123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- /**
- * @author renej
- * NURBS utils
- *
- * See NURBSCurve and NURBSSurface.
- *
- **/
- /**************************************************************
- * NURBS Utils
- **************************************************************/
- THREE.NURBSUtils = {
- /*
- Finds knot vector span.
- p : degree
- u : parametric value
- U : knot vector
-
- returns the span
- */
- findSpan: function( p, u, U ) {
- var n = U.length - p - 1;
- if (u >= U[n]) {
- return n - 1;
- }
- if (u <= U[p]) {
- return p;
- }
- var low = p;
- var high = n;
- var mid = Math.floor((low + high) / 2);
- while (u < U[mid] || u >= U[mid + 1]) {
-
- if (u < U[mid]) {
- high = mid;
- } else {
- low = mid;
- }
- mid = Math.floor((low + high) / 2);
- }
- return mid;
- },
-
-
- /*
- Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
-
- span : span in which u lies
- u : parametric point
- p : degree
- U : knot vector
-
- returns array[p+1] with basis functions values.
- */
- calcBasisFunctions: function( span, u, p, U ) {
- var N = [];
- var left = [];
- var right = [];
- N[0] = 1.0;
- for (var j = 1; j <= p; ++j) {
-
- left[j] = u - U[span + 1 - j];
- right[j] = U[span + j] - u;
- var saved = 0.0;
- for (var r = 0; r < j; ++r) {
- var rv = right[r + 1];
- var lv = left[j - r];
- var temp = N[r] / (rv + lv);
- N[r] = saved + rv * temp;
- saved = lv * temp;
- }
- N[j] = saved;
- }
- return N;
- },
- /*
- Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
-
- p : degree of B-Spline
- U : knot vector
- P : control points (x, y, z, w)
- u : parametric point
- returns point for given u
- */
- calcBSplinePoint: function( p, U, P, u ) {
- var span = this.findSpan(p, u, U);
- var N = this.calcBasisFunctions(span, u, p, U);
- var C = new THREE.Vector4(0, 0, 0, 0);
- for (var j = 0; j <= p; ++j) {
- var point = P[span - p + j];
- var Nj = N[j];
- var wNj = point.w * Nj;
- C.x += point.x * wNj;
- C.y += point.y * wNj;
- C.z += point.z * wNj;
- C.w += point.w * Nj;
- }
- return C;
- },
- /*
- Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
- span : span in which u lies
- u : parametric point
- p : degree
- n : number of derivatives to calculate
- U : knot vector
- returns array[n+1][p+1] with basis functions derivatives
- */
- calcBasisFunctionDerivatives: function( span, u, p, n, U ) {
- var zeroArr = [];
- for (var i = 0; i <= p; ++i)
- zeroArr[i] = 0.0;
- var ders = [];
- for (var i = 0; i <= n; ++i)
- ders[i] = zeroArr.slice(0);
- var ndu = [];
- for (var i = 0; i <= p; ++i)
- ndu[i] = zeroArr.slice(0);
- ndu[0][0] = 1.0;
- var left = zeroArr.slice(0);
- var right = zeroArr.slice(0);
- for (var j = 1; j <= p; ++j) {
- left[j] = u - U[span + 1 - j];
- right[j] = U[span + j] - u;
- var saved = 0.0;
- for (var r = 0; r < j; ++r) {
- var rv = right[r + 1];
- var lv = left[j - r];
- ndu[j][r] = rv + lv;
- var temp = ndu[r][j - 1] / ndu[j][r];
- ndu[r][j] = saved + rv * temp;
- saved = lv * temp;
- }
- ndu[j][j] = saved;
- }
- for (var j = 0; j <= p; ++j) {
- ders[0][j] = ndu[j][p];
- }
- for (var r = 0; r <= p; ++r) {
- var s1 = 0;
- var s2 = 1;
- var a = [];
- for (var i = 0; i <= p; ++i) {
- a[i] = zeroArr.slice(0);
- }
- a[0][0] = 1.0;
- for (var k = 1; k <= n; ++k) {
- var d = 0.0;
- var rk = r - k;
- var pk = p - k;
- if (r >= k) {
- a[s2][0] = a[s1][0] / ndu[pk + 1][rk];
- d = a[s2][0] * ndu[rk][pk];
- }
- var j1 = (rk >= -1) ? 1 : -rk;
- var j2 = (r - 1 <= pk) ? k - 1 : p - r;
- for (var j = j1; j <= j2; ++j) {
- a[s2][j] = (a[s1][j] - a[s1][j - 1]) / ndu[pk + 1][rk + j];
- d += a[s2][j] * ndu[rk + j][pk];
- }
- if (r <= pk) {
- a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r];
- d += a[s2][k] * ndu[r][pk];
- }
- ders[k][r] = d;
- var j = s1;
- s1 = s2;
- s2 = j;
- }
- }
- var r = p;
- for (var k = 1; k <= n; ++k) {
- for (var j = 0; j <= p; ++j) {
- ders[k][j] *= r;
- }
- r *= p - k;
- }
- return ders;
- },
- /*
- Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
- p : degree
- U : knot vector
- P : control points
- u : Parametric points
- nd : number of derivatives
- returns array[d+1] with derivatives
- */
- calcBSplineDerivatives: function( p, U, P, u, nd ) {
- var du = nd < p ? nd : p;
- var CK = [];
- var span = this.findSpan(p, u, U);
- var nders = this.calcBasisFunctionDerivatives(span, u, p, du, U);
- var Pw = [];
- for (var i = 0; i < P.length; ++i) {
- var point = P[i].clone();
- var w = point.w;
- point.x *= w;
- point.y *= w;
- point.z *= w;
- Pw[i] = point;
- }
- for (var k = 0; k <= du; ++k) {
- var point = Pw[span - p].clone().multiplyScalar(nders[k][0]);
- for (var j = 1; j <= p; ++j) {
- point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j]));
- }
- CK[k] = point;
- }
- for (var k = du + 1; k <= nd + 1; ++k) {
- CK[k] = new THREE.Vector4(0, 0, 0);
- }
- return CK;
- },
- /*
- Calculate "K over I"
- returns k!/(i!(k-i)!)
- */
- calcKoverI: function( k, i ) {
- var nom = 1;
- for (var j = 2; j <= k; ++j) {
- nom *= j;
- }
- var denom = 1;
- for (var j = 2; j <= i; ++j) {
- denom *= j;
- }
- for (var j = 2; j <= k - i; ++j) {
- denom *= j;
- }
- return nom / denom;
- },
- /*
- Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
- Pders : result of function calcBSplineDerivatives
- returns array with derivatives for rational curve.
- */
- calcRationalCurveDerivatives: function ( Pders ) {
- var nd = Pders.length;
- var Aders = [];
- var wders = [];
- for (var i = 0; i < nd; ++i) {
- var point = Pders[i];
- Aders[i] = new THREE.Vector3(point.x, point.y, point.z);
- wders[i] = point.w;
- }
- var CK = [];
- for (var k = 0; k < nd; ++k) {
- var v = Aders[k].clone();
- for (var i = 1; i <= k; ++i) {
- v.sub(CK[k - i].clone().multiplyScalar(this.calcKoverI(k,i) * wders[i]));
- }
- CK[k] = v.divideScalar(wders[0]);
- }
- return CK;
- },
- /*
- Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
- p : degree
- U : knot vector
- P : control points in homogeneous space
- u : parametric points
- nd : number of derivatives
- returns array with derivatives.
- */
- calcNURBSDerivatives: function( p, U, P, u, nd ) {
- var Pders = this.calcBSplineDerivatives(p, U, P, u, nd);
- return this.calcRationalCurveDerivatives(Pders);
- },
- /*
- Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
-
- p1, p2 : degrees of B-Spline surface
- U1, U2 : knot vectors
- P : control points (x, y, z, w)
- u, v : parametric values
- returns point for given (u, v)
- */
- calcSurfacePoint: function( p, q, U, V, P, u, v ) {
- var uspan = this.findSpan(p, u, U);
- var vspan = this.findSpan(q, v, V);
- var Nu = this.calcBasisFunctions(uspan, u, p, U);
- var Nv = this.calcBasisFunctions(vspan, v, q, V);
- var temp = [];
- for (var l = 0; l <= q; ++l) {
- temp[l] = new THREE.Vector4(0, 0, 0, 0);
- for (var k = 0; k <= p; ++k) {
- var point = P[uspan - p + k][vspan - q + l].clone();
- var w = point.w;
- point.x *= w;
- point.y *= w;
- point.z *= w;
- temp[l].add(point.multiplyScalar(Nu[k]));
- }
- }
- var Sw = new THREE.Vector4(0, 0, 0, 0);
- for (var l = 0; l <= q; ++l) {
- Sw.add(temp[l].multiplyScalar(Nv[l]));
- }
- Sw.divideScalar(Sw.w);
- return new THREE.Vector3(Sw.x, Sw.y, Sw.z);
- }
- };
|