs = new Uint8Array( [ cs ] )[ 0 ];
  261. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  262. return false;
  263. }
  264. var s = outBuffer[ outBufferOffset.value - 1 ];
  265. while ( cs -- > 0 ) {
  266. outBuffer[ outBufferOffset.value ++ ] = s;
  267. }
  268. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  269. outBuffer[ outBufferOffset.value ++ ] = po;
  270. } else {
  271. return false;
  272. }
  273. getCodeReturn.c = c;
  274. getCodeReturn.lc = lc;
  275. }
  276. function UInt16( value ) {
  277. return ( value & 0xFFFF );
  278. }
  279. function Int16( value ) {
  280. var ref = UInt16( value );
  281. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  282. }
  283. const wdec14Return = { a: 0, b: 0 };
  284. function wdec14( l, h ) {
  285. var ls = Int16( l );
  286. var hs = Int16( h );
  287. var hi = hs;
  288. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  289. var as = ai;
  290. var bs = ai - hi;
  291. wdec14Return.a = as;
  292. wdec14Return.b = bs;
  293. }
  294. function wdec16( l, h ) {
  295. var m = UInt16( l );
  296. var d = UInt16( h );
  297. var bb = ( m - ( d >> 1 ) ) & MOD_MASK;
  298. var aa = ( d + bb - A_OFFSET ) & MOD_MASK;
  299. wdec14Return.a = aa;
  300. wdec14Return.b = bb;
  301. }
  302. function wav2Decode( buffer, j, nx, ox, ny, oy, mx ) {
  303. var w14 = mx < ( 1 << 14 );
  304. var n = ( nx > ny ) ? ny : nx;
  305. var p = 1;
  306. var p2;
  307. while ( p <= n ) p <<= 1;
  308. p >>= 1;
  309. p2 = p;
  310. p >>= 1;
  311. while ( p >= 1 ) {
  312. var py = 0;
  313. var ey = py + oy * ( ny - p2 );
  314. var oy1 = oy * p;
  315. var oy2 = oy * p2;
  316. var ox1 = ox * p;
  317. var ox2 = ox * p2;
  318. var i00, i01, i10, i11;
  319. for ( ; py <= ey; py += oy2 ) {
  320. var px = py;
  321. var ex = py + ox * ( nx - p2 );
  322. for ( ; px <= ex; px += ox2 ) {
  323. var p01 = px + ox1;
  324. var p10 = px + oy1;
  325. var p11 = p10 + ox1;
  326. if ( w14 ) {
  327. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  328. i00 = wdec14Return.a;
  329. i10 = wdec14Return.b;
  330. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  331. i01 = wdec14Return.a;
  332. i11 = wdec14Return.b;
  333. wdec14( i00, i01 );
  334. buffer[ px + j ] = wdec14Return.a;
  335. buffer[ p01 + j ] = wdec14Return.b;
  336. wdec14( i10, i11 );
  337. buffer[ p10 + j ] = wdec14Return.a;
  338. buffer[ p11 + j ] = wdec14Return.b;
  339. } else {
  340. wdec16( buffer[ px + j ], buffer[ p10 + j ] );
  341. i00 = wdec14Return.a;
  342. i10 = wdec14Return.b;
  343. wdec16( buffer[ p01 + j ], buffer[ p11 + j ] );
  344. i01 = wdec14Return.a;
  345. i11 = wdec14Return.b;
  346. wdec16( i00, i01 );
  347. buffer[ px + j ] = wdec14Return.a;
  348. buffer[ p01 + j ] = wdec14Return.b;
  349. wdec16( i10, i11 );
  350. buffer[ p10 + j ] = wdec14Return.a;
  351. buffer[ p11 + j ] = wdec14Return.b;
  352. }
  353. }
  354. if ( nx & p ) {
  355. var p10 = px + oy1;
  356. if ( w14 )
  357. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  358. else
  359. wdec16( buffer[ px + j ], buffer[ p10 + j ] );
  360. i00 = wdec14Return.a;
  361. buffer[ p10 + j ] = wdec14Return.b;
  362. buffer[ px + j ] = i00;
  363. }
  364. }
  365. if ( ny & p ) {
  366. var px = py;
  367. var ex = py + ox * ( nx - p2 );
  368. for ( ; px <= ex; px += ox2 ) {
  369. var p01 = px + ox1;
  370. if ( w14 )
  371. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  372. else
  373. wdec16( buffer[ px + j ], buffer[ p01 + j ] );
  374. i00 = wdec14Return.a;
  375. buffer[ p01 + j ] = wdec14Return.b;
  376. buffer[ px + j ] = i00;
  377. }
  378. }
  379. p2 = p;
  380. p >>= 1;
  381. }
  382. return py;
  383. }
  384. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  385. var c = 0;
  386. var lc = 0;
  387. var outBufferEndOffset = no;
  388. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  389. while ( inOffset.value < inOffsetEnd ) {
  390. getChar( c, lc, uInt8Array, inOffset );
  391. c = getCharReturn.c;
  392. lc = getCharReturn.lc;
  393. while ( lc >= HUF_DECBITS ) {
  394. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  395. var pl = decodingTable[ index ];
  396. if ( pl.len ) {
  397. lc -= pl.len;
  398. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  399. c = getCodeReturn.c;
  400. lc = getCodeReturn.lc;
  401. } else {
  402. if ( ! pl.p ) {
  403. throw 'hufDecode issues';
  404. }
  405. var j;
  406. for ( j = 0; j < pl.lit; j ++ ) {
  407. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  408. while ( lc < l && inOffset.value < inOffsetEnd ) {
  409. getChar( c, lc, uInt8Array, inOffset );
  410. c = getCharReturn.c;
  411. lc = getCharReturn.lc;
  412. }
  413. if ( lc >= l ) {
  414. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  415. lc -= l;
  416. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  417. c = getCodeReturn.c;
  418. lc = getCodeReturn.lc;
  419. break;
  420. }
  421. }
  422. }
  423. if ( j == pl.lit ) {
  424. throw 'hufDecode issues';
  425. }
  426. }
  427. }
  428. }
  429. var i = ( 8 - ni ) & 7;
  430. c >>= i;
  431. lc -= i;
  432. while ( lc > 0 ) {
  433. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  434. if ( pl.len ) {
  435. lc -= pl.len;
  436. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  437. c = getCodeReturn.c;
  438. lc = getCodeReturn.lc;
  439. } else {
  440. throw 'hufDecode issues';
  441. }
  442. }
  443. return true;
  444. }
  445. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  446. var outOffset = { value: 0 };
  447. var initialInOffset = inOffset.value;
  448. var im = parseUint32( inDataView, inOffset );
  449. var iM = parseUint32( inDataView, inOffset );
  450. inOffset.value += 4;
  451. var nBits = parseUint32( inDataView, inOffset );
  452. inOffset.value += 4;
  453. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  454. throw 'Something wrong with HUF_ENCSIZE';
  455. }
  456. var freq = new Array( HUF_ENCSIZE );
  457. var hdec = new Array( HUF_DECSIZE );
  458. hufClearDecTable( hdec );
  459. var ni = nCompressed - ( inOffset.value - initialInOffset );
  460. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  461. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  462. throw 'Something wrong with hufUncompress';
  463. }
  464. hufBuildDecTable( freq, im, iM, hdec );
  465. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  466. }
  467. function applyLut( lut, data, nData ) {
  468. for ( var i = 0; i < nData; ++ i ) {
  469. data[ i ] = lut[ data[ i ] ];
  470. }
  471. }
  472. function predictor( source ) {
  473. for ( var t = 1; t < source.length; t ++ ) {
  474. var d = source[ t - 1 ] + source[ t ] - 128;
  475. source[ t ] = d;
  476. }
  477. }
  478. function interleaveScalar( source, out ) {
  479. var t1 = 0;
  480. var t2 = Math.floor( ( source.length + 1 ) / 2 );
  481. var s = 0;
  482. var stop = source.length - 1;
  483. while ( true ) {
  484. if ( s > stop ) break;
  485. out[ s ++ ] = source[ t1 ++ ];
  486. if ( s > stop ) break;
  487. out[ s ++ ] = source[ t2 ++ ];
  488. }
  489. }
  490. function decodeRunLength( source ) {
  491. var size = source.byteLength;
  492. var out = new Array();
  493. var p = 0;
  494. var reader = new DataView( source );
  495. while ( size > 0 ) {
  496. var l = reader.getInt8( p ++ );
  497. if ( l < 0 ) {
  498. var count = - l;
  499. size -= count + 1;
  500. for ( var i = 0; i < count; i ++ ) {
  501. out.push( reader.getUint8( p ++ ) );
  502. }
  503. } else {
  504. var count = l;
  505. size -= 2;
  506. var value = reader.getUint8( p ++ );
  507. for ( var i = 0; i < count + 1; i ++ ) {
  508. out.push( value );
  509. }
  510. }
  511. }
  512. return out;
  513. }
  514. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  515. var dataView = new DataView( outBuffer.buffer );
  516. var width = channelData[ cscSet.idx[ 0 ] ].width;
  517. var height = channelData[ cscSet.idx[ 0 ] ].height;
  518. var numComp = 3;
  519. var numFullBlocksX = Math.floor( width / 8.0 );
  520. var numBlocksX = Math.ceil( width / 8.0 );
  521. var numBlocksY = Math.ceil( height / 8.0 );
  522. var leftoverX = width - ( numBlocksX - 1 ) * 8;
  523. var leftoverY = height - ( numBlocksY - 1 ) * 8;
  524. var currAcComp = { value: 0 };
  525. var currDcComp = new Array( numComp );
  526. var dctData = new Array( numComp );
  527. var halfZigBlock = new Array( numComp );
  528. var rowBlock = new Array( numComp );
  529. var rowOffsets = new Array( numComp );
  530. for ( let comp = 0; comp < numComp; ++ comp ) {
  531. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  532. currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  533. dctData[ comp ] = new Float32Array( 64 );
  534. halfZigBlock[ comp ] = new Uint16Array( 64 );
  535. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  536. }
  537. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  538. var maxY = 8;
  539. if ( blocky == numBlocksY - 1 )
  540. maxY = leftoverY;
  541. var maxX = 8;
  542. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  543. if ( blockx == numBlocksX - 1 )
  544. maxX = leftoverX;
  545. for ( let comp = 0; comp < numComp; ++ comp ) {
  546. halfZigBlock[ comp ].fill( 0 );
  547. // set block DC component
  548. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ];
  549. // set block AC components
  550. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
  551. // UnZigZag block to float
  552. unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
  553. // decode float dct
  554. dctInverse( dctData[ comp ] );
  555. }
  556. if ( numComp == 3 ) {
  557. csc709Inverse( dctData );
  558. }
  559. for ( let comp = 0; comp < numComp; ++ comp ) {
  560. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  561. }
  562. } // blockx
  563. let offset = 0;
  564. for ( let comp = 0; comp < numComp; ++ comp ) {
  565. const type = channelData[ cscSet.idx[ comp ] ].type;
  566. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  567. offset = rowOffsets[ comp ][ y ];
  568. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  569. const src = blockx * 64 + ( ( y & 0x7 ) * 8 );
  570. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  571. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  572. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  573. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  574. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  575. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  576. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  577. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  578. offset += 8 * INT16_SIZE * type;
  579. }
  580. }
  581. // handle partial X blocks
  582. if ( numFullBlocksX != numBlocksX ) {
  583. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  584. const offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  585. const src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 );
  586. for ( let x = 0; x < maxX; ++ x ) {
  587. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  588. }
  589. }
  590. }
  591. } // comp
  592. } // blocky
  593. var halfRow = new Uint16Array( width );
  594. var dataView = new DataView( outBuffer.buffer );
  595. // convert channels back to float, if needed
  596. for ( var comp = 0; comp < numComp; ++ comp ) {
  597. channelData[ cscSet.idx[ comp ] ].decoded = true;
  598. var type = channelData[ cscSet.idx[ comp ] ].type;
  599. if ( channelData[ comp ].type != 2 ) continue;
  600. for ( var y = 0; y < height; ++ y ) {
  601. const offset = rowOffsets[ comp ][ y ];
  602. for ( var x = 0; x < width; ++ x ) {
  603. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  604. }
  605. for ( var x = 0; x < width; ++ x ) {
  606. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  607. }
  608. }
  609. }
  610. }
  611. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  612. var acValue;
  613. var dctComp = 1;
  614. while ( dctComp < 64 ) {
  615. acValue = acBuffer[ currAcComp.value ];
  616. if ( acValue == 0xff00 ) {
  617. dctComp = 64;
  618. } else if ( acValue >> 8 == 0xff ) {
  619. dctComp += acValue & 0xff;
  620. } else {
  621. halfZigBlock[ dctComp ] = acValue;
  622. dctComp ++;
  623. }
  624. currAcComp.value ++;
  625. }
  626. }
  627. function unZigZag( src, dst ) {
  628. dst[ 0 ] = decodeFloat16( src[ 0 ] );
  629. dst[ 1 ] = decodeFloat16( src[ 1 ] );
  630. dst[ 2 ] = decodeFloat16( src[ 5 ] );
  631. dst[ 3 ] = decodeFloat16( src[ 6 ] );
  632. dst[ 4 ] = decodeFloat16( src[ 14 ] );
  633. dst[ 5 ] = decodeFloat16( src[ 15 ] );
  634. dst[ 6 ] = decodeFloat16( src[ 27 ] );
  635. dst[ 7 ] = decodeFloat16( src[ 28 ] );
  636. dst[ 8 ] = decodeFloat16( src[ 2 ] );
  637. dst[ 9 ] = decodeFloat16( src[ 4 ] );
  638. dst[ 10 ] = decodeFloat16( src[ 7 ] );
  639. dst[ 11 ] = decodeFloat16( src[ 13 ] );
  640. dst[ 12 ] = decodeFloat16( src[ 16 ] );
  641. dst[ 13 ] = decodeFloat16( src[ 26 ] );
  642. dst[ 14 ] = decodeFloat16( src[ 29 ] );
  643. dst[ 15 ] = decodeFloat16( src[ 42 ] );
  644. dst[ 16 ] = decodeFloat16( src[ 3 ] );
  645. dst[ 17 ] = decodeFloat16( src[ 8 ] );
  646. dst[ 18 ] = decodeFloat16( src[ 12 ] );
  647. dst[ 19 ] = decodeFloat16( src[ 17 ] );
  648. dst[ 20 ] = decodeFloat16( src[ 25 ] );
  649. dst[ 21 ] = decodeFloat16( src[ 30 ] );
  650. dst[ 22 ] = decodeFloat16( src[ 41 ] );
  651. dst[ 23 ] = decodeFloat16( src[ 43 ] );
  652. dst[ 24 ] = decodeFloat16( src[ 9 ] );
  653. dst[ 25 ] = decodeFloat16( src[ 11 ] );
  654. dst[ 26 ] = decodeFloat16( src[ 18 ] );
  655. dst[ 27 ] = decodeFloat16( src[ 24 ] );
  656. dst[ 28 ] = decodeFloat16( src[ 31 ] );
  657. dst[ 29 ] = decodeFloat16( src[ 40 ] );
  658. dst[ 30 ] = decodeFloat16( src[ 44 ] );
  659. dst[ 31 ] = decodeFloat16( src[ 53 ] );
  660. dst[ 32 ] = decodeFloat16( src[ 10 ] );
  661. dst[ 33 ] = decodeFloat16( src[ 19 ] );
  662. dst[ 34 ] = decodeFloat16( src[ 23 ] );
  663. dst[ 35 ] = decodeFloat16( src[ 32 ] );
  664. dst[ 36 ] = decodeFloat16( src[ 39 ] );
  665. dst[ 37 ] = decodeFloat16( src[ 45 ] );
  666. dst[ 38 ] = decodeFloat16( src[ 52 ] );
  667. dst[ 39 ] = decodeFloat16( src[ 54 ] );
  668. dst[ 40 ] = decodeFloat16( src[ 20 ] );
  669. dst[ 41 ] = decodeFloat16( src[ 22 ] );
  670. dst[ 42 ] = decodeFloat16( src[ 33 ] );
  671. dst[ 43 ] = decodeFloat16( src[ 38 ] );
  672. dst[ 44 ] = decodeFloat16( src[ 46 ] );
  673. dst[ 45 ] = decodeFloat16( src[ 51 ] );
  674. dst[ 46 ] = decodeFloat16( src[ 55 ] );
  675. dst[ 47 ] = decodeFloat16( src[ 60 ] );
  676. dst[ 48 ] = decodeFloat16( src[ 21 ] );
  677. dst[ 49 ] = decodeFloat16( src[ 34 ] );
  678. dst[ 50 ] = decodeFloat16( src[ 37 ] );
  679. dst[ 51 ] = decodeFloat16( src[ 47 ] );
  680. dst[ 52 ] = decodeFloat16( src[ 50 ] );
  681. dst[ 53 ] = decodeFloat16( src[ 56 ] );
  682. dst[ 54 ] = decodeFloat16( src[ 59 ] );
  683. dst[ 55 ] = decodeFloat16( src[ 61 ] );
  684. dst[ 56 ] = decodeFloat16( src[ 35 ] );
  685. dst[ 57 ] = decodeFloat16( src[ 36 ] );
  686. dst[ 58 ] = decodeFloat16( src[ 48 ] );
  687. dst[ 59 ] = decodeFloat16( src[ 49 ] );
  688. dst[ 60 ] = decodeFloat16( src[ 57 ] );
  689. dst[ 61 ] = decodeFloat16( src[ 58 ] );
  690. dst[ 62 ] = decodeFloat16( src[ 62 ] );
  691. dst[ 63 ] = decodeFloat16( src[ 63 ] );
  692. }
  693. function dctInverse( data ) {
  694. const a = 0.5 * Math.cos( 3.14159 / 4.0 );
  695. const b = 0.5 * Math.cos( 3.14159 / 16.0 );
  696. const c = 0.5 * Math.cos( 3.14159 / 8.0 );
  697. const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 );
  698. const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 );
  699. const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 );
  700. const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 );
  701. var alpha = new Array( 4 );
  702. var beta = new Array( 4 );
  703. var theta = new Array( 4 );
  704. var gamma = new Array( 4 );
  705. for ( var row = 0; row < 8; ++ row ) {
  706. var rowPtr = row * 8;
  707. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  708. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  709. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  710. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  711. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  712. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  713. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  714. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  715. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  716. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  717. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  718. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  719. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  720. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  721. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  722. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  723. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  724. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  725. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  726. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  727. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  728. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  729. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  730. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  731. }
  732. for ( var column = 0; column < 8; ++ column ) {
  733. alpha[ 0 ] = c * data[ 16 + column ];
  734. alpha[ 1 ] = f * data[ 16 + column ];
  735. alpha[ 2 ] = c * data[ 48 + column ];
  736. alpha[ 3 ] = f * data[ 48 + column ];
  737. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  738. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  739. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  740. beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  741. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  742. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  743. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  744. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  745. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  746. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  747. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  748. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  749. data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ];
  750. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  751. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  752. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  753. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  754. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  755. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  756. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  757. }
  758. }
  759. function csc709Inverse( data ) {
  760. for ( var i = 0; i < 64; ++ i ) {
  761. var y = data[ 0 ][ i ];
  762. var cb = data[ 1 ][ i ];
  763. var cr = data[ 2 ][ i ];
  764. data[ 0 ][ i ] = y + 1.5747 * cr;
  765. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  766. data[ 2 ][ i ] = y + 1.8556 * cb;
  767. }
  768. }
  769. function convertToHalf( src, dst, idx ) {
  770. for ( var i = 0; i < 64; ++ i ) {
  771. dst[ idx + i ] = encodeFloat16( toLinear( src[ i ] ) );
  772. }
  773. }
  774. function toLinear( float ) {
  775. if ( float <= 1 ) {
  776. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  777. } else {
  778. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  779. }
  780. }
  781. function uncompressRAW( info ) {
  782. return new DataView( info.array.buffer, info.offset.value, info.size );
  783. }
  784. function uncompressRLE( info ) {
  785. var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  786. var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  787. var tmpBuffer = new Uint8Array( rawBuffer.length );
  788. predictor( rawBuffer ); // revert predictor
  789. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  790. return new DataView( tmpBuffer.buffer );
  791. }
  792. function uncompressZIP( info ) {
  793. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  794. if ( typeof Inflate === 'undefined' ) {
  795. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  796. }
  797. var inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  798. var rawBuffer = new Uint8Array( inflate.decompress().buffer );
  799. var tmpBuffer = new Uint8Array( rawBuffer.length );
  800. predictor( rawBuffer ); // revert predictor
  801. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  802. return new DataView( tmpBuffer.buffer );
  803. }
  804. function uncompressPIZ( info ) {
  805. var inDataView = info.viewer;
  806. var inOffset = { value: info.offset.value };
  807. var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
  808. var outBuffer = new Uint16Array( tmpBufSize );
  809. var bitmap = new Uint8Array( BITMAP_SIZE );
  810. // Setup channel info
  811. var outBufferEnd = 0;
  812. var pizChannelData = new Array( info.channels );
  813. for ( var i = 0; i < info.channels; i ++ ) {
  814. pizChannelData[ i ] = {};
  815. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  816. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  817. pizChannelData[ i ][ 'nx' ] = info.width;
  818. pizChannelData[ i ][ 'ny' ] = info.lines;
  819. pizChannelData[ i ][ 'size' ] = info.type;
  820. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  821. }
  822. // Read range compression data
  823. var minNonZero = parseUint16( inDataView, inOffset );
  824. var maxNonZero = parseUint16( inDataView, inOffset );
  825. if ( maxNonZero >= BITMAP_SIZE ) {
  826. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  827. }
  828. if ( minNonZero <= maxNonZero ) {
  829. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  830. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  831. }
  832. }
  833. // Reverse LUT
  834. var lut = new Uint16Array( USHORT_RANGE );
  835. var maxValue = reverseLutFromBitmap( bitmap, lut );
  836. var length = parseUint32( inDataView, inOffset );
  837. // Huffman decoding
  838. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
  839. // Wavelet decoding
  840. for ( var i = 0; i < info.channels; ++ i ) {
  841. var cd = pizChannelData[ i ];
  842. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  843. wav2Decode(
  844. outBuffer,
  845. cd.start + j,
  846. cd.nx,
  847. cd.size,
  848. cd.ny,
  849. cd.nx * cd.size,
  850. maxValue
  851. );
  852. }
  853. }
  854. // Expand the pixel data to their original range
  855. applyLut( lut, outBuffer, outBufferEnd );
  856. // Rearrange the pixel data into the format expected by the caller.
  857. var tmpOffset = 0;
  858. var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  859. for ( var y = 0; y < info.lines; y ++ ) {
  860. for ( var c = 0; c < info.channels; c ++ ) {
  861. var cd = pizChannelData[ c ];
  862. var n = cd.nx * cd.size;
  863. var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  864. tmpBuffer.set( cp, tmpOffset );
  865. tmpOffset += n * INT16_SIZE;
  866. cd.end += n;
  867. }
  868. }
  869. return new DataView( tmpBuffer.buffer );
  870. }
  871. function uncompressPXR( info ) {
  872. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  873. if ( typeof Inflate === 'undefined' ) {
  874. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  875. }
  876. const inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  877. const rawBuffer = new Uint8Array( inflate.decompress().buffer );
  878. const sz = info.lines * info.channels * info.width;
  879. const tmpBuffer = ( info.type == 1 ) ? new Uint16Array( sz ) : new Uint32Array( sz );
  880. let tmpBufferEnd = 0;
  881. let writePtr = 0;
  882. const ptr = new Array( 4 );
  883. for ( let y = 0; y < info.lines; y ++ ) {
  884. for ( let c = 0; c < info.channels; c ++ ) {
  885. let pixel = 0;
  886. switch ( info.type ) {
  887. case 1:
  888. ptr[ 0 ] = tmpBufferEnd;
  889. ptr[ 1 ] = ptr[ 0 ] + info.width;
  890. tmpBufferEnd = ptr[ 1 ] + info.width;
  891. for ( let j = 0; j < info.width; ++ j ) {
  892. const diff = ( rawBuffer[ ptr[ 0 ] ++ ] << 8 ) | rawBuffer[ ptr[ 1 ] ++ ];
  893. pixel += diff;
  894. tmpBuffer[ writePtr ] = pixel;
  895. writePtr ++;
  896. }
  897. break;
  898. case 2:
  899. ptr[ 0 ] = tmpBufferEnd;
  900. ptr[ 1 ] = ptr[ 0 ] + info.width;
  901. ptr[ 2 ] = ptr[ 1 ] + info.width;
  902. tmpBufferEnd = ptr[ 2 ] + info.width;
  903. for ( let j = 0; j < info.width; ++ j ) {
  904. const diff = ( rawBuffer[ ptr[ 0 ] ++ ] << 24 ) | ( rawBuffer[ ptr[ 1 ] ++ ] << 16 ) | ( rawBuffer[ ptr[ 2 ] ++ ] << 8 );
  905. pixel += diff;
  906. tmpBuffer[ writePtr ] = pixel;
  907. writePtr ++;
  908. }
  909. break;
  910. }
  911. }
  912. }
  913. return new DataView( tmpBuffer.buffer );
  914. }
  915. function uncompressDWA( info ) {
  916. var inDataView = info.viewer;
  917. var inOffset = { value: info.offset.value };
  918. var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) );
  919. // Read compression header information
  920. var dwaHeader = {
  921. version: parseInt64( inDataView, inOffset ),
  922. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  923. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  924. acCompressedSize: parseInt64( inDataView, inOffset ),
  925. dcCompressedSize: parseInt64( inDataView, inOffset ),
  926. rleCompressedSize: parseInt64( inDataView, inOffset ),
  927. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  928. rleRawSize: parseInt64( inDataView, inOffset ),
  929. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  930. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  931. acCompression: parseInt64( inDataView, inOffset )
  932. };
  933. if ( dwaHeader.version < 2 )
  934. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported';
  935. // Read channel ruleset information
  936. var channelRules = new Array();
  937. var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  938. while ( ruleSize > 0 ) {
  939. var name = parseNullTerminatedString( inDataView.buffer, inOffset );
  940. var value = parseUint8( inDataView, inOffset );
  941. var compression = ( value >> 2 ) & 3;
  942. var csc = ( value >> 4 ) - 1;
  943. var index = new Int8Array( [ csc ] )[ 0 ];
  944. var type = parseUint8( inDataView, inOffset );
  945. channelRules.push( {
  946. name: name,
  947. index: index,
  948. type: type,
  949. compression: compression,
  950. } );
  951. ruleSize -= name.length + 3;
  952. }
  953. // Classify channels
  954. var channels = EXRHeader.channels;
  955. var channelData = new Array( info.channels );
  956. for ( var i = 0; i < info.channels; ++ i ) {
  957. var cd = channelData[ i ] = {};
  958. var channel = channels[ i ];
  959. cd.name = channel.name;
  960. cd.compression = UNKNOWN;
  961. cd.decoded = false;
  962. cd.type = channel.pixelType;
  963. cd.pLinear = channel.pLinear;
  964. cd.width = info.width;
  965. cd.height = info.lines;
  966. }
  967. var cscSet = {
  968. idx: new Array( 3 )
  969. };
  970. for ( var offset = 0; offset < info.channels; ++ offset ) {
  971. var cd = channelData[ offset ];
  972. for ( var i = 0; i < channelRules.length; ++ i ) {
  973. var rule = channelRules[ i ];
  974. if ( cd.name == rule.name ) {
  975. cd.compression = rule.compression;
  976. if ( rule.index >= 0 ) {
  977. cscSet.idx[ rule.index ] = offset;
  978. }
  979. cd.offset = offset;
  980. }
  981. }
  982. }
  983. // Read DCT - AC component data
  984. if ( dwaHeader.acCompressedSize > 0 ) {
  985. switch ( dwaHeader.acCompression ) {
  986. case STATIC_HUFFMAN:
  987. var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  988. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  989. break;
  990. case DEFLATE:
  991. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  992. var inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  993. var acBuffer = new Uint16Array( inflate.decompress().buffer );
  994. inOffset.value += dwaHeader.totalAcUncompressedCount;
  995. break;
  996. }
  997. }
  998. // Read DCT - DC component data
  999. if ( dwaHeader.dcCompressedSize > 0 ) {
  1000. var zlibInfo = {
  1001. array: info.array,
  1002. offset: inOffset,
  1003. size: dwaHeader.dcCompressedSize
  1004. };
  1005. var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  1006. inOffset.value += dwaHeader.dcCompressedSize;
  1007. }
  1008. // Read RLE compressed data
  1009. if ( dwaHeader.rleRawSize > 0 ) {
  1010. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  1011. var inflate = new Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  1012. var rleBuffer = decodeRunLength( inflate.decompress().buffer );
  1013. inOffset.value += dwaHeader.rleCompressedSize;
  1014. }
  1015. // Prepare outbuffer data offset
  1016. var outBufferEnd = 0;
  1017. var rowOffsets = new Array( channelData.length );
  1018. for ( var i = 0; i < rowOffsets.length; ++ i ) {
  1019. rowOffsets[ i ] = new Array();
  1020. }
  1021. for ( var y = 0; y < info.lines; ++ y ) {
  1022. for ( var chan = 0; chan < channelData.length; ++ chan ) {
  1023. rowOffsets[ chan ].push( outBufferEnd );
  1024. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  1025. }
  1026. }
  1027. // Lossy DCT decode RGB channels
  1028. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
  1029. // Decode other channels
  1030. for ( var i = 0; i < channelData.length; ++ i ) {
  1031. var cd = channelData[ i ];
  1032. if ( cd.decoded ) continue;
  1033. switch ( cd.compression ) {
  1034. case RLE:
  1035. var row = 0;
  1036. var rleOffset = 0;
  1037. for ( var y = 0; y < info.lines; ++ y ) {
  1038. var rowOffsetBytes = rowOffsets[ i ][ row ];
  1039. for ( var x = 0; x < cd.width; ++ x ) {
  1040. for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  1041. outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  1042. }
  1043. rleOffset ++;
  1044. }
  1045. row ++;
  1046. }
  1047. break;
  1048. case LOSSY_DCT: // skip
  1049. default:
  1050. throw 'EXRLoader.parse: unsupported channel compression';
  1051. }
  1052. }
  1053. return new DataView( outBuffer.buffer );
  1054. }
  1055. function parseNullTerminatedString( buffer, offset ) {
  1056. var uintBuffer = new Uint8Array( buffer );
  1057. var endOffset = 0;
  1058. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  1059. endOffset += 1;
  1060. }
  1061. var stringValue = new TextDecoder().decode(
  1062. uintBuffer.slice( offset.value, offset.value + endOffset )
  1063. );
  1064. offset.value = offset.value + endOffset + 1;
  1065. return stringValue;
  1066. }
  1067. function parseFixedLengthString( buffer, offset, size ) {
  1068. var stringValue = new TextDecoder().decode(
  1069. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  1070. );
  1071. offset.value = offset.value + size;
  1072. return stringValue;
  1073. }
  1074. function parseUlong( dataView, offset ) {
  1075. var uLong = dataView.getUint32( 0, true );
  1076. offset.value = offset.value + ULONG_SIZE;
  1077. return uLong;
  1078. }
  1079. function parseRational( dataView, offset ) {
  1080. var x = parseInt32( dataView, offset );
  1081. var y = parseUint32( dataView, offset );
  1082. return [ x, y ];
  1083. }
  1084. function parseTimecode( dataView, offset ) {
  1085. var x = parseUint32( dataView, offset );
  1086. var y = parseUint32( dataView, offset );
  1087. return [ x, y ];
  1088. }
  1089. function parseInt32( dataView, offset ) {
  1090. var Int32 = dataView.getInt32( offset.value, true );
  1091. offset.value = offset.value + INT32_SIZE;
  1092. return Int32;
  1093. }
  1094. function parseUint32( dataView, offset ) {
  1095. var Uint32 = dataView.getUint32( offset.value, true );
  1096. offset.value = offset.value + INT32_SIZE;
  1097. return Uint32;
  1098. }
  1099. function parseUint8Array( uInt8Array, offset ) {
  1100. var Uint8 = uInt8Array[ offset.value ];
  1101. offset.value = offset.value + INT8_SIZE;
  1102. return Uint8;
  1103. }
  1104. function parseUint8( dataView, offset ) {
  1105. var Uint8 = dataView.getUint8( offset.value );
  1106. offset.value = offset.value + INT8_SIZE;
  1107. return Uint8;
  1108. }
  1109. function parseInt64( dataView, offset ) {
  1110. var int = Number( dataView.getBigInt64( offset.value, true ) );
  1111. offset.value += ULONG_SIZE;
  1112. return int;
  1113. }
  1114. function parseFloat32( dataView, offset ) {
  1115. var float = dataView.getFloat32( offset.value, true );
  1116. offset.value += FLOAT32_SIZE;
  1117. return float;
  1118. }
  1119. function decodeFloat32( dataView, offset ) {
  1120. return encodeFloat16( parseFloat32( dataView, offset ) );
  1121. }
  1122. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1123. function decodeFloat16( binary ) {
  1124. var exponent = ( binary & 0x7C00 ) >> 10,
  1125. fraction = binary & 0x03FF;
  1126. return ( binary >> 15 ? - 1 : 1 ) * (
  1127. exponent ?
  1128. (
  1129. exponent === 0x1F ?
  1130. fraction ? NaN : Infinity :
  1131. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  1132. ) :
  1133. 6.103515625e-5 * ( fraction / 0x400 )
  1134. );
  1135. }
  1136. // http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
  1137. function encodeFloat16( val ) {
  1138. /* This method is faster than the OpenEXR implementation (very often
  1139. * used, eg. in Ogre), with the additional benefit of rounding, inspired
  1140. * by James Tursa?s half-precision code.
  1141. */
  1142. tmpDataView.setFloat32( 0, val );
  1143. var x = tmpDataView.getInt32( 0 );
  1144. var bits = ( x >> 16 ) & 0x8000; /* Get the sign */
  1145. var m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */
  1146. var e = ( x >> 23 ) & 0xff; /* Using int is faster here */
  1147. /* If zero, or denormal, or exponent underflows too much for a denormal
  1148. * half, return signed zero. */
  1149. if ( e < 103 ) return bits;
  1150. /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  1151. if ( e > 142 ) {
  1152. bits |= 0x7c00;
  1153. /* If exponent was 0xff and one mantissa bit was set, it means NaN,
  1154. * not Inf, so make sure we set one mantissa bit too. */
  1155. bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff );
  1156. return bits;
  1157. }
  1158. /* If exponent underflows but not too much, return a denormal */
  1159. if ( e < 113 ) {
  1160. m |= 0x0800;
  1161. /* Extra rounding may overflow and set mantissa to 0 and exponent
  1162. * to 1, which is OK. */
  1163. bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 );
  1164. return bits;
  1165. }
  1166. bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 );
  1167. /* Extra rounding. An overflow will set mantissa to 0 and increment
  1168. * the exponent, which is OK. */
  1169. bits += m & 1;
  1170. return bits;
  1171. }
  1172. function parseUint16( dataView, offset ) {
  1173. var Uint16 = dataView.getUint16( offset.value, true );
  1174. offset.value += INT16_SIZE;
  1175. return Uint16;
  1176. }
  1177. function parseFloat16( buffer, offset ) {
  1178. return decodeFloat16( parseUint16( buffer, offset ) );
  1179. }
  1180. function parseChlist( dataView, buffer, offset, size ) {
  1181. var startOffset = offset.value;
  1182. var channels = [];
  1183. while ( offset.value < ( startOffset + size - 1 ) ) {
  1184. var name = parseNullTerminatedString( buffer, offset );
  1185. var pixelType = parseInt32( dataView, offset );
  1186. var pLinear = parseUint8( dataView, offset );
  1187. offset.value += 3; // reserved, three chars
  1188. var xSampling = parseInt32( dataView, offset );
  1189. var ySampling = parseInt32( dataView, offset );
  1190. channels.push( {
  1191. name: name,
  1192. pixelType: pixelType,
  1193. pLinear: pLinear,
  1194. xSampling: xSampling,
  1195. ySampling: ySampling
  1196. } );
  1197. }
  1198. offset.value += 1;
  1199. return channels;
  1200. }
  1201. function parseChromaticities( dataView, offset ) {
  1202. var redX = parseFloat32( dataView, offset );
  1203. var redY = parseFloat32( dataView, offset );
  1204. var greenX = parseFloat32( dataView, offset );
  1205. var greenY = parseFloat32( dataView, offset );
  1206. var blueX = parseFloat32( dataView, offset );
  1207. var blueY = parseFloat32( dataView, offset );
  1208. var whiteX = parseFloat32( dataView, offset );
  1209. var whiteY = parseFloat32( dataView, offset );
  1210. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  1211. }
  1212. function parseCompression( dataView, offset ) {
  1213. var compressionCodes = [
  1214. 'NO_COMPRESSION',
  1215. 'RLE_COMPRESSION',
  1216. 'ZIPS_COMPRESSION',
  1217. 'ZIP_COMPRESSION',
  1218. 'PIZ_COMPRESSION',
  1219. 'PXR24_COMPRESSION',
  1220. 'B44_COMPRESSION',
  1221. 'B44A_COMPRESSION',
  1222. 'DWAA_COMPRESSION',
  1223. 'DWAB_COMPRESSION'
  1224. ];
  1225. var compression = parseUint8( dataView, offset );
  1226. return compressionCodes[ compression ];
  1227. }
  1228. function parseBox2i( dataView, offset ) {
  1229. var xMin = parseUint32( dataView, offset );
  1230. var yMin = parseUint32( dataView, offset );
  1231. var xMax = parseUint32( dataView, offset );
  1232. var yMax = parseUint32( dataView, offset );
  1233. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  1234. }
  1235. function parseLineOrder( dataView, offset ) {
  1236. var lineOrders = [
  1237. 'INCREASING_Y'
  1238. ];
  1239. var lineOrder = parseUint8( dataView, offset );
  1240. return lineOrders[ lineOrder ];
  1241. }
  1242. function parseV2f( dataView, offset ) {
  1243. var x = parseFloat32( dataView, offset );
  1244. var y = parseFloat32( dataView, offset );
  1245. return [ x, y ];
  1246. }
  1247. function parseV3f( dataView, offset ) {
  1248. var x = parseFloat32( dataView, offset );
  1249. var y = parseFloat32( dataView, offset );
  1250. var z = parseFloat32( dataView, offset );
  1251. return [ x, y, z ];
  1252. }
  1253. function parseValue( dataView, buffer, offset, type, size ) {
  1254. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1255. return parseFixedLengthString( buffer, offset, size );
  1256. } else if ( type === 'chlist' ) {
  1257. return parseChlist( dataView, buffer, offset, size );
  1258. } else if ( type === 'chromaticities' ) {
  1259. return parseChromaticities( dataView, offset );
  1260. } else if ( type === 'compression' ) {
  1261. return parseCompression( dataView, offset );
  1262. } else if ( type === 'box2i' ) {
  1263. return parseBox2i( dataView, offset );
  1264. } else if ( type === 'lineOrder' ) {
  1265. return parseLineOrder( dataView, offset );
  1266. } else if ( type === 'float' ) {
  1267. return parseFloat32( dataView, offset );
  1268. } else if ( type === 'v2f' ) {
  1269. return parseV2f( dataView, offset );
  1270. } else if ( type === 'v3f' ) {
  1271. return parseV3f( dataView, offset );
  1272. } else if ( type === 'int' ) {
  1273. return parseInt32( dataView, offset );
  1274. } else if ( type === 'rational' ) {
  1275. return parseRational( dataView, offset );
  1276. } else if ( type === 'timecode' ) {
  1277. return parseTimecode( dataView, offset );
  1278. } else if ( type === 'preview' ) {
  1279. offset.value += size;
  1280. return 'skipped';
  1281. } else {
  1282. offset.value += size;
  1283. return undefined;
  1284. }
  1285. }
  1286. var bufferDataView = new DataView( buffer );
  1287. var uInt8Array = new Uint8Array( buffer );
  1288. var EXRHeader = {};
  1289. bufferDataView.getUint32( 0, true ); // magic
  1290. bufferDataView.getUint8( 4, true ); // versionByteZero
  1291. bufferDataView.getUint8( 5, true ); // fullMask
  1292. // start of header
  1293. var offset = { value: 8 }; // start at 8, after magic stuff
  1294. var keepReading = true;
  1295. while ( keepReading ) {
  1296. var attributeName = parseNullTerminatedString( buffer, offset );
  1297. if ( attributeName == 0 ) {
  1298. keepReading = false;
  1299. } else {
  1300. var attributeType = parseNullTerminatedString( buffer, offset );
  1301. var attributeSize = parseUint32( bufferDataView, offset );
  1302. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  1303. if ( attributeValue === undefined ) {
  1304. console.warn( `EXRLoader.parse: skipped unknown header attribute type \'${ attributeType }\'.` );
  1305. } else {
  1306. EXRHeader[ attributeName ] = attributeValue;
  1307. }
  1308. }
  1309. }
  1310. // offsets
  1311. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  1312. var uncompress;
  1313. var scanlineBlockSize;
  1314. switch ( EXRHeader.compression ) {
  1315. case 'NO_COMPRESSION':
  1316. scanlineBlockSize = 1;
  1317. uncompress = uncompressRAW;
  1318. break;
  1319. case 'RLE_COMPRESSION':
  1320. scanlineBlockSize = 1;
  1321. uncompress = uncompressRLE;
  1322. break;
  1323. case 'ZIPS_COMPRESSION':
  1324. scanlineBlockSize = 1;
  1325. uncompress = uncompressZIP;
  1326. break;
  1327. case 'ZIP_COMPRESSION':
  1328. scanlineBlockSize = 16;
  1329. uncompress = uncompressZIP;
  1330. break;
  1331. case 'PIZ_COMPRESSION':
  1332. scanlineBlockSize = 32;
  1333. uncompress = uncompressPIZ;
  1334. break;
  1335. case 'PXR24_COMPRESSION':
  1336. scanlineBlockSize = 16;
  1337. uncompress = uncompressPXR;
  1338. break;
  1339. case 'DWAA_COMPRESSION':
  1340. scanlineBlockSize = 32;
  1341. uncompress = uncompressDWA;
  1342. break;
  1343. case 'DWAB_COMPRESSION':
  1344. scanlineBlockSize = 256;
  1345. uncompress = uncompressDWA;
  1346. break;
  1347. default:
  1348. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
  1349. }
  1350. var size_t;
  1351. var getValue;
  1352. // mixed pixelType not supported
  1353. var pixelType = EXRHeader.channels[ 0 ].pixelType;
  1354. if ( pixelType === 1 ) { // half
  1355. switch ( this.type ) {
  1356. case THREE.UnsignedByteType:
  1357. case THREE.FloatType:
  1358. getValue = parseFloat16;
  1359. size_t = INT16_SIZE;
  1360. break;
  1361. case THREE.HalfFloatType:
  1362. getValue = parseUint16;
  1363. size_t = INT16_SIZE;
  1364. break;
  1365. }
  1366. } else if ( pixelType === 2 ) { // float
  1367. switch ( this.type ) {
  1368. case THREE.UnsignedByteType:
  1369. case THREE.FloatType:
  1370. getValue = parseFloat32;
  1371. size_t = FLOAT32_SIZE;
  1372. break;
  1373. case THREE.HalfFloatType:
  1374. getValue = decodeFloat32;
  1375. size_t = FLOAT32_SIZE;
  1376. }
  1377. } else {
  1378. throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
  1379. }
  1380. var numBlocks = dataWindowHeight / scanlineBlockSize;
  1381. for ( var i = 0; i < numBlocks; i ++ ) {
  1382. parseUlong( bufferDataView, offset ); // scanlineOffset
  1383. }
  1384. // we should be passed the scanline offset table, start reading pixel data
  1385. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  1386. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  1387. // Firefox only supports RGBA (half) float textures
  1388. // var numChannels = EXRHeader.channels.length;
  1389. var numChannels = 4;
  1390. var size = width * height * numChannels;
  1391. // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1392. switch ( this.type ) {
  1393. case THREE.UnsignedByteType:
  1394. case THREE.FloatType:
  1395. var byteArray = new Float32Array( size );
  1396. if ( EXRHeader.channels.length < numChannels ) {
  1397. byteArray.fill( 1, 0, size );
  1398. }
  1399. break;
  1400. case THREE.HalfFloatType:
  1401. var byteArray = new Uint16Array( size );
  1402. if ( EXRHeader.channels.length < numChannels ) {
  1403. byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1404. }
  1405. break;
  1406. default:
  1407. console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
  1408. break;
  1409. }
  1410. var channelOffsets = {
  1411. R: 0,
  1412. G: 1,
  1413. B: 2,
  1414. A: 3
  1415. };
  1416. var compressionInfo = {
  1417. size: 0,
  1418. width: width,
  1419. lines: scanlineBlockSize,
  1420. offset: offset,
  1421. array: uInt8Array,
  1422. viewer: bufferDataView,
  1423. type: pixelType,
  1424. channels: EXRHeader.channels.length,
  1425. };
  1426. var line;
  1427. var size;
  1428. var viewer;
  1429. var tmpOffset = { value: 0 };
  1430. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  1431. line = parseUint32( bufferDataView, offset ); // line_no
  1432. size = parseUint32( bufferDataView, offset ); // data_len
  1433. compressionInfo.lines = ( line + scanlineBlockSize > height ) ? height - line : scanlineBlockSize;
  1434. compressionInfo.offset = offset;
  1435. compressionInfo.size = size;
  1436. viewer = uncompress( compressionInfo );
  1437. offset.value += size;
  1438. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  1439. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  1440. if ( true_y >= height ) break;
  1441. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  1442. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1443. for ( var x = 0; x < width; x ++ ) {
  1444. var idx = ( line_y * ( EXRHeader.channels.length * width ) ) + ( channelID * width ) + x;
  1445. tmpOffset.value = idx * size_t;
  1446. var val = getValue( viewer, tmpOffset );
  1447. byteArray[ ( ( ( height - 1 - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  1448. }
  1449. }
  1450. }
  1451. }
  1452. if ( this.type === THREE.UnsignedByteType ) {
  1453. let v, i;
  1454. const size = byteArray.length;
  1455. const RGBEArray = new Uint8Array( size );
  1456. for ( let h = 0; h < height; ++ h ) {
  1457. for ( let w = 0; w < width; ++ w ) {
  1458. i = h * width * 4 + w * 4;
  1459. const red = byteArray[ i ];
  1460. const green = byteArray[ i + 1 ];
  1461. const blue = byteArray[ i + 2 ];
  1462. v = ( red > green ) ? red : green;
  1463. v = ( blue > v ) ? blue : v;
  1464. if ( v < 1e-32 ) {
  1465. RGBEArray[ i ] = RGBEArray[ i + 1 ] = RGBEArray[ i + 2 ] = RGBEArray[ i + 3 ] = 0;
  1466. } else {
  1467. const res = frexp( v );
  1468. v = res[ 0 ] * 256 / v;
  1469. RGBEArray[ i ] = red * v;
  1470. RGBEArray[ i + 1 ] = green * v;
  1471. RGBEArray[ i + 2 ] = blue * v;
  1472. RGBEArray[ i + 3 ] = res[ 1 ] + 128;
  1473. }
  1474. }
  1475. }
  1476. byteArray = RGBEArray;
  1477. }
  1478. const format = ( this.type === THREE.UnsignedByteType ) ? THREE.RGBEFormat : ( numChannels === 4 ) ? THREE.RGBAFormat : THREE.RGBFormat;
  1479. return {
  1480. header: EXRHeader,
  1481. width: width,
  1482. height: height,
  1483. data: byteArray,
  1484. format: format,
  1485. type: this.type
  1486. };
  1487. },
  1488. setDataType: function ( value ) {
  1489. this.type = value;
  1490. return this;
  1491. },
  1492. load: function ( url, onLoad, onProgress, onError ) {
  1493. function onLoadCallback( texture, texData ) {
  1494. switch ( texture.type ) {
  1495. case THREE.UnsignedByteType:
  1496. texture.encoding = THREE.RGBEEncoding;
  1497. texture.minFilter = THREE.NearestFilter;
  1498. texture.magFilter = THREE.NearestFilter;
  1499. texture.generateMipmaps = false;
  1500. texture.flipY = false;
  1501. break;
  1502. case THREE.FloatType:
  1503. case THREE.HalfFloatType:
  1504. texture.encoding = THREE.LinearEncoding;
  1505. texture.minFilter = THREE.LinearFilter;
  1506. texture.magFilter = THREE.LinearFilter;
  1507. texture.generateMipmaps = false;
  1508. texture.flipY = false;
  1509. break;
  1510. }
  1511. if ( onLoad ) onLoad( texture, texData );
  1512. }
  1513. return THREE.DataTextureLoader.prototype.load.call( this, url, onLoadCallback, onProgress, onError );
  1514. }
  1515. } );