SimplexNoise.js 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. // Ported from Stefan Gustavson's java implementation
  2. // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
  3. // Read Stefan's excellent paper for details on how this code works.
  4. //
  5. // Sean McCullough [email protected]
  6. //
  7. // Added 4D noise
  8. // Joshua Koo [email protected]
  9. /**
  10. * You can pass in a random number generator object if you like.
  11. * It is assumed to have a random() method.
  12. */
  13. var SimplexNoise = function(r) {
  14. if (r == undefined) r = Math;
  15. this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0],
  16. [1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1],
  17. [0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]];
  18. this.grad4 = [[0,1,1,1], [0,1,1,-1], [0,1,-1,1], [0,1,-1,-1],
  19. [0,-1,1,1], [0,-1,1,-1], [0,-1,-1,1], [0,-1,-1,-1],
  20. [1,0,1,1], [1,0,1,-1], [1,0,-1,1], [1,0,-1,-1],
  21. [-1,0,1,1], [-1,0,1,-1], [-1,0,-1,1], [-1,0,-1,-1],
  22. [1,1,0,1], [1,1,0,-1], [1,-1,0,1], [1,-1,0,-1],
  23. [-1,1,0,1], [-1,1,0,-1], [-1,-1,0,1], [-1,-1,0,-1],
  24. [1,1,1,0], [1,1,-1,0], [1,-1,1,0], [1,-1,-1,0],
  25. [-1,1,1,0], [-1,1,-1,0], [-1,-1,1,0], [-1,-1,-1,0]];
  26. this.p = [];
  27. for (var i=0; i<256; i++) {
  28. this.p[i] = Math.floor(r.random()*256);
  29. }
  30. // To remove the need for index wrapping, double the permutation table length
  31. this.perm = [];
  32. for(var i=0; i<512; i++) {
  33. this.perm[i]=this.p[i & 255];
  34. }
  35. // A lookup table to traverse the simplex around a given point in 4D.
  36. // Details can be found where this table is used, in the 4D noise method.
  37. this.simplex = [
  38. [0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0],
  39. [0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0],
  40. [0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
  41. [1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0],
  42. [1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0],
  43. [0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
  44. [2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0],
  45. [2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]];
  46. };
  47. SimplexNoise.prototype.dot = function(g, x, y) {
  48. return g[0]*x + g[1]*y;
  49. };
  50. SimplexNoise.prototype.noise = function(xin, yin) {
  51. var n0, n1, n2; // Noise contributions from the three corners
  52. // Skew the input space to determine which simplex cell we're in
  53. var F2 = 0.5*(Math.sqrt(3.0)-1.0);
  54. var s = (xin+yin)*F2; // Hairy factor for 2D
  55. var i = Math.floor(xin+s);
  56. var j = Math.floor(yin+s);
  57. var G2 = (3.0-Math.sqrt(3.0))/6.0;
  58. var t = (i+j)*G2;
  59. var X0 = i-t; // Unskew the cell origin back to (x,y) space
  60. var Y0 = j-t;
  61. var x0 = xin-X0; // The x,y distances from the cell origin
  62. var y0 = yin-Y0;
  63. // For the 2D case, the simplex shape is an equilateral triangle.
  64. // Determine which simplex we are in.
  65. var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
  66. if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
  67. else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
  68. // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  69. // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  70. // c = (3-sqrt(3))/6
  71. var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
  72. var y1 = y0 - j1 + G2;
  73. var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
  74. var y2 = y0 - 1.0 + 2.0 * G2;
  75. // Work out the hashed gradient indices of the three simplex corners
  76. var ii = i & 255;
  77. var jj = j & 255;
  78. var gi0 = this.perm[ii+this.perm[jj]] % 12;
  79. var gi1 = this.perm[ii+i1+this.perm[jj+j1]] % 12;
  80. var gi2 = this.perm[ii+1+this.perm[jj+1]] % 12;
  81. // Calculate the contribution from the three corners
  82. var t0 = 0.5 - x0*x0-y0*y0;
  83. if(t0<0) n0 = 0.0;
  84. else {
  85. t0 *= t0;
  86. n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
  87. }
  88. var t1 = 0.5 - x1*x1-y1*y1;
  89. if(t1<0) n1 = 0.0;
  90. else {
  91. t1 *= t1;
  92. n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
  93. }
  94. var t2 = 0.5 - x2*x2-y2*y2;
  95. if(t2<0) n2 = 0.0;
  96. else {
  97. t2 *= t2;
  98. n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
  99. }
  100. // Add contributions from each corner to get the final noise value.
  101. // The result is scaled to return values in the interval [-1,1].
  102. return 70.0 * (n0 + n1 + n2);
  103. };
  104. // 3D simplex noise
  105. SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
  106. var n0, n1, n2, n3; // Noise contributions from the four corners
  107. // Skew the input space to determine which simplex cell we're in
  108. var F3 = 1.0/3.0;
  109. var s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
  110. var i = Math.floor(xin+s);
  111. var j = Math.floor(yin+s);
  112. var k = Math.floor(zin+s);
  113. var G3 = 1.0/6.0; // Very nice and simple unskew factor, too
  114. var t = (i+j+k)*G3;
  115. var X0 = i-t; // Unskew the cell origin back to (x,y,z) space
  116. var Y0 = j-t;
  117. var Z0 = k-t;
  118. var x0 = xin-X0; // The x,y,z distances from the cell origin
  119. var y0 = yin-Y0;
  120. var z0 = zin-Z0;
  121. // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  122. // Determine which simplex we are in.
  123. var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
  124. var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
  125. if(x0>=y0) {
  126. if(y0>=z0)
  127. { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
  128. else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
  129. else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
  130. }
  131. else { // x0<y0
  132. if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
  133. else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
  134. else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
  135. }
  136. // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  137. // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  138. // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  139. // c = 1/6.
  140. var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
  141. var y1 = y0 - j1 + G3;
  142. var z1 = z0 - k1 + G3;
  143. var x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
  144. var y2 = y0 - j2 + 2.0*G3;
  145. var z2 = z0 - k2 + 2.0*G3;
  146. var x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
  147. var y3 = y0 - 1.0 + 3.0*G3;
  148. var z3 = z0 - 1.0 + 3.0*G3;
  149. // Work out the hashed gradient indices of the four simplex corners
  150. var ii = i & 255;
  151. var jj = j & 255;
  152. var kk = k & 255;
  153. var gi0 = this.perm[ii+this.perm[jj+this.perm[kk]]] % 12;
  154. var gi1 = this.perm[ii+i1+this.perm[jj+j1+this.perm[kk+k1]]] % 12;
  155. var gi2 = this.perm[ii+i2+this.perm[jj+j2+this.perm[kk+k2]]] % 12;
  156. var gi3 = this.perm[ii+1+this.perm[jj+1+this.perm[kk+1]]] % 12;
  157. // Calculate the contribution from the four corners
  158. var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
  159. if(t0<0) n0 = 0.0;
  160. else {
  161. t0 *= t0;
  162. n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0, z0);
  163. }
  164. var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
  165. if(t1<0) n1 = 0.0;
  166. else {
  167. t1 *= t1;
  168. n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1, z1);
  169. }
  170. var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
  171. if(t2<0) n2 = 0.0;
  172. else {
  173. t2 *= t2;
  174. n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2, z2);
  175. }
  176. var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
  177. if(t3<0) n3 = 0.0;
  178. else {
  179. t3 *= t3;
  180. n3 = t3 * t3 * this.dot(this.grad3[gi3], x3, y3, z3);
  181. }
  182. // Add contributions from each corner to get the final noise value.
  183. // The result is scaled to stay just inside [-1,1]
  184. return 32.0*(n0 + n1 + n2 + n3);
  185. };
  186. // 4D simplex noise
  187. SimplexNoise.prototype.noise4d = function( x, y, z, w ) {
  188. // For faster and easier lookups
  189. var grad4 = this.grad4;
  190. var simplex = this.simplex;
  191. var perm = this.perm;
  192. // The skewing and unskewing factors are hairy again for the 4D case
  193. var F4 = (Math.sqrt(5.0)-1.0)/4.0;
  194. var G4 = (5.0-Math.sqrt(5.0))/20.0;
  195. var n0, n1, n2, n3, n4; // Noise contributions from the five corners
  196. // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
  197. var s = (x + y + z + w) * F4; // Factor for 4D skewing
  198. var i = Math.floor(x + s);
  199. var j = Math.floor(y + s);
  200. var k = Math.floor(z + s);
  201. var l = Math.floor(w + s);
  202. var t = (i + j + k + l) * G4; // Factor for 4D unskewing
  203. var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
  204. var Y0 = j - t;
  205. var Z0 = k - t;
  206. var W0 = l - t;
  207. var x0 = x - X0; // The x,y,z,w distances from the cell origin
  208. var y0 = y - Y0;
  209. var z0 = z - Z0;
  210. var w0 = w - W0;
  211. // For the 4D case, the simplex is a 4D shape I won't even try to describe.
  212. // To find out which of the 24 possible simplices we're in, we need to
  213. // determine the magnitude ordering of x0, y0, z0 and w0.
  214. // The method below is a good way of finding the ordering of x,y,z,w and
  215. // then find the correct traversal order for the simplex we’re in.
  216. // First, six pair-wise comparisons are performed between each possible pair
  217. // of the four coordinates, and the results are used to add up binary bits
  218. // for an integer index.
  219. var c1 = (x0 > y0) ? 32 : 0;
  220. var c2 = (x0 > z0) ? 16 : 0;
  221. var c3 = (y0 > z0) ? 8 : 0;
  222. var c4 = (x0 > w0) ? 4 : 0;
  223. var c5 = (y0 > w0) ? 2 : 0;
  224. var c6 = (z0 > w0) ? 1 : 0;
  225. var c = c1 + c2 + c3 + c4 + c5 + c6;
  226. var i1, j1, k1, l1; // The integer offsets for the second simplex corner
  227. var i2, j2, k2, l2; // The integer offsets for the third simplex corner
  228. var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
  229. // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
  230. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
  231. // impossible. Only the 24 indices which have non-zero entries make any sense.
  232. // We use a thresholding to set the coordinates in turn from the largest magnitude.
  233. // The number 3 in the "simplex" array is at the position of the largest coordinate.
  234. i1 = simplex[c][0]>=3 ? 1 : 0;
  235. j1 = simplex[c][1]>=3 ? 1 : 0;
  236. k1 = simplex[c][2]>=3 ? 1 : 0;
  237. l1 = simplex[c][3]>=3 ? 1 : 0;
  238. // The number 2 in the "simplex" array is at the second largest coordinate.
  239. i2 = simplex[c][0]>=2 ? 1 : 0;
  240. j2 = simplex[c][1]>=2 ? 1 : 0; k2 = simplex[c][2]>=2 ? 1 : 0;
  241. l2 = simplex[c][3]>=2 ? 1 : 0;
  242. // The number 1 in the "simplex" array is at the second smallest coordinate.
  243. i3 = simplex[c][0]>=1 ? 1 : 0;
  244. j3 = simplex[c][1]>=1 ? 1 : 0;
  245. k3 = simplex[c][2]>=1 ? 1 : 0;
  246. l3 = simplex[c][3]>=1 ? 1 : 0;
  247. // The fifth corner has all coordinate offsets = 1, so no need to look that up.
  248. var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
  249. var y1 = y0 - j1 + G4;
  250. var z1 = z0 - k1 + G4;
  251. var w1 = w0 - l1 + G4;
  252. var x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
  253. var y2 = y0 - j2 + 2.0*G4;
  254. var z2 = z0 - k2 + 2.0*G4;
  255. var w2 = w0 - l2 + 2.0*G4;
  256. var x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
  257. var y3 = y0 - j3 + 3.0*G4;
  258. var z3 = z0 - k3 + 3.0*G4;
  259. var w3 = w0 - l3 + 3.0*G4;
  260. var x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
  261. var y4 = y0 - 1.0 + 4.0*G4;
  262. var z4 = z0 - 1.0 + 4.0*G4;
  263. var w4 = w0 - 1.0 + 4.0*G4;
  264. // Work out the hashed gradient indices of the five simplex corners
  265. var ii = i & 255;
  266. var jj = j & 255;
  267. var kk = k & 255;
  268. var ll = l & 255;
  269. var gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
  270. var gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
  271. var gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
  272. var gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
  273. var gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
  274. // Calculate the contribution from the five corners
  275. var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
  276. if(t0<0) n0 = 0.0;
  277. else {
  278. t0 *= t0;
  279. n0 = t0 * t0 * this.dot(grad4[gi0], x0, y0, z0, w0);
  280. }
  281. var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
  282. if(t1<0) n1 = 0.0;
  283. else {
  284. t1 *= t1;
  285. n1 = t1 * t1 * this.dot(grad4[gi1], x1, y1, z1, w1);
  286. }
  287. var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
  288. if(t2<0) n2 = 0.0;
  289. else {
  290. t2 *= t2;
  291. n2 = t2 * t2 * this.dot(grad4[gi2], x2, y2, z2, w2);
  292. } var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
  293. if(t3<0) n3 = 0.0;
  294. else {
  295. t3 *= t3;
  296. n3 = t3 * t3 * this.dot(grad4[gi3], x3, y3, z3, w3);
  297. }
  298. var t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
  299. if(t4<0) n4 = 0.0;
  300. else {
  301. t4 *= t4;
  302. n4 = t4 * t4 * this.dot(grad4[gi4], x4, y4, z4, w4);
  303. }
  304. // Sum up and scale the result to cover the range [-1,1]
  305. return 27.0 * (n0 + n1 + n2 + n3 + n4);
  306. };