EXRLoader.js 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151
  1. /**
  2. * @author Richard M. / https://github.com/richardmonette
  3. * @author ScieCode / http://github.com/sciecode
  4. *
  5. * OpenEXR loader which, currently, supports uncompressed, ZIP(S), RLE and PIZ wavelet compression.
  6. * Supports reading 16 and 32 bit data format.
  7. *
  8. * Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita
  9. * implementation, so I have preserved their copyright notices.
  10. */
  11. // /*
  12. // Copyright (c) 2014 - 2017, Syoyo Fujita
  13. // All rights reserved.
  14. // Redistribution and use in source and binary forms, with or without
  15. // modification, are permitted provided that the following conditions are met:
  16. // * Redistributions of source code must retain the above copyright
  17. // notice, this list of conditions and the following disclaimer.
  18. // * Redistributions in binary form must reproduce the above copyright
  19. // notice, this list of conditions and the following disclaimer in the
  20. // documentation and/or other materials provided with the distribution.
  21. // * Neither the name of the Syoyo Fujita nor the
  22. // names of its contributors may be used to endorse or promote products
  23. // derived from this software without specific prior written permission.
  24. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  25. // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  26. // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  27. // DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  28. // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  29. // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  30. // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  31. // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  32. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  33. // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  34. // */
  35. // // TinyEXR contains some OpenEXR code, which is licensed under ------------
  36. // ///////////////////////////////////////////////////////////////////////////
  37. // //
  38. // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
  39. // // Digital Ltd. LLC
  40. // //
  41. // // All rights reserved.
  42. // //
  43. // // Redistribution and use in source and binary forms, with or without
  44. // // modification, are permitted provided that the following conditions are
  45. // // met:
  46. // // * Redistributions of source code must retain the above copyright
  47. // // notice, this list of conditions and the following disclaimer.
  48. // // * Redistributions in binary form must reproduce the above
  49. // // copyright notice, this list of conditions and the following disclaimer
  50. // // in the documentation and/or other materials provided with the
  51. // // distribution.
  52. // // * Neither the name of Industrial Light & Magic nor the names of
  53. // // its contributors may be used to endorse or promote products derived
  54. // // from this software without specific prior written permission.
  55. // //
  56. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  57. // // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  58. // // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  59. // // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  60. // // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  61. // // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  62. // // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  63. // // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  64. // // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  65. // // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  66. // // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  67. // //
  68. // ///////////////////////////////////////////////////////////////////////////
  69. // // End of OpenEXR license -------------------------------------------------
  70. THREE.EXRLoader = function ( manager ) {
  71. THREE.DataTextureLoader.call( this, manager );
  72. this.type = THREE.FloatType;
  73. };
  74. THREE.EXRLoader.prototype = Object.assign( Object.create( THREE.DataTextureLoader.prototype ), {
  75. constructor: THREE.EXRLoader,
  76. parse: function ( buffer ) {
  77. const USHORT_RANGE = ( 1 << 16 );
  78. const BITMAP_SIZE = ( USHORT_RANGE >> 3 );
  79. const HUF_ENCBITS = 16; // literal (value) bit length
  80. const HUF_DECBITS = 14; // decoding bit size (>= 8)
  81. const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size
  82. const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
  83. const HUF_DECMASK = HUF_DECSIZE - 1;
  84. const SHORT_ZEROCODE_RUN = 59;
  85. const LONG_ZEROCODE_RUN = 63;
  86. const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
  87. const ULONG_SIZE = 8;
  88. const FLOAT32_SIZE = 4;
  89. const INT32_SIZE = 4;
  90. const INT16_SIZE = 2;
  91. const INT8_SIZE = 1;
  92. const STATIC_HUFFMAN = 0;
  93. const DEFLATE = 1;
  94. const UNKNOWN = 0;
  95. const LOSSY_DCT = 1;
  96. const RLE = 2;
  97. const logBase = Math.pow( 2.7182818, 2.2 );
  98. function reverseLutFromBitmap( bitmap, lut ) {
  99. var k = 0;
  100. for ( var i = 0; i < USHORT_RANGE; ++ i ) {
  101. if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) {
  102. lut[ k ++ ] = i;
  103. }
  104. }
  105. var n = k - 1;
  106. while ( k < USHORT_RANGE ) lut[ k ++ ] = 0;
  107. return n;
  108. }
  109. function hufClearDecTable( hdec ) {
  110. for ( var i = 0; i < HUF_DECSIZE; i ++ ) {
  111. hdec[ i ] = {};
  112. hdec[ i ].len = 0;
  113. hdec[ i ].lit = 0;
  114. hdec[ i ].p = null;
  115. }
  116. }
  117. const getBitsReturn = { l: 0, c: 0, lc: 0 };
  118. function getBits( nBits, c, lc, uInt8Array, inOffset ) {
  119. while ( lc < nBits ) {
  120. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  121. lc += 8;
  122. }
  123. lc -= nBits;
  124. getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 );
  125. getBitsReturn.c = c;
  126. getBitsReturn.lc = lc;
  127. }
  128. const hufTableBuffer = new Array( 59 );
  129. function hufCanonicalCodeTable( hcode ) {
  130. for ( var i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0;
  131. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1;
  132. var c = 0;
  133. for ( var i = 58; i > 0; -- i ) {
  134. var nc = ( ( c + hufTableBuffer[ i ] ) >> 1 );
  135. hufTableBuffer[ i ] = c;
  136. c = nc;
  137. }
  138. for ( var i = 0; i < HUF_ENCSIZE; ++ i ) {
  139. var l = hcode[ i ];
  140. if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 );
  141. }
  142. }
  143. function hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, hcode ) {
  144. var p = inOffset;
  145. var c = 0;
  146. var lc = 0;
  147. for ( ; im <= iM; im ++ ) {
  148. if ( p.value - inOffset.value > ni ) return false;
  149. getBits( 6, c, lc, uInt8Array, p );
  150. var l = getBitsReturn.l;
  151. c = getBitsReturn.c;
  152. lc = getBitsReturn.lc;
  153. hcode[ im ] = l;
  154. if ( l == LONG_ZEROCODE_RUN ) {
  155. if ( p.value - inOffset.value > ni ) {
  156. throw 'Something wrong with hufUnpackEncTable';
  157. }
  158. getBits( 8, c, lc, uInt8Array, p );
  159. var zerun = getBitsReturn.l + SHORTEST_LONG_RUN;
  160. c = getBitsReturn.c;
  161. lc = getBitsReturn.lc;
  162. if ( im + zerun > iM + 1 ) {
  163. throw 'Something wrong with hufUnpackEncTable';
  164. }
  165. while ( zerun -- ) hcode[ im ++ ] = 0;
  166. im --;
  167. } else if ( l >= SHORT_ZEROCODE_RUN ) {
  168. var zerun = l - SHORT_ZEROCODE_RUN + 2;
  169. if ( im + zerun > iM + 1 ) {
  170. throw 'Something wrong with hufUnpackEncTable';
  171. }
  172. while ( zerun -- ) hcode[ im ++ ] = 0;
  173. im --;
  174. }
  175. }
  176. hufCanonicalCodeTable( hcode );
  177. }
  178. function hufLength( code ) {
  179. return code & 63;
  180. }
  181. function hufCode( code ) {
  182. return code >> 6;
  183. }
  184. function hufBuildDecTable( hcode, im, iM, hdecod ) {
  185. for ( ; im <= iM; im ++ ) {
  186. var c = hufCode( hcode[ im ] );
  187. var l = hufLength( hcode[ im ] );
  188. if ( c >> l ) {
  189. throw 'Invalid table entry';
  190. }
  191. if ( l > HUF_DECBITS ) {
  192. var pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ];
  193. if ( pl.len ) {
  194. throw 'Invalid table entry';
  195. }
  196. pl.lit ++;
  197. if ( pl.p ) {
  198. var p = pl.p;
  199. pl.p = new Array( pl.lit );
  200. for ( var i = 0; i < pl.lit - 1; ++ i ) {
  201. pl.p[ i ] = p[ i ];
  202. }
  203. } else {
  204. pl.p = new Array( 1 );
  205. }
  206. pl.p[ pl.lit - 1 ] = im;
  207. } else if ( l ) {
  208. var plOffset = 0;
  209. for ( var i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) {
  210. var pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ];
  211. if ( pl.len || pl.p ) {
  212. throw 'Invalid table entry';
  213. }
  214. pl.len = l;
  215. pl.lit = im;
  216. plOffset ++;
  217. }
  218. }
  219. }
  220. return true;
  221. }
  222. const getCharReturn = { c: 0, lc: 0 };
  223. function getChar( c, lc, uInt8Array, inOffset ) {
  224. c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset );
  225. lc += 8;
  226. getCharReturn.c = c;
  227. getCharReturn.lc = lc;
  228. }
  229. const getCodeReturn = { c: 0, lc: 0 };
  230. function getCode( po, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) {
  231. if ( po == rlc ) {
  232. if ( lc < 8 ) {
  233. getChar( c, lc, uInt8Array, inOffset );
  234. c = getCharReturn.c;
  235. lc = getCharReturn.lc;
  236. }
  237. lc -= 8;
  238. var cs = ( c >> lc );
  239. var cs = new Uint8Array( [ cs ] )[ 0 ];
  240. if ( outBufferOffset.value + cs > outBufferEndOffset ) {
  241. return false;
  242. }
  243. var s = outBuffer[ outBufferOffset.value - 1 ];
  244. while ( cs -- > 0 ) {
  245. outBuffer[ outBufferOffset.value ++ ] = s;
  246. }
  247. } else if ( outBufferOffset.value < outBufferEndOffset ) {
  248. outBuffer[ outBufferOffset.value ++ ] = po;
  249. } else {
  250. return false;
  251. }
  252. getCodeReturn.c = c;
  253. getCodeReturn.lc = lc;
  254. }
  255. function UInt16( value ) {
  256. return ( value & 0xFFFF );
  257. }
  258. function Int16( value ) {
  259. var ref = UInt16( value );
  260. return ( ref > 0x7FFF ) ? ref - 0x10000 : ref;
  261. }
  262. const wdec14Return = { a: 0, b: 0 };
  263. function wdec14( l, h ) {
  264. var ls = Int16( l );
  265. var hs = Int16( h );
  266. var hi = hs;
  267. var ai = ls + ( hi & 1 ) + ( hi >> 1 );
  268. var as = ai;
  269. var bs = ai - hi;
  270. wdec14Return.a = as;
  271. wdec14Return.b = bs;
  272. }
  273. function wav2Decode( buffer, j, nx, ox, ny, oy ) {
  274. var n = ( nx > ny ) ? ny : nx;
  275. var p = 1;
  276. var p2;
  277. while ( p <= n ) p <<= 1;
  278. p >>= 1;
  279. p2 = p;
  280. p >>= 1;
  281. while ( p >= 1 ) {
  282. var py = 0;
  283. var ey = py + oy * ( ny - p2 );
  284. var oy1 = oy * p;
  285. var oy2 = oy * p2;
  286. var ox1 = ox * p;
  287. var ox2 = ox * p2;
  288. var i00, i01, i10, i11;
  289. for ( ; py <= ey; py += oy2 ) {
  290. var px = py;
  291. var ex = py + ox * ( nx - p2 );
  292. for ( ; px <= ex; px += ox2 ) {
  293. var p01 = px + ox1;
  294. var p10 = px + oy1;
  295. var p11 = p10 + ox1;
  296. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  297. i00 = wdec14Return.a;
  298. i10 = wdec14Return.b;
  299. wdec14( buffer[ p01 + j ], buffer[ p11 + j ] );
  300. i01 = wdec14Return.a;
  301. i11 = wdec14Return.b;
  302. wdec14( i00, i01 );
  303. buffer[ px + j ] = wdec14Return.a;
  304. buffer[ p01 + j ] = wdec14Return.b;
  305. wdec14( i10, i11 );
  306. buffer[ p10 + j ] = wdec14Return.a;
  307. buffer[ p11 + j ] = wdec14Return.b;
  308. }
  309. if ( nx & p ) {
  310. var p10 = px + oy1;
  311. wdec14( buffer[ px + j ], buffer[ p10 + j ] );
  312. i00 = wdec14Return.a;
  313. buffer[ p10 + j ] = wdec14Return.b;
  314. buffer[ px + j ] = i00;
  315. }
  316. }
  317. if ( ny & p ) {
  318. var px = py;
  319. var ex = py + ox * ( nx - p2 );
  320. for ( ; px <= ex; px += ox2 ) {
  321. var p01 = px + ox1;
  322. wdec14( buffer[ px + j ], buffer[ p01 + j ] );
  323. i00 = wdec14Return.a;
  324. buffer[ p01 + j ] = wdec14Return.b;
  325. buffer[ px + j ] = i00;
  326. }
  327. }
  328. p2 = p;
  329. p >>= 1;
  330. }
  331. return py;
  332. }
  333. function hufDecode( encodingTable, decodingTable, uInt8Array, inDataView, inOffset, ni, rlc, no, outBuffer, outOffset ) {
  334. var c = 0;
  335. var lc = 0;
  336. var outBufferEndOffset = no;
  337. var inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 );
  338. while ( inOffset.value < inOffsetEnd ) {
  339. getChar( c, lc, uInt8Array, inOffset );
  340. c = getCharReturn.c;
  341. lc = getCharReturn.lc;
  342. while ( lc >= HUF_DECBITS ) {
  343. var index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK;
  344. var pl = decodingTable[ index ];
  345. if ( pl.len ) {
  346. lc -= pl.len;
  347. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  348. c = getCodeReturn.c;
  349. lc = getCodeReturn.lc;
  350. } else {
  351. if ( ! pl.p ) {
  352. throw 'hufDecode issues';
  353. }
  354. var j;
  355. for ( j = 0; j < pl.lit; j ++ ) {
  356. var l = hufLength( encodingTable[ pl.p[ j ] ] );
  357. while ( lc < l && inOffset.value < inOffsetEnd ) {
  358. getChar( c, lc, uInt8Array, inOffset );
  359. c = getCharReturn.c;
  360. lc = getCharReturn.lc;
  361. }
  362. if ( lc >= l ) {
  363. if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) {
  364. lc -= l;
  365. getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  366. c = getCodeReturn.c;
  367. lc = getCodeReturn.lc;
  368. break;
  369. }
  370. }
  371. }
  372. if ( j == pl.lit ) {
  373. throw 'hufDecode issues';
  374. }
  375. }
  376. }
  377. }
  378. var i = ( 8 - ni ) & 7;
  379. c >>= i;
  380. lc -= i;
  381. while ( lc > 0 ) {
  382. var pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ];
  383. if ( pl.len ) {
  384. lc -= pl.len;
  385. getCode( pl.lit, rlc, c, lc, uInt8Array, inDataView, inOffset, outBuffer, outOffset, outBufferEndOffset );
  386. c = getCodeReturn.c;
  387. lc = getCodeReturn.lc;
  388. } else {
  389. throw 'hufDecode issues';
  390. }
  391. }
  392. return true;
  393. }
  394. function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) {
  395. var outOffset = { value: 0 };
  396. var initialInOffset = inOffset.value;
  397. var im = parseUint32( inDataView, inOffset );
  398. var iM = parseUint32( inDataView, inOffset );
  399. inOffset.value += 4;
  400. var nBits = parseUint32( inDataView, inOffset );
  401. inOffset.value += 4;
  402. if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) {
  403. throw 'Something wrong with HUF_ENCSIZE';
  404. }
  405. var freq = new Array( HUF_ENCSIZE );
  406. var hdec = new Array( HUF_DECSIZE );
  407. hufClearDecTable( hdec );
  408. var ni = nCompressed - ( inOffset.value - initialInOffset );
  409. hufUnpackEncTable( uInt8Array, inDataView, inOffset, ni, im, iM, freq );
  410. if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) {
  411. throw 'Something wrong with hufUncompress';
  412. }
  413. hufBuildDecTable( freq, im, iM, hdec );
  414. hufDecode( freq, hdec, uInt8Array, inDataView, inOffset, nBits, iM, nRaw, outBuffer, outOffset );
  415. }
  416. function applyLut( lut, data, nData ) {
  417. for ( var i = 0; i < nData; ++ i ) {
  418. data[ i ] = lut[ data[ i ] ];
  419. }
  420. }
  421. function predictor( source ) {
  422. for ( var t = 1; t < source.length; t ++ ) {
  423. var d = source[ t - 1 ] + source[ t ] - 128;
  424. source[ t ] = d;
  425. }
  426. }
  427. function interleaveScalar( source, out ) {
  428. var t1 = 0;
  429. var t2 = Math.floor( ( source.length + 1 ) / 2 );
  430. var s = 0;
  431. var stop = source.length - 1;
  432. while ( true ) {
  433. if ( s > stop ) break;
  434. out[ s ++ ] = source[ t1 ++ ];
  435. if ( s > stop ) break;
  436. out[ s ++ ] = source[ t2 ++ ];
  437. }
  438. }
  439. function decodeRunLength( source ) {
  440. var size = source.byteLength;
  441. var out = new Array();
  442. var p = 0;
  443. var reader = new DataView( source );
  444. while ( size > 0 ) {
  445. var l = reader.getInt8( p ++ );
  446. if ( l < 0 ) {
  447. var count = - l;
  448. size -= count + 1;
  449. for ( var i = 0; i < count; i ++ ) {
  450. out.push( reader.getUint8( p ++ ) );
  451. }
  452. } else {
  453. var count = l;
  454. size -= 2;
  455. var value = reader.getUint8( p ++ );
  456. for ( var i = 0; i < count + 1; i ++ ) {
  457. out.push( value );
  458. }
  459. }
  460. }
  461. return out;
  462. }
  463. function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) {
  464. var dataView = new DataView( outBuffer.buffer );
  465. var width = channelData[ cscSet.idx[ 0 ] ].width;
  466. var height = channelData[ cscSet.idx[ 0 ] ].height;
  467. var numComp = 3;
  468. var numFullBlocksX = Math.floor( width / 8.0 );
  469. var numBlocksX = Math.ceil( width / 8.0 );
  470. var numBlocksY = Math.ceil( height / 8.0 );
  471. var leftoverX = width - ( numBlocksX - 1 ) * 8;
  472. var leftoverY = height - ( numBlocksY - 1 ) * 8;
  473. var currAcComp = { value: 0 };
  474. var currDcComp = new Array( numComp );
  475. var dctData = new Array( numComp );
  476. var halfZigBlock = new Array( numComp );
  477. var rowBlock = new Array( numComp );
  478. var rowOffsets = new Array( numComp );
  479. for ( let comp = 0; comp < numComp; ++ comp ) {
  480. rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ];
  481. currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY;
  482. dctData[ comp ] = new Float32Array( 64 );
  483. halfZigBlock[ comp ] = new Uint16Array( 64 );
  484. rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 );
  485. }
  486. for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) {
  487. var maxY = 8;
  488. if ( blocky == numBlocksY - 1 )
  489. maxY = leftoverY;
  490. var maxX = 8;
  491. for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) {
  492. if ( blockx == numBlocksX - 1 )
  493. maxX = leftoverX;
  494. for ( let comp = 0; comp < numComp; ++ comp ) {
  495. halfZigBlock[ comp ].fill( 0 );
  496. // set block DC component
  497. halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ]++ ];
  498. // set block AC components
  499. unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] );
  500. // UnZigZag block to float
  501. unZigZag( halfZigBlock[ comp ], dctData[ comp ] );
  502. // decode float dct
  503. dctInverse( dctData[ comp ] );
  504. }
  505. if ( numComp == 3 ) {
  506. csc709Inverse( dctData );
  507. }
  508. for ( let comp = 0; comp < numComp; ++ comp ) {
  509. convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 );
  510. }
  511. } // blockx
  512. let offset = 0;
  513. for ( let comp = 0; comp < numComp; ++ comp ) {
  514. let type = channelData[ cscSet.idx[ comp ] ].type;
  515. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  516. offset = rowOffsets[ comp ][ y ];
  517. for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) {
  518. let src = blockx * 64 + ( ( y & 0x7 ) * 8 );
  519. dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true );
  520. dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true );
  521. dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true );
  522. dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true );
  523. dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true );
  524. dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true );
  525. dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true );
  526. dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true );
  527. offset += 8 * INT16_SIZE * type;
  528. }
  529. }
  530. // handle partial X blocks
  531. if ( numFullBlocksX != numBlocksX ) {
  532. for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) {
  533. let offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type;
  534. let src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 );
  535. for ( let x = 0; x < maxX; ++ x ) {
  536. dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true );
  537. }
  538. }
  539. }
  540. } // comp
  541. } // blocky
  542. var halfRow = new Uint16Array( width );
  543. var dataView = new DataView( outBuffer.buffer );
  544. // convert channels back to float, if needed
  545. for ( var comp = 0; comp < numComp; ++ comp ) {
  546. channelData[ cscSet.idx[ comp ] ].decoded = true;
  547. var type = channelData[ cscSet.idx[ comp ] ].type;
  548. if ( channelData[ comp ].type != 2 ) continue;
  549. for ( var y = 0; y < height; ++ y ) {
  550. let offset = rowOffsets[ comp ][ y ];
  551. for ( var x = 0; x < width; ++ x ) {
  552. halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true );
  553. }
  554. for ( var x = 0; x < width; ++ x ) {
  555. dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true );
  556. }
  557. }
  558. }
  559. }
  560. function unRleAC( currAcComp, acBuffer, halfZigBlock ) {
  561. var acValue;
  562. var dctComp = 1;
  563. while ( dctComp < 64 ) {
  564. acValue = acBuffer[ currAcComp.value ];
  565. if ( acValue == 0xff00 ) {
  566. dctComp = 64;
  567. } else if ( acValue >> 8 == 0xff ) {
  568. dctComp += acValue & 0xff;
  569. } else {
  570. halfZigBlock[ dctComp ] = acValue;
  571. dctComp++;
  572. }
  573. currAcComp.value++;
  574. }
  575. }
  576. function unZigZag( src, dst ) {
  577. dst[0] = decodeFloat16( src[0] );
  578. dst[1] = decodeFloat16( src[1] );
  579. dst[2] = decodeFloat16( src[5] );
  580. dst[3] = decodeFloat16( src[6] );
  581. dst[4] = decodeFloat16( src[14] );
  582. dst[5] = decodeFloat16( src[15] );
  583. dst[6] = decodeFloat16( src[27] );
  584. dst[7] = decodeFloat16( src[28] );
  585. dst[8] = decodeFloat16( src[2] );
  586. dst[9] = decodeFloat16( src[4] );
  587. dst[10] = decodeFloat16( src[7] );
  588. dst[11] = decodeFloat16( src[13] );
  589. dst[12] = decodeFloat16( src[16] );
  590. dst[13] = decodeFloat16( src[26] );
  591. dst[14] = decodeFloat16( src[29] );
  592. dst[15] = decodeFloat16( src[42] );
  593. dst[16] = decodeFloat16( src[3] );
  594. dst[17] = decodeFloat16( src[8] );
  595. dst[18] = decodeFloat16( src[12] );
  596. dst[19] = decodeFloat16( src[17] );
  597. dst[20] = decodeFloat16( src[25] );
  598. dst[21] = decodeFloat16( src[30] );
  599. dst[22] = decodeFloat16( src[41] );
  600. dst[23] = decodeFloat16( src[43] );
  601. dst[24] = decodeFloat16( src[9] );
  602. dst[25] = decodeFloat16( src[11] );
  603. dst[26] = decodeFloat16( src[18] );
  604. dst[27] = decodeFloat16( src[24] );
  605. dst[28] = decodeFloat16( src[31] );
  606. dst[29] = decodeFloat16( src[40] );
  607. dst[30] = decodeFloat16( src[44] );
  608. dst[31] = decodeFloat16( src[53] );
  609. dst[32] = decodeFloat16( src[10] );
  610. dst[33] = decodeFloat16( src[19] );
  611. dst[34] = decodeFloat16( src[23] );
  612. dst[35] = decodeFloat16( src[32] );
  613. dst[36] = decodeFloat16( src[39] );
  614. dst[37] = decodeFloat16( src[45] );
  615. dst[38] = decodeFloat16( src[52] );
  616. dst[39] = decodeFloat16( src[54] );
  617. dst[40] = decodeFloat16( src[20] );
  618. dst[41] = decodeFloat16( src[22] );
  619. dst[42] = decodeFloat16( src[33] );
  620. dst[43] = decodeFloat16( src[38] );
  621. dst[44] = decodeFloat16( src[46] );
  622. dst[45] = decodeFloat16( src[51] );
  623. dst[46] = decodeFloat16( src[55] );
  624. dst[47] = decodeFloat16( src[60] );
  625. dst[48] = decodeFloat16( src[21] );
  626. dst[49] = decodeFloat16( src[34] );
  627. dst[50] = decodeFloat16( src[37] );
  628. dst[51] = decodeFloat16( src[47] );
  629. dst[52] = decodeFloat16( src[50] );
  630. dst[53] = decodeFloat16( src[56] );
  631. dst[54] = decodeFloat16( src[59] );
  632. dst[55] = decodeFloat16( src[61] );
  633. dst[56] = decodeFloat16( src[35] );
  634. dst[57] = decodeFloat16( src[36] );
  635. dst[58] = decodeFloat16( src[48] );
  636. dst[59] = decodeFloat16( src[49] );
  637. dst[60] = decodeFloat16( src[57] );
  638. dst[61] = decodeFloat16( src[58] );
  639. dst[62] = decodeFloat16( src[62] );
  640. dst[63] = decodeFloat16( src[63] );
  641. }
  642. function dctInverse( data ) {
  643. const a = .5 * Math.cos ( 3.14159 / 4.0 );
  644. const b = .5 * Math.cos ( 3.14159 / 16.0 );
  645. const c = .5 * Math.cos ( 3.14159 / 8.0 );
  646. const d = .5 * Math.cos ( 3.*3.14159 / 16.0 );
  647. const e = .5 * Math.cos ( 5.*3.14159 / 16.0 );
  648. const f = .5 * Math.cos ( 3.*3.14159 / 8.0 );
  649. const g = .5 * Math.cos ( 7.*3.14159 / 16.0 );
  650. var alpha = new Array( 4 );
  651. var beta = new Array( 4 );
  652. var theta = new Array( 4 );
  653. var gamma = new Array( 4 );
  654. for ( var row = 0; row < 8; ++ row ) {
  655. var rowPtr = row * 8;
  656. alpha[ 0 ] = c * data[ rowPtr + 2 ];
  657. alpha[ 1 ] = f * data[ rowPtr + 2 ];
  658. alpha[ 2 ] = c * data[ rowPtr + 6 ];
  659. alpha[ 3 ] = f * data[ rowPtr + 6 ];
  660. beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ];
  661. beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ];
  662. beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ];
  663. beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ];
  664. theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] );
  665. theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] );
  666. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  667. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  668. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  669. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  670. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  671. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  672. data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ];
  673. data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ];
  674. data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ];
  675. data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ];
  676. data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ];
  677. data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ];
  678. data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ];
  679. data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ];
  680. }
  681. for ( var column = 0; column < 8; ++ column ) {
  682. alpha[ 0 ] = c * data[ 16 + column ];
  683. alpha[ 1 ] = f * data[ 16 + column ];
  684. alpha[ 2 ] = c * data[ 48 + column ];
  685. alpha[ 3 ] = f * data[ 48 + column ];
  686. beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ];
  687. beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ];
  688. beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ];
  689. beta[ 3 ] = g * data [8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ];
  690. theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] );
  691. theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] );
  692. theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ];
  693. theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ];
  694. gamma[ 0 ] = theta[ 0 ] + theta[ 1 ];
  695. gamma[ 1 ] = theta[ 3 ] + theta[ 2 ];
  696. gamma[ 2 ] = theta[ 3 ] - theta[ 2 ];
  697. gamma[ 3 ] = theta[ 0 ] - theta[ 1 ];
  698. data[ column ] = gamma[ 0 ] + beta[ 0 ];
  699. data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ];
  700. data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ];
  701. data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ];
  702. data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ];
  703. data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ];
  704. data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ];
  705. data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ];
  706. }
  707. }
  708. function csc709Inverse( data ) {
  709. for ( var i = 0; i < 64; ++ i ) {
  710. var y = data[ 0 ][ i ];
  711. var cb = data[ 1 ][ i ];
  712. var cr = data[ 2 ][ i ];
  713. data[ 0 ][ i ] = y + 1.5747 * cr;
  714. data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr;
  715. data[ 2 ][ i ] = y + 1.8556 * cb;
  716. }
  717. }
  718. function convertToHalf( src, dst, idx ) {
  719. for ( var i = 0; i < 64; ++ i ) {
  720. dst[ idx + i ] = encodeFloat16( toLinear( src[ i ] ) );
  721. }
  722. }
  723. function toLinear( float ) {
  724. if ( float <= 1 ) {
  725. return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 );
  726. } else {
  727. return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 );
  728. }
  729. }
  730. function uncompressRAW( info ) {
  731. return new DataView( info.array.buffer, info.offset.value, info.size );
  732. }
  733. function uncompressRLE( info ) {
  734. var compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size );
  735. var rawBuffer = new Uint8Array( decodeRunLength( compressed ) );
  736. var tmpBuffer = new Uint8Array( rawBuffer.length );
  737. predictor( rawBuffer ); // revert predictor
  738. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  739. return new DataView( tmpBuffer.buffer );
  740. }
  741. function uncompressZIP( info ) {
  742. var compressed = info.array.slice( info.offset.value, info.offset.value + info.size );
  743. if ( typeof Zlib === 'undefined' ) {
  744. console.error( 'THREE.EXRLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
  745. }
  746. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } ); // eslint-disable-line no-undef
  747. var rawBuffer = new Uint8Array( inflate.decompress().buffer );
  748. var tmpBuffer = new Uint8Array( rawBuffer.length );
  749. predictor( rawBuffer ); // revert predictor
  750. interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels
  751. return new DataView( tmpBuffer.buffer );
  752. }
  753. function uncompressPIZ( info ) {
  754. var inDataView = info.viewer;
  755. var inOffset = { value: info.offset.value };
  756. var tmpBufSize = info.width * scanlineBlockSize * ( EXRHeader.channels.length * info.type );
  757. var outBuffer = new Uint16Array( tmpBufSize );
  758. var bitmap = new Uint8Array( BITMAP_SIZE );
  759. // Setup channel info
  760. var outBufferEnd = 0;
  761. var pizChannelData = new Array( info.channels );
  762. for ( var i = 0; i < info.channels; i ++ ) {
  763. pizChannelData[ i ] = {};
  764. pizChannelData[ i ][ 'start' ] = outBufferEnd;
  765. pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ];
  766. pizChannelData[ i ][ 'nx' ] = info.width;
  767. pizChannelData[ i ][ 'ny' ] = info.lines;
  768. pizChannelData[ i ][ 'size' ] = info.type;
  769. outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size;
  770. }
  771. // Read range compression data
  772. var minNonZero = parseUint16( inDataView, inOffset );
  773. var maxNonZero = parseUint16( inDataView, inOffset );
  774. if ( maxNonZero >= BITMAP_SIZE ) {
  775. throw 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE';
  776. }
  777. if ( minNonZero <= maxNonZero ) {
  778. for ( var i = 0; i < maxNonZero - minNonZero + 1; i ++ ) {
  779. bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset );
  780. }
  781. }
  782. // Reverse LUT
  783. var lut = new Uint16Array( USHORT_RANGE );
  784. reverseLutFromBitmap( bitmap, lut );
  785. var length = parseUint32( inDataView, inOffset );
  786. // Huffman decoding
  787. hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd );
  788. // Wavelet decoding
  789. for ( var i = 0; i < info.channels; ++ i ) {
  790. var cd = pizChannelData[ i ];
  791. for ( var j = 0; j < pizChannelData[ i ].size; ++ j ) {
  792. wav2Decode(
  793. outBuffer,
  794. cd.start + j,
  795. cd.nx,
  796. cd.size,
  797. cd.ny,
  798. cd.nx * cd.size
  799. );
  800. }
  801. }
  802. // Expand the pixel data to their original range
  803. applyLut( lut, outBuffer, outBufferEnd );
  804. // Rearrange the pixel data into the format expected by the caller.
  805. var tmpOffset = 0;
  806. var tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength );
  807. for ( var y = 0; y < info.lines; y ++ ) {
  808. for ( var c = 0; c < info.channels; c ++ ) {
  809. var cd = pizChannelData[ c ];
  810. var n = cd.nx * cd.size;
  811. var cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE );
  812. tmpBuffer.set( cp, tmpOffset );
  813. tmpOffset += n * INT16_SIZE;
  814. cd.end += n;
  815. }
  816. }
  817. return new DataView( tmpBuffer.buffer );
  818. }
  819. function uncompressDWA( info ) {
  820. var inDataView = info.viewer;
  821. var inOffset = { value: info.offset.value };
  822. var outBuffer = new Uint8Array( info.width * info.lines * ( EXRHeader.channels.length * info.type * INT16_SIZE ) );
  823. // Read compression header information
  824. var dwaHeader = {
  825. version: parseInt64( inDataView, inOffset ),
  826. unknownUncompressedSize: parseInt64( inDataView, inOffset ),
  827. unknownCompressedSize: parseInt64( inDataView, inOffset ),
  828. acCompressedSize: parseInt64( inDataView, inOffset ),
  829. dcCompressedSize: parseInt64( inDataView, inOffset ),
  830. rleCompressedSize: parseInt64( inDataView, inOffset ),
  831. rleUncompressedSize: parseInt64( inDataView, inOffset ),
  832. rleRawSize: parseInt64( inDataView, inOffset ),
  833. totalAcUncompressedCount: parseInt64( inDataView, inOffset ),
  834. totalDcUncompressedCount: parseInt64( inDataView, inOffset ),
  835. acCompression: parseInt64( inDataView, inOffset )
  836. }
  837. if ( dwaHeader.version < 2 )
  838. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported';
  839. // Read channel ruleset information
  840. var channelRules = new Array();
  841. var ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE;
  842. while ( ruleSize > 0 ) {
  843. var name = parseNullTerminatedString( inDataView.buffer, inOffset );
  844. var value = parseUint8( inDataView, inOffset );
  845. var compression = ( value >> 2 ) & 3;
  846. var csc = ( value >> 4 ) - 1;
  847. var index = new Int8Array( [ csc ] )[ 0 ];
  848. var type = parseUint8( inDataView, inOffset );
  849. channelRules.push( {
  850. name: name,
  851. index: index,
  852. type: type,
  853. compression: compression,
  854. } );
  855. ruleSize -= name.length + 3;
  856. }
  857. // Classify channels
  858. var channels = EXRHeader.channels;
  859. var channelData = new Array( info.channels );
  860. for ( var i = 0; i < info.channels; ++ i ) {
  861. var cd = channelData[ i ] = {};
  862. var channel = channels[ i ];
  863. cd.name = channel.name;
  864. cd.compression = UNKNOWN;
  865. cd.decoded = false;
  866. cd.type = channel.pixelType;
  867. cd.pLinear = channel.pLinear;
  868. cd.width = info.width;
  869. cd.height = info.lines;
  870. }
  871. var cscSet = {
  872. idx: new Array( 3 )
  873. };
  874. for ( var offset = 0; offset < info.channels; ++ offset ) {
  875. var cd = channelData[ offset ];
  876. for ( var i = 0; i < channelRules.length; ++ i ) {
  877. var rule = channelRules[ i ];
  878. if ( cd.name == rule.name ) {
  879. cd.compression = rule.compression;
  880. if ( rule.index >= 0 ) {
  881. cscSet.idx[ rule.index ] = offset;
  882. }
  883. cd.offset = offset;
  884. }
  885. }
  886. }
  887. // Read DCT - AC component data
  888. if ( dwaHeader.acCompressedSize > 0 ) {
  889. switch ( dwaHeader.acCompression ) {
  890. case STATIC_HUFFMAN:
  891. var acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount );
  892. hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount );
  893. break;
  894. case DEFLATE:
  895. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount );
  896. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  897. var acBuffer = new Uint16Array( inflate.decompress().buffer );
  898. inOffset.value += dwaHeader.totalAcUncompressedCount;
  899. break;
  900. }
  901. }
  902. // Read DCT - DC component data
  903. if ( dwaHeader.dcCompressedSize > 0 ) {
  904. var zlibInfo = {
  905. array: info.array,
  906. offset: inOffset,
  907. size: dwaHeader.dcCompressedSize
  908. }
  909. var dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer );
  910. inOffset.value += dwaHeader.dcCompressedSize;
  911. }
  912. // Read RLE compressed data
  913. if ( dwaHeader.rleRawSize > 0 ) {
  914. var compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize );
  915. var inflate = new Zlib.Inflate( compressed, { resize: true, verify: true } );
  916. var rleBuffer = decodeRunLength( inflate.decompress().buffer );
  917. inOffset.value += dwaHeader.rleCompressedSize;
  918. }
  919. // Prepare outbuffer data offset
  920. var outBufferEnd = 0;
  921. var rowOffsets = new Array( channelData.length );
  922. for ( var i = 0; i < rowOffsets.length; ++ i ) {
  923. rowOffsets[ i ] = new Array();
  924. }
  925. for ( var y = 0; y < info.lines; ++ y ) {
  926. for ( var chan = 0; chan < channelData.length; ++ chan ) {
  927. rowOffsets[ chan ].push( outBufferEnd );
  928. outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE;
  929. }
  930. }
  931. // Lossy DCT decode RGB channels
  932. lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer );
  933. // Decode other channels
  934. for ( var i = 0; i < channelData.length; ++ i ) {
  935. var cd = channelData[ i ];
  936. if ( cd.decoded ) continue;
  937. switch ( cd.compression ) {
  938. case RLE:
  939. var row = 0;
  940. var rleOffset = 0;
  941. for ( var y = 0; y < info.lines; ++ y ) {
  942. var rowOffsetBytes = rowOffsets[ i ][ row ];
  943. for ( var x = 0; x < cd.width; ++ x ) {
  944. for ( var byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) {
  945. outBuffer[ rowOffsetBytes++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ];
  946. }
  947. rleOffset++
  948. }
  949. row++;
  950. }
  951. break;
  952. default:
  953. throw 'EXRLoader.parse: unsupported channel compression';
  954. }
  955. }
  956. return new DataView( outBuffer.buffer );
  957. }
  958. function parseNullTerminatedString( buffer, offset ) {
  959. var uintBuffer = new Uint8Array( buffer );
  960. var endOffset = 0;
  961. while ( uintBuffer[ offset.value + endOffset ] != 0 ) {
  962. endOffset += 1;
  963. }
  964. var stringValue = new TextDecoder().decode(
  965. uintBuffer.slice( offset.value, offset.value + endOffset )
  966. );
  967. offset.value = offset.value + endOffset + 1;
  968. return stringValue;
  969. }
  970. function parseFixedLengthString( buffer, offset, size ) {
  971. var stringValue = new TextDecoder().decode(
  972. new Uint8Array( buffer ).slice( offset.value, offset.value + size )
  973. );
  974. offset.value = offset.value + size;
  975. return stringValue;
  976. }
  977. function parseUlong( dataView, offset ) {
  978. var uLong = dataView.getUint32( 0, true );
  979. offset.value = offset.value + ULONG_SIZE;
  980. return uLong;
  981. }
  982. function parseUint32( dataView, offset ) {
  983. var Uint32 = dataView.getUint32( offset.value, true );
  984. offset.value = offset.value + INT32_SIZE;
  985. return Uint32;
  986. }
  987. function parseUint8Array( uInt8Array, offset ) {
  988. var Uint8 = uInt8Array[ offset.value ];
  989. offset.value = offset.value + INT8_SIZE;
  990. return Uint8;
  991. }
  992. function parseUint8( dataView, offset ) {
  993. var Uint8 = dataView.getUint8( offset.value );
  994. offset.value = offset.value + INT8_SIZE;
  995. return Uint8;
  996. }
  997. function parseInt64( dataView, offset ) {
  998. var int = Number( dataView.getBigInt64( offset.value, true ) );
  999. offset.value += ULONG_SIZE;
  1000. return int;
  1001. }
  1002. function parseFloat32( dataView, offset ) {
  1003. var float = dataView.getFloat32( offset.value, true );
  1004. offset.value += FLOAT32_SIZE;
  1005. return float;
  1006. }
  1007. // https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript
  1008. function decodeFloat16( binary ) {
  1009. var exponent = ( binary & 0x7C00 ) >> 10,
  1010. fraction = binary & 0x03FF;
  1011. return ( binary >> 15 ? - 1 : 1 ) * (
  1012. exponent ?
  1013. (
  1014. exponent === 0x1F ?
  1015. fraction ? NaN : Infinity :
  1016. Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 )
  1017. ) :
  1018. 6.103515625e-5 * ( fraction / 0x400 )
  1019. );
  1020. }
  1021. // https://stackoverflow.com/questions/32633585/how-do-you-convert-to-half-floats-in-javascript
  1022. var encodeFloat16 = ( function() {
  1023. var floatView = new Float32Array(1);
  1024. var int32View = new Int32Array(floatView.buffer);
  1025. return function toHalf( fval ) {
  1026. floatView[ 0 ] = fval;
  1027. var fbits = int32View[ 0 ];
  1028. var sign = ( fbits >> 16 ) & 0x8000; // sign only
  1029. var val = ( fbits & 0x7fffffff ) + 0x1000; // rounded value
  1030. if ( val >= 0x47800000 ) { // might be or become NaN/Inf
  1031. if ( ( fbits & 0x7fffffff ) >= 0x47800000 ) {
  1032. // is or must become NaN/Inf
  1033. if( val < 0x7f800000 ) { // was value but too large
  1034. return sign | 0x7c00; // make it +/-Inf
  1035. }
  1036. return sign | 0x7c00 | // remains +/-Inf or NaN
  1037. ( fbits & 0x007fffff ) >> 13; // keep NaN (and Inf) bits
  1038. }
  1039. return sign | 0x7bff; // unrounded not quite Inf
  1040. }
  1041. if ( val >= 0x38800000 ) { // remains normalized value
  1042. return sign | val - 0x38000000 >> 13; // exp - 127 + 15
  1043. }
  1044. if ( val < 0x33000000 ) { // too small for subnormal
  1045. return sign; // becomes +/-0
  1046. }
  1047. val = ( fbits & 0x7fffffff ) >> 23; // tmp exp for subnormal calc
  1048. return sign | ( ( fbits & 0x7fffff | 0x800000 ) // add subnormal bit
  1049. + ( 0x800000 >>> val - 102 ) // round depending on cut off
  1050. >> 126 - val ); // div by 2^(1-(exp-127+15)) and >> 13 | exp=
  1051. };
  1052. } () );
  1053. function parseUint16( dataView, offset ) {
  1054. var Uint16 = dataView.getUint16( offset.value, true );
  1055. offset.value += INT16_SIZE;
  1056. return Uint16;
  1057. }
  1058. function parseFloat16( buffer, offset ) {
  1059. return decodeFloat16( parseUint16( buffer, offset ) );
  1060. }
  1061. function parseChlist( dataView, buffer, offset, size ) {
  1062. var startOffset = offset.value;
  1063. var channels = [];
  1064. while ( offset.value < ( startOffset + size - 1 ) ) {
  1065. var name = parseNullTerminatedString( buffer, offset );
  1066. var pixelType = parseUint32( dataView, offset ); // TODO: Cast this to UINT, HALF or FLOAT
  1067. var pLinear = parseUint8( dataView, offset );
  1068. offset.value += 3; // reserved, three chars
  1069. var xSampling = parseUint32( dataView, offset );
  1070. var ySampling = parseUint32( dataView, offset );
  1071. channels.push( {
  1072. name: name,
  1073. pixelType: pixelType,
  1074. pLinear: pLinear,
  1075. xSampling: xSampling,
  1076. ySampling: ySampling
  1077. } );
  1078. }
  1079. offset.value += 1;
  1080. return channels;
  1081. }
  1082. function parseChromaticities( dataView, offset ) {
  1083. var redX = parseFloat32( dataView, offset );
  1084. var redY = parseFloat32( dataView, offset );
  1085. var greenX = parseFloat32( dataView, offset );
  1086. var greenY = parseFloat32( dataView, offset );
  1087. var blueX = parseFloat32( dataView, offset );
  1088. var blueY = parseFloat32( dataView, offset );
  1089. var whiteX = parseFloat32( dataView, offset );
  1090. var whiteY = parseFloat32( dataView, offset );
  1091. return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY };
  1092. }
  1093. function parseCompression( dataView, offset ) {
  1094. var compressionCodes = [
  1095. 'NO_COMPRESSION',
  1096. 'RLE_COMPRESSION',
  1097. 'ZIPS_COMPRESSION',
  1098. 'ZIP_COMPRESSION',
  1099. 'PIZ_COMPRESSION',
  1100. 'PXR24_COMPRESSION',
  1101. 'B44_COMPRESSION',
  1102. 'B44A_COMPRESSION',
  1103. 'DWAA_COMPRESSION',
  1104. 'DWAB_COMPRESSION'
  1105. ];
  1106. var compression = parseUint8( dataView, offset );
  1107. return compressionCodes[ compression ];
  1108. }
  1109. function parseBox2i( dataView, offset ) {
  1110. var xMin = parseUint32( dataView, offset );
  1111. var yMin = parseUint32( dataView, offset );
  1112. var xMax = parseUint32( dataView, offset );
  1113. var yMax = parseUint32( dataView, offset );
  1114. return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax };
  1115. }
  1116. function parseLineOrder( dataView, offset ) {
  1117. var lineOrders = [
  1118. 'INCREASING_Y'
  1119. ];
  1120. var lineOrder = parseUint8( dataView, offset );
  1121. return lineOrders[ lineOrder ];
  1122. }
  1123. function parseV2f( dataView, offset ) {
  1124. var x = parseFloat32( dataView, offset );
  1125. var y = parseFloat32( dataView, offset );
  1126. return [ x, y ];
  1127. }
  1128. function parseValue( dataView, buffer, offset, type, size ) {
  1129. if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) {
  1130. return parseFixedLengthString( buffer, offset, size );
  1131. } else if ( type === 'chlist' ) {
  1132. return parseChlist( dataView, buffer, offset, size );
  1133. } else if ( type === 'chromaticities' ) {
  1134. return parseChromaticities( dataView, offset );
  1135. } else if ( type === 'compression' ) {
  1136. return parseCompression( dataView, offset );
  1137. } else if ( type === 'box2i' ) {
  1138. return parseBox2i( dataView, offset );
  1139. } else if ( type === 'lineOrder' ) {
  1140. return parseLineOrder( dataView, offset );
  1141. } else if ( type === 'float' ) {
  1142. return parseFloat32( dataView, offset );
  1143. } else if ( type === 'v2f' ) {
  1144. return parseV2f( dataView, offset );
  1145. } else if ( type === 'int' ) {
  1146. return parseUint32( dataView, offset );
  1147. } else {
  1148. throw 'Cannot parse value for unsupported type: ' + type;
  1149. }
  1150. }
  1151. var bufferDataView = new DataView( buffer );
  1152. var uInt8Array = new Uint8Array( buffer );
  1153. var EXRHeader = {};
  1154. bufferDataView.getUint32( 0, true ); // magic
  1155. bufferDataView.getUint8( 4, true ); // versionByteZero
  1156. bufferDataView.getUint8( 5, true ); // fullMask
  1157. // start of header
  1158. var offset = { value: 8 }; // start at 8, after magic stuff
  1159. var keepReading = true;
  1160. while ( keepReading ) {
  1161. var attributeName = parseNullTerminatedString( buffer, offset );
  1162. if ( attributeName == 0 ) {
  1163. keepReading = false;
  1164. } else {
  1165. var attributeType = parseNullTerminatedString( buffer, offset );
  1166. var attributeSize = parseUint32( bufferDataView, offset );
  1167. var attributeValue = parseValue( bufferDataView, buffer, offset, attributeType, attributeSize );
  1168. EXRHeader[ attributeName ] = attributeValue;
  1169. }
  1170. }
  1171. // offsets
  1172. var dataWindowHeight = EXRHeader.dataWindow.yMax + 1;
  1173. var uncompress;
  1174. var scanlineBlockSize;
  1175. switch ( EXRHeader.compression ) {
  1176. case 'NO_COMPRESSION':
  1177. scanlineBlockSize = 1;
  1178. uncompress = uncompressRAW;
  1179. break;
  1180. case 'RLE_COMPRESSION':
  1181. scanlineBlockSize = 1;
  1182. uncompress = uncompressRLE;
  1183. break;
  1184. case 'ZIPS_COMPRESSION':
  1185. scanlineBlockSize = 1;
  1186. uncompress = uncompressZIP;
  1187. break;
  1188. case 'ZIP_COMPRESSION':
  1189. scanlineBlockSize = 16;
  1190. uncompress = uncompressZIP;
  1191. break;
  1192. case 'PIZ_COMPRESSION':
  1193. scanlineBlockSize = 32;
  1194. uncompress = uncompressPIZ;
  1195. break;
  1196. case 'DWAA_COMPRESSION':
  1197. scanlineBlockSize = 32;
  1198. uncompress = uncompressDWA;
  1199. break;
  1200. case 'DWAB_COMPRESSION':
  1201. scanlineBlockSize = 256;
  1202. uncompress = uncompressDWA;
  1203. break;
  1204. default:
  1205. throw 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported';
  1206. }
  1207. var size_t;
  1208. var getValue;
  1209. // mixed pixelType not supported
  1210. var pixelType = EXRHeader.channels[ 0 ].pixelType;
  1211. if ( pixelType === 1 ) { // half
  1212. switch ( this.type ) {
  1213. case THREE.FloatType:
  1214. getValue = parseFloat16;
  1215. size_t = INT16_SIZE;
  1216. break;
  1217. case THREE.HalfFloatType:
  1218. getValue = parseUint16;
  1219. size_t = INT16_SIZE;
  1220. break;
  1221. }
  1222. } else if ( pixelType === 2 ) { // float
  1223. switch ( this.type ) {
  1224. case THREE.FloatType:
  1225. getValue = parseFloat32;
  1226. size_t = FLOAT32_SIZE;
  1227. break;
  1228. case THREE.HalfFloatType:
  1229. throw 'EXRLoader.parse: unsupported HalfFloatType texture for FloatType image file.';
  1230. }
  1231. } else {
  1232. throw 'EXRLoader.parse: unsupported pixelType ' + pixelType + ' for ' + EXRHeader.compression + '.';
  1233. }
  1234. var numBlocks = dataWindowHeight / scanlineBlockSize;
  1235. for ( var i = 0; i < numBlocks; i ++ ) {
  1236. parseUlong( bufferDataView, offset ); // scanlineOffset
  1237. }
  1238. // we should be passed the scanline offset table, start reading pixel data
  1239. var width = EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1;
  1240. var height = EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1;
  1241. // Firefox only supports RGBA (half) float textures
  1242. // var numChannels = EXRHeader.channels.length;
  1243. var numChannels = 4;
  1244. var size = width * height * numChannels;
  1245. // Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten
  1246. switch ( this.type ) {
  1247. case THREE.FloatType:
  1248. var byteArray = new Float32Array( size );
  1249. if ( EXRHeader.channels.length < numChannels ) {
  1250. byteArray.fill( 1, 0, size );
  1251. }
  1252. break;
  1253. case THREE.HalfFloatType:
  1254. var byteArray = new Uint16Array( size );
  1255. if ( EXRHeader.channels.length < numChannels ) {
  1256. byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1
  1257. }
  1258. break;
  1259. default:
  1260. console.error( 'THREE.EXRLoader: unsupported type: ', this.type );
  1261. break;
  1262. }
  1263. var channelOffsets = {
  1264. R: 0,
  1265. G: 1,
  1266. B: 2,
  1267. A: 3
  1268. };
  1269. var compressionInfo = {
  1270. size: 0,
  1271. width: width,
  1272. lines: scanlineBlockSize,
  1273. offset: offset,
  1274. array: uInt8Array,
  1275. viewer: bufferDataView,
  1276. type: pixelType,
  1277. channels: EXRHeader.channels.length,
  1278. };
  1279. var line;
  1280. var size;
  1281. var viewer;
  1282. var tmpOffset = { value: 0 };
  1283. for ( var scanlineBlockIdx = 0; scanlineBlockIdx < height / scanlineBlockSize; scanlineBlockIdx ++ ) {
  1284. line = parseUint32( bufferDataView, offset ); // line_no
  1285. size = parseUint32( bufferDataView, offset ); // data_len
  1286. compressionInfo.lines = ( line + scanlineBlockSize > height ) ? height - line : scanlineBlockSize;
  1287. compressionInfo.offset = offset;
  1288. compressionInfo.size = size;
  1289. viewer = uncompress( compressionInfo );
  1290. offset.value += size;
  1291. for ( var line_y = 0; line_y < scanlineBlockSize; line_y ++ ) {
  1292. var true_y = line_y + ( scanlineBlockIdx * scanlineBlockSize );
  1293. if ( true_y >= height ) break;
  1294. for ( var channelID = 0; channelID < EXRHeader.channels.length; channelID ++ ) {
  1295. var cOff = channelOffsets[ EXRHeader.channels[ channelID ].name ];
  1296. for ( var x = 0; x < width; x ++ ) {
  1297. var idx = ( line_y * ( EXRHeader.channels.length * width ) ) + ( channelID * width ) + x;
  1298. tmpOffset.value = idx * size_t;
  1299. var val = getValue( viewer, tmpOffset );
  1300. byteArray[ ( ( ( height - 1 - true_y ) * ( width * numChannels ) ) + ( x * numChannels ) ) + cOff ] = val;
  1301. }
  1302. }
  1303. }
  1304. }
  1305. return {
  1306. header: EXRHeader,
  1307. width: width,
  1308. height: height,
  1309. data: byteArray,
  1310. format: numChannels === 4 ? THREE.RGBAFormat : THREE.RGBFormat,
  1311. type: this.type
  1312. };
  1313. },
  1314. setDataType: function ( value ) {
  1315. this.type = value;
  1316. return this;
  1317. },
  1318. load: function ( url, onLoad, onProgress, onError ) {
  1319. function onLoadCallback( texture, texData ) {
  1320. switch ( texture.type ) {
  1321. case THREE.FloatType:
  1322. texture.encoding = THREE.LinearEncoding;
  1323. texture.minFilter = THREE.LinearFilter;
  1324. texture.magFilter = THREE.LinearFilter;
  1325. texture.generateMipmaps = false;
  1326. texture.flipY = false;
  1327. break;
  1328. case THREE.HalfFloatType:
  1329. texture.encoding = THREE.LinearEncoding;
  1330. texture.minFilter = THREE.LinearFilter;
  1331. texture.magFilter = THREE.LinearFilter;
  1332. texture.generateMipmaps = false;
  1333. texture.flipY = false;
  1334. break;
  1335. }
  1336. if ( onLoad ) onLoad( texture, texData );
  1337. }
  1338. return THREE.DataTextureLoader.prototype.load.call( this, url, onLoadCallback, onProgress, onError );
  1339. }
  1340. } );