ConvolutionShader.js 2.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. console.warn( "THREE.ConvolutionShader: As part of the transition to ES6 Modules, the files in 'examples/js' were deprecated in May 2020 (r117) and will be deleted in December 2020 (r124). You can find more information about developing using ES6 Modules in https://threejs.org/docs/index.html#manual/en/introduction/Import-via-modules." );
  2. /**
  3. * @author alteredq / http://alteredqualia.com/
  4. *
  5. * Convolution shader
  6. * ported from o3d sample to WebGL / GLSL
  7. * http://o3d.googlecode.com/svn/trunk/samples/convolution.html
  8. */
  9. THREE.ConvolutionShader = {
  10. defines: {
  11. "KERNEL_SIZE_FLOAT": "25.0",
  12. "KERNEL_SIZE_INT": "25"
  13. },
  14. uniforms: {
  15. "tDiffuse": { value: null },
  16. "uImageIncrement": { value: new THREE.Vector2( 0.001953125, 0.0 ) },
  17. "cKernel": { value: [] }
  18. },
  19. vertexShader: [
  20. "uniform vec2 uImageIncrement;",
  21. "varying vec2 vUv;",
  22. "void main() {",
  23. " vUv = uv - ( ( KERNEL_SIZE_FLOAT - 1.0 ) / 2.0 ) * uImageIncrement;",
  24. " gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",
  25. "}"
  26. ].join( "\n" ),
  27. fragmentShader: [
  28. "uniform float cKernel[ KERNEL_SIZE_INT ];",
  29. "uniform sampler2D tDiffuse;",
  30. "uniform vec2 uImageIncrement;",
  31. "varying vec2 vUv;",
  32. "void main() {",
  33. " vec2 imageCoord = vUv;",
  34. " vec4 sum = vec4( 0.0, 0.0, 0.0, 0.0 );",
  35. " for( int i = 0; i < KERNEL_SIZE_INT; i ++ ) {",
  36. " sum += texture2D( tDiffuse, imageCoord ) * cKernel[ i ];",
  37. " imageCoord += uImageIncrement;",
  38. " }",
  39. " gl_FragColor = sum;",
  40. "}"
  41. ].join( "\n" ),
  42. buildKernel: function ( sigma ) {
  43. // We lop off the sqrt(2 * pi) * sigma term, since we're going to normalize anyway.
  44. function gauss( x, sigma ) {
  45. return Math.exp( - ( x * x ) / ( 2.0 * sigma * sigma ) );
  46. }
  47. var i, values, sum, halfWidth, kMaxKernelSize = 25, kernelSize = 2 * Math.ceil( sigma * 3.0 ) + 1;
  48. if ( kernelSize > kMaxKernelSize ) kernelSize = kMaxKernelSize;
  49. halfWidth = ( kernelSize - 1 ) * 0.5;
  50. values = new Array( kernelSize );
  51. sum = 0.0;
  52. for ( i = 0; i < kernelSize; ++ i ) {
  53. values[ i ] = gauss( i - halfWidth, sigma );
  54. sum += values[ i ];
  55. }
  56. // normalize the kernel
  57. for ( i = 0; i < kernelSize; ++ i ) values[ i ] /= sum;
  58. return values;
  59. }
  60. };